
 

  
Abstract—A new swarm intelligence optimization algorithm 

is proposed to simulate the long-distance flight process of dan-
delion seeds as a function of wind by the dandelion optimizer 
(DO). An improved version of DO, called IDO, is proposed to 
overcome the shortcomings of slow optimization speed and 
vulnerability to local optimum of the algorithm. In the landing 
stage of the dandelion seeds, IDO introduces the elite pool rou-
lette wheel selection mechanism to maintain the diversity of the 
dandelion population, which enables the algorithm to maintain 
a better optimization ability. In the rising stage, a gamma dis-
tribution is introduced to make the algorithm population more 
diverse, thus improving its optimization capabilities. Finally, 
the mirror reversal strategy is introduced to search for the 
mirror solutions of inferior particles in the population sur-
rounding the optimal individual, which helps the population to 
escape from local optima. The performance of the proposed 
improved IDO algorithm was tested against the CEC-2017, 
CEC-2020, and CEC-2022 benchmark functions. Finally, three 
engineering design problems were optimized, namely, three-bar 
truss design, cantilever design, and pressure vessel design. The 
experimental results show that the proposed IDO algorithm 
significantly improves the convergence rate and optimization 
accuracy. The experimental results show that the proposed IDO 
algorithm optimizes the exploitation and exploration process, 
improves the convergence rate and optimization accuracy. 
 

Index Terms—Dandelion optimizer, Elite pool, Mirror Op-
timization Strategy, function optimization 
 

I. INTRODUCTION 
HE Times is growing quickly, and people are producing 
and living richer lives. The complexity of numerical 

optimization problems and the difficulty of real-world opti-
mization problems both increase, necessitating the use of 
effective methods to solve them [1]. Modern optimization 
problems cannotd always be solved using the conventional 
optimization techniques. More reliable optimization strate-
gies are desperately needed [2] due to the problem's rising 

 
Manuscript received Aug 31, 2023; revised Dec 8, 2023.  
This work was supported in part by the Scientific research fund project of 

Liaoning Provincial Department of Education (Grant No. LJKMZ20221859 
Grant No. LJKZ1199, Grant No.2020-YKLH-32). 2022 enterprise and doc- 
tor double innovation plan project of Yingkou City (Grant No. QB-2022-04).  

Zhenlong Zhao is a Senior Engineer in School of Electrical Engineering, 
Yingkou Institute of Technology, Yingkou, 115014, P. R. China (E-mail:zz 
l_idea@126.com) 

Zhongfeng Li is an Associate Professor in School of Electrical Engi-
neering, Yingkou Institute of Technology, Yingkou, 115014, P. R. China 
(corresponding author to provide E-mail: alyx0640@163.com) 

Tiefeng An is a Senior Engineer in the Steelworks of Beiying Iron and 
Steel Group Co.,Ltd of Benxi Steel Group Corporation, Liaoning, Benxi, 
117000, P. R. China (phone: 86-13842446121, E-mail: tiefengan@126.com) 

Shiqi Wei is an Engineer of Yokogawa China Co., Ltd., Shanxi, Xi'an, 
710000, PR China (E-mail: shiqi100@126. com) 
 

complexity and difficulty. Identification of decision factors 
while preserving a variety of restrictions to maximize or 
decrease the cost function is known as optimization. Any 
optimization problem must have constraints, cost functions, 
and design variables. To complete the system design at the 
lowest possible cost, the optimization procedure entails de-
termining the ideal value for the unique system parameters 
[3]. Among Engineering [4]-[5], feature selection [6]-[8], 
image processing [9]-[10], wireless sensor networks 
[11]-[12], machine learning parameter optimization [13]-[15], 
medical [16]-[17], agricultural [18]-[19], finance [20]-[
21], and other fields all make extensive use of optimization 
techniques. Many problems encountered in daily life are 
generally non-convex and nonlinear due to the intrinsic na-
ture of many design components and restrictions. Further-
more, there is no guarantee that an all-encompassing opti-
mum answer will be discovered. Scientists develop novel 
solutions to these real-world issues to produce better results. 

Metaheuristic algorithms are widely used and have high 
potential due to their wide applicability in various techniques 
based on randomized methods. The main purpose of intro-
ducing metaheuristic algorithms is to better solve optimiza-
tion problems and achieve better results [22]. Therefore,
 some researchers not only try to propose new metaheuristic 
algorithms, but also try to improve the efficiency of existing 
methods. There are some successful metaheuristic algorithms 
such as particle swarm optimization (PSO) [23], ant lion
 algorithm (ALO) [24], grey wolf optimizer (GWO) [25], 
marine predator algorithm (MPA) [26], etc. Metaheuristic
 algorithms can be broadly divided into three types: (1) 
Evolutionary algorithms [27], including mainly GA [25], DE 
[28], etc. (2) Swarm intelligence-based algorithm (SI) is 
characterized by self-organization and collective intelligence 
behavior of decentralized systems. Bonabeau defines SI as 
"sudden collective intelligence of a simple group of agents" 
[29]. (3) Algorithms based on representation of human b-
ehavior [30] are mainly inspired by human behavior. Better 
solutions can be generated by human behavior and other 
means until the final standards are met, such as the teach-
ing-learning-based optimization algorithm (TLBO) [31], the
 equilibrium optimizer (EO) [32], and the social group opti-
mization algorithm (SGO) [33]. It should be emphasized that
 the existing metaheuristic algorithms have advantages and 
limitations. The coordinate between exploration and evolu-
tion is crucial for metaheuristic algorithms all the time [34].
 The algorithm that maintains this coordinate in different opt- 
imization problems is a successful algorithm. 

In recent years, new algorithms have gradually appeared, 
and many new optimization algorithms have been used to 
solve problems such as technical optimization. Shabani 
proposed the search and rescue optimization algorithm (SAR) 
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[35]. He proposes a restart strategy to avoid locally infeasible
 minimum values in some complex constrained optimization 
problems. Hayyolalam et al. proposed a new metaheuristic 
algorithm for continuous nonlinear optimization problems, 
the black widow optimization algorithm (BWO) [36]. This
 algorithm was inspired by the unique mating behavior of 
latrodectus mactans. The experimental results show that the 
algorithm has advantages in early convergence and fitness 
optimization. Eskandar et al. proposed the water cycle algo-
rithm (WCA) based on observations of natural water cycle 
processes and how rivers and streams flow into the ocean 
[37]. Pan et al. proposed the gannet optimization algorithm
 (GOA) based on gannet foraging [38]. GOA has two diving 
modes, namely the U-shaped mode and the V-shaped mode, 
with the goal of exploring the optimal area in the search space. 
Sudden turns and random walks can help the algorithm to 
find higher quality solutions in the corresponding areas. The 
artificial rabbit optimization algorithm (ARO) [39] was d-
eveloped based on the subsist methods of rabbits in habitat, 
including finding detours and random hiding places. Hongyu 
Long et al. proposed a multi-strategy improved Aquila Op-
timization (IAO) algorithm for solving ORPD [40]. Gonggui 
Chen et al. proposed considering performance index and an 
improved Gravitational Search Algorithm (IGSA) for opti-
mizing parameters of a fuzzy PID (FPID) controller[41]. 

In 2022, Zhao et al. proposed the dandelion optimizer (DO) 
[42]. DO replicates the long-distance flight of dandelion 
seeds using wind, which is divided into three phases: as-
cending, descending, and landing. The DO method, which is 
widely used to solve various optimization problems, is a 
powerful optimizer with many iterative optimization and 
strong robustness. Abbassi et al. employed the dandelion 
optimizer to accurately estimate the essential parameters of 
the PEMFC model and identified the parameters of the 
PEMFC model accurately for the first time [43]. The results 
show that the proposed strategy provided satisfactory results 
and outperformed recognized competing methods. Kaveh et 
al. proposed an improved version of DO. The improved 
Dandelion Optimizer (EDO) is used for steel frame con-
struction, and the statistical regeneration mechanism (SRM) 
is used in EDO [44]. Halasa et al. proposed a novel DO 
-based technology for the implementation of GMPP. The 
proposed technology aims to improve the efficiency of power 
generation in solar systems, especially under the conditions 
of PS. Simulation results show that the MPPT method used 
has advantages in multiple evaluation dimensions such as 
tracking efficiency [45]. The CIDO approach was proposed 
by Akyol et al. [46] for global optimization of chaotic ini-
tialization DO. For the first time, chaotic initialization is 
added to DO. The experimental results show that the chaotic 
DO initialization leads to successful results. 

Considering the previous applications, DO can still be 
utilized to address many complicated problems in the real 
world. However, in other cases, they may slip into local op-
tima and lose their optimization capacity, necessitating sim-
plification and increased robustness. To address this issue, 
this work introduces the improved dandelion optimizer (IDO), 
a new and effective DO version. The results indicate the 
algorithm's applicability and efficacy in optimization. In 
summary, this work's contribution can be summarized as 
follows: 

� An adaptive elite pool strategy was proposed to guide 
population evolution and help the population emerge 
from local optima. 

� Replace the random number in the original algorithm with 
a gamma distribution to improve the search step size. 

� Propose a mirror optimization strategy to improve the 
location update of underperforming agents. 

� The efficiency and performance of the proposed IDO al-
gorithm were evaluated in the benchmark functions of 
CEC2017, CEC2020, and CEC2022. 

� To verify the performance of the IDO algorithm, it was 
compared with the original algorithms DO, AOA, SCA, 
WOA, AVOA, MFO and HHO. 

� The Friedman statistical tests were performed to confirm 
the statistical advantages of the proposed IDO. 

� The convergence graph analysis shows the consistency of 
the proposed IDO algorithm. 

� Evaluate the solving ability of the proposed IDO algorithm 
by solving four practical engineering design problems 
(three-bar truss design problem, pressure vessel prob-
lem, welded beam problem). 

The remainder of this paper is organized as follows: Sec-
tion 2 presents the mathematical model, working principle, 
and pseudocode of DO. Section 3 introduces the adaptive 
elite pool strategy, gamma distribution mathematical model, 
and mirror update strategy used in this study, and provides a 
flowchart of IDO. In Section 4, the proposed IDO algorithm 
is applied to three different sets of benchmark functions and 
three different real-world engineering design problems. Sec-
tion 5 provides an overview of the conclusions of this study 
and the work that remains to be done. 

 

II. BASIC PRINCIPLES OF DANDELION OPTIMIZER 
The mathematical expression for DO is described in detail 

in this section.  

A. Initialize 
Like most metaheuristic algorithms, DO also has an initial 

population. Assuming that each dandelion seed represents a 
potential solution in the problem search space, the entire 
dandelion seeds population can be described by (1) 

 

                  (1) 

 
where pop represents the proxy size and Dim represents 

the size of search space. Each agent is created between the 
upper bound (UB) and the lower bound (LB) of the solution 
space at random, Xi represents the ith individual, whose ex-
pression (2) presents. 

 
                        (2) 

 
Where rand is the random number between [0,1], Lb and UB 
are represented by (3) 
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                                  (3) 
 
The algorithm DO uses the agent with the best fitness 

value as the elite to guide evolution during the initialization 
process, which can be considered the most appropriate loca-
tion for dandelion seed growth. The mathematical expression 
for the initial elite Xelite can be expressed as follows. 

 
 

               (4) 
 
where  represents an index where two 
values are equal. 

B. Rising Stage 
The ascending phase is critical to the dispersal of dande-

lion seeds, which reach a certain height before they can fly 
away from their parents. How high the seeds rise depends on 
several factors, including wind speed, humidity, and other 
factors. Based on these factors, weather can be divided into 
two categories. 

Case1: On clear days, wind speed can be considered 
lognormal  . In this case, since the seeds are 
mainly distributed along the Y-axis, the seed propagation is 
remote and random, which triggers the DO exploration pro-
cess. Within the search area, the dispersal of dandelion seeds 
is highly dependent on wind speed, which affects both the 
height and distance they travel. Under this influence, the 
vortex above the seed is constantly adjusted, which forces the 
seed to spiral upward, and the corresponding formula is as 
follows. 

 
                (5) 

 
Where Xt represents the location of the population during the 
t iteration. Xs represents a selected position at random during 
the s iteration. Xs is shown in (6). 
 

              (6) 
 
Refer to (7) provides the expression for lnY, lnY follows the 
lognormal distribution with  and  , and y is the 
standard normal distribution N(0, 1). 
 

          (7) 

 
Adaptive parameters is used for representation, and (8) 

is a mathematical expression. 
 

                          (8) 

 
Fig.1(a) shows the dynamically changing of α with the 

number of iterations. As can be seen from Fig.1(a), the non-
linear of α decreases as the number of iterations increases and 

gradually approaches 0, with random fluctuations between 
[0,1]. This type of volatility causes the algorithm to pay more 
attention to the global optimization in the initial phase and to 
move from the global search to the local search in the later 
phase, resulting in accurate convergence after the global 
optimization. vx and vy represent the coefficients of the dan-
delion's buoyancy component when exposed to the separation 
vortex. According to the (9), the magnitude of the force can 
be calculated in different orders of magnitude. 

 

 

                               (9) 
  

 
Where  is the random number between . 

Case2: On rainy days, dandelion seeds are affected by air 
dampness and other influencing factors and cannot rise with 
the wind normally. Therefore, in this phase, the population is 
exploited in their close environment. The relevant mathe-
matical expression can be expressed as follows. 

 
                              (10) 

 
The role of k is to restrict the local search range, which is 
calculated using (11). 
 

 

                            (11) 
 

The value of the k gradually closes in on 1 during iteration 
to ensure that the dandelion seeds population finds the opti-
mal location. To sum up, in the ascending phase of the algo-
rithm, its mathematical representation can be expressed as. 

 

    (12) 

 
where randn is a random number that accord with the 
standard normal distribution. 

C. Descending Stage 
At the current stage, the DO still emphasizes exploration. 

In DO, Brownian motion is used to simulate the movement of 
dandelion seeds, which simulates the decline process of 
dandelion seeds when they rise to a certain height. Because 
Brownian motion obeys a normal distribution, the agent has a 
wider search space. To ensure the stability of dandelion seeds 
in the process of falling, the seeds use the average position 
information in the process of population rising to guide the 
population to a more promising position. The mathematical 
expression of this process is. 

 
           (13) 

 
where  represents Brownian motion and is a random num- 
 

1[ , , ]DimUB ub ub= …

( )best min ( )if f X=

elite best(find( ( )))iX X f f X= ==

best ( )ifin Xd f f==（ ）

2ln ~ ( , )Y N µ s

1 ln ( )t t x s tX X v Y X Xa+ = + × × × -

rand(1,Dim) (UB LB) LBsX = × - +

0µ = 2 1s =

2
2

1 1exp (ln ) 0
2 2

0  0

y y
lnY y

y
p s

ì æ ö- ³ï ç ÷= è øí
ï <î

a

2
2
1 2rand 1t t

TT
a æ ö= × - +ç ÷

è ø

1r
eq

=

cos( )xv r q= ×

sin( )yv r q= ×

q [ , ]p p-

1t tX X k+ = ×

2
2 2
1 1 1
2 1 2 1

k t t
T T T T

= - +
- + - +

1 rand()k q= - ×

1
ln ( ),   randn 1.5

,  else
t x s t

t
t

X v Y X X
X

X k
a

+
+ × × × - <ì

= í ×î

1 mean( )
tt t t t tX X X Xa b a b+ = - × × - × ×

tb

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 325-339

 
______________________________________________________________________________________ 



 

ber in the standard normal distribution. represents the 
average position of the population in t iterations, and its 
mathematical expression is. 
 

                             (14) 

D. Landing Stage 
In the development stage, dandelion seeds select the 

landing site according to the results of the ascending and 
descending stages, and gradually reaches the global optimal 
with the progress of iteration, as shown in (15). 

 
           (15) 

 
Where Xelite represents the optimal position of dandelion seed 
in t iterations.  represents the Levy flight function, 
calculated using (16) (Mantegna, 1994). 
 

             (16) 

 
where, , , and t are the random number 
between [0,1], and mathematical expressions for are (17) 
and (18), respectively. 
 

                         (17) 

                                      (18) 

 
The pseudo-code of the proposed DO algorithm is de-

scribed in detail in Algorithm 1. 
Dandelion Optimizer 
Input: Pop, MaxIter and Dim 
Output: The optimal dandelion seeds Xbest and its fitness value fbest 
1: Initialize DO population X 
2: Calculate the fitness value f of individual. 
3: Select the Xelite according to f 
4: while (t < MaxIter) do 

/*Rise stage*/ 
5:  if randn < 1.5 do 
6:    Generate a using (8) 
7:    Update population X using (5) 
8:  else if do 
9:    Generate k using (11) 
10:   Update population X using (10) 
11:  end if 

/*Decline stage*/ 
12:  Update population X using (13) 

/*Land stage*/ 
13:  Update population X using (15) 
14:  Arrange DO individual according to f 
15:  Update Xelite 
16:  if f (Xbest) < f (Xelite) 
17:  Xbest = Xelite , fbest = f (Xelite) 
18:  end if 
19: end while 
20: Return Xbest and fbest 

III. IMPROVED DANDELION OPTIMIZER 
To ameliorate the problem of premature convergence and 

fall into local optima in DO, three improvement methods are 
proposed. First, an adaptive elite pool strategy was proposed 
to guide the population evolution and help the population get 
out of local optima; second, the random numbers in the 
original algorithm are replaced by a gamma distribution to 
improve the search step size; finally, a mirrored optimization 
strategy is proposed to improve the location update of un-
derperforming agents. 

A. Constructing Elite Pool Based on Wheel Reverse Se-
lection Strategy 
From the perspective of the optimization process for the 

algorithm, in the descending phase of each iteration, all 
dandelion seeds are headed by the individual with the 
smallest fitness value in the agent, which makes the algo-
rithm clearer and allows for fast convergence, but also causes 
the algorithm to be inefficient in search and easily fall into 
the local optimum. Therefore, the "falling phase" search 
process in the dandelion optimizer is considered from the 
perspective of probability. Specifically, the elite pool consists 
of four dandelion seeds with the smallest fitness in the dan-
delion population, and a roulette reverse selection strategy 
based on fitness is proposed to select an elite individual in the 
elite pool to guide population evolution according to proba-
bility. 

The traditional roulette strategy of using the ratio of fitness 
values to total fitness values as the selection probability is a 
greedy selection method, and this selection strategy causes 
the DO population to cluster in foods with high fitness values, 
thus reducing the diversity of the population. Therefore, the 
selection strategy of reverse roulette is applied into DO. The 
reverse roulette selection strategy is to combine the proba-
bility formula (19) in the traditional roulette strategy. 

 

                                (19) 

 
Where fiti is the fitness value of the ith solution and N is the 
number of solutions. 

Replace with the following (20). 
 

                        (20) 

 
That is, the ratio between the reciprocal of the fitness value 

and the reciprocal of the total fitness value is used to optimize 
the dandelion seed population. It can be seen from the for-
mula that the greater the fitness value, the smaller the prob-
ability of the reciprocal fitness value, which can maintain the 
diversity of dandelion seed population, and not easily fall into 
the local optimal. 

B. Gamma Distribution 
In order to further improve the DO exploitation and ex-

ploration ability, the normal distribution in the DO rise pro-
cess is replaced by gamma distribution. Through reasonable 
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parameter Settings, the gamma distribution has a large dis-
turbance range, so as to improve the global exploration abil-
ity in the early stage and local exploitation ability in the later 
stage of the algorithm. The mathematical expression for the 
gamma distribution is as (21). 

 

                               (21) 

where, the mean of the gamma distribution ，

variance  , , . 

It can be intuitively seen in the comparison Fig. 1(a) that in 
the early iteration period, the number of iterations are small, 
and the gamma distribution has a large fluctuation range than 
the normal distribution. Compared with the original , it is a 
fixed value related to the number of iterations, which is 
equivalent to the operation of the whole population in equal 
proportion, which is not conducive to maintaining the diver-
sity of the population. To solve this problem, gamma distri-
bution variation vector is introduced. From the observation of 
Fig.1(a), it can be seen that in the early stage of iteration, the 
variation step size is not obviously constrained, and a large 
number of its values are distributed between 0 and 0.2, while 
there are also a large number of values greater than 1, which 
means that only some positions in the agent are significantly 
varied, and the global exploration ability of the algorithm is 
enhanced while maintaining the advantages of the algorithm 
itself. In the late iteration, the distribution rapidly approaches 
0, which enhances the local exploitation capability of DO. 

 

 
(a) Original dynamic trend of  

 

 
(b) Dynamic trend of with gamma distribution 

Fig. 1. Dynamic trend of  

C. Mirror Optimization Strategy of Underperforming 
Dandelion Seed 
Since the dandelion optimizer has a fast convergence 

speed, it is easy for the optimization results to fall into local 
optimality for a complex search space. Therefore, the mirror 
optimization strategy improves the dandelion population 
optimization, some agents search for the mirror solution 
about the best individual, the dandelion seed population is 
sorted according to fitness, and the number of underper-
forming agents to be updated is selected according to (22) 

 

                                       (22) 

 
c1 is 0.3 and c2 is 0.5. After the DO position update, the mirror 
foraging operation is performed, the mathematical model of 
which is shown in (23). 
 

(23
) 
 

where, S is the mirror factor, which determines the flipping 
range of dandelion seeds, where S = 1; r1and r2 are uniformly 
distributed random numbers in the interval [0, 1]. By intro-
ducing the idea of mirror optimization into DO, the agents in 
the local extremum region can be released to search and 
optimize in a wider space. 
 

 Fig. 2. Flowchart of proposed IDO 
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IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 
To verify the optimization performance of the algorithm 

IDO, we propose several benchmark test functions, including 
CEC2017, CEC2020, and CEC2022 test functions, and some 
practical problems for evaluating the performance of the 
algorithm. 

A. Benchmark test functions and algorithms for compar-
ison 
To test the performance of IDO, three sets of systematic 

and complex benchmark test function steps were used in this 
experiment, and three engineering optimization problems 
were used for testing IDO's ability to solve real-world prob-
lems. The results were also compared with some well-known 
optimization algorithms, including AOA [47], SCA [48], 
WOA [49], AVOA [50], MFO [51], HHO [52]. All experi-
ments were performed using Matlab 2022b on Intel Core i7 
computers, CPU 2.10 GHz, RAM 16GB, and Windows 11 
operating systems. Table I explains the different parameters 
of the comparison algorithm. The parameters used are either 
accurately recommended by their developers or are within 
the accepted range of optimal performance for all algorithms. 

 
TABLE I  

ALGORITHM PARAMETER SETTINGS 
Algorithm Parameter Value 

AOA   5, 0.5 
SCA   2 
WOA   [0,1], [-1,1] 

AVOA  0.6,0.4,0.6, 
2.5,0.8,0.2 

MFO   [-2, -1], 1 

HHO   [-1, 1] 

DO  [0,1], [0,1] 

IDO  [0,1], [0,1], 0.3, 0.5, 1 

B. The performance of the IDO on the CEC2017 
Description of CEC2017 

To evaluate the ability of IDO to explore and avoid local 
minima, CEC2017 includes 30 sophisticated combined and 
mixed functions. The unimodal function is F1-F3, and there 
is only one global optimal solution in the solution space, 
which is used to test convergence speed and search accuracy. 
The multi-peaked function (F4-F10) is characterized by 
multiple local optima and is used to test the ability of the 
algorithm to jump out of the local optimum. The mixed 
function is F11-F20, and the composite function is F21-F30. 
The properties of the functions are listed in Table II. IDO 
tests these functions and compares them with other estab-
lished methods. In this suite, the dimension of the function is 
set to 10. Each algorithm is run 30 times (500 iterations), and 
the results of each run are reported as the mean (Ave) and 
standard deviation (Std) of the best solution found so far. 
 
Benchmark test functions and algorithms for comparison 

Fig. 3 shows the convergence plot of the representative 
function, and Table III contains the average and variance of 
30 runs with 30 test functions. The optimal results of the 
algorithm are shown in bold. From Table III and Fig. 3, it can 
be seen that IDO provides acceptable convergence rate and 
convergence accuracy for most functions compared to the 
standard DO. From the results, it can be seen that for uni-

modal function problems, the convergence rate and conver-
gence accuracy of IDO are not as good as those of the original 
DO. Although the elite pool leadership optimization strategy 
helps the algorithm to strengthen its evolvability, it has cer-
tain disadvantages in evolvability accuracy. The multimodal 
function IDO performed the best in all the test sets except F4, 
and from the observation of the convergence graph, IDO 
showed good development and exploration abilities 
throughout the process. Compared with multimodal test 
functions, mixed functions are more complex and can simu-
late real optimization problems more accurately. The mixed 
function has multiple local optimal solutions. As shown in 
Table III, IDO will effectively improve the optimization of 
most of the mixed functions, and the mean value obtained on 
F11, F14, F15, F16, F17, F19 and F20 is the smallest. The 
combination functions are more complex than previously 
introduced functions. The minimum values were obtained for 
the mean values of F21, F23, F26, F28, F29, and F30, and the 
effect of IDO was lower than that of DO only for F25. From 
Fig. 3, it can be seen that IDO can maintain good develop-
ment and exploration capabilities throughout the search 
process compared to other algorithms. However, due to the 
complexity of composite functions, there are still some 
functions (F22, etc.) that struggle to escape local optima, 
which leads to bad results. 

According to the Friedman average ranking, the CEC2017 
test function ranks IDO first and the standard DO second. The 
results show that IDO is the optimum among all given opti-
mization methods. The improved algorithm obviously im-
proves the ability of IDO to jump out of the local optimal, 
avoids falling into the local optimal, and effectively improves 
search efficiency. 

 
TABLE II 

PROPERTIES AND SUMMARY OF THE CEC2017 TEST FUNCTIONS 
Func No. Dim Range fmin 

Unimodal 
Function 

1 10 [-100,100] 100 
2 10 [-100,100] 200 
3 10 [-100,100] 300 

Multimodal 
Functions 

4 10 [-100,100] 400 
5 10 [-100,100] 500 
6 10 [-100,100] 600 
7 10 [-100,100] 700 
8 10 [-100,100] 800 
9 10 [-100,100] 900 

10 10 [-100,100] 1000 
Hybrid 

Functions 
11 10 [-100,100] 1100 
12 10 [-100,100] 1200 
13 10 [-100,100] 1300 
14 10 [-100,100] 1400 
15 10 [-100,100] 1500 
16 10 [-100,100] 1600 
17 10 [-100,100] 1700 
18 10 [-100,100] 1800 
19 10 [-100,100] 1900 
20 10 [-100,100] 2000 

Composition 
Functions 

21 10 [-100,100] 2100 
22 10 [-100,100] 2200 
23 10 [-100,100] 2300 
24 10 [-100,100] 2400 
25 10 [-100,100] 2500 
26 10 [-100,100] 2600 
27 10 [-100,100] 2700 
28 10 [-100,100] 2800 
29 10 [-100,100] 2900 
30 10 [-100,100] 3000 

,a µ
a
,r l

1 2 3 1 2, , , , ,P P P W L L

,a b

0E
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TABLE III  
PROPERTIES AND SUMMARY OF THE CEC2017 TEST FUNCTIONS 

No. Measure AOA SCA WOA AVOA MFO HHO DO IDO 

1 
Avg 8.9432E+09 1.1223E+09 4.3269E+08 4.6442E+03 2.5008E+08 1.8854E+06 5.3463E+03 1.0526E+04 
Std 3.7984E+09 4.6984E+08 4.2674E+08 4.2264E+03 5.7808E+08 3.3716E+06 3.2322E+03 1.7462E+04 

2 
Avg 2.8827E+11 5.8534E+07 9.4086E+08 4.5162E+03 2.7346E+08 2.8253E+06 2.2625E+02 2.6858E+02 
Std 1.1007E+12 8.8613E+07 3.0441E+09 4.8614E+03 6.1141E+08 5.8399E+06 3.2796E+01 9.7785E+01 

3 
Avg 1.3379E+04 3.1616E+03 3.9919E+03 4.0585E+02 9.1126E+03 6.3426E+02 3.0052E+02 3.0285E+02 
Std 2.9215E+03 1.7435E+03 2.8439E+03 9.9496E+01 1.0931E+04 2.5531E+02 1.2044E-01 3.7809E+00 

4 
Avg 1.2336E+03 4.6514E+02 4.5031E+02 4.1705E+02 4.1817E+02 4.3767E+02 4.0659E+02 4.1048E+02 
Std 6.2739E+02 2.9947E+01 4.3959E+01 2.7659E+01 2.6268E+01 4.5360E+01 2.1554E+00 1.5431E+01 

5 
Avg 5.6428E+02 5.5248E+02 5.3259E+02 5.4566E+02 5.3042E+02 5.6326E+02 5.3547E+02 5.2097E+02 
Std 2.0742E+01 1.0724E+01 1.2770E+01 1.7098E+01 1.3425E+01 2.0018E+01 1.1810E+01 7.9248E+00 

6 
Avg 6.3858E+02 6.2231E+02 6.1011E+02 6.2131E+02 6.0490E+02 6.4189E+02 6.0946E+02 6.0064E+02 
Std 7.0163E+00 4.2480E+00 5.8867E+00 1.3554E+01 3.7147E+00 1.1176E+01 7.7789E+00 3.5648E-01 

7 
Avg 8.0042E+02 7.8557E+02 7.6079E+02 7.6680E+02 7.4479E+02 7.9589E+02 7.5237E+02 7.3447E+02 
Std 1.5614E+01 1.0215E+01 1.5657E+01 1.9957E+01 1.4689E+01 2.2768E+01 1.5068E+01 8.8527E+00 

8 
Avg 8.3915E+02 8.4615E+02 8.2993E+02 8.2969E+02 8.3647E+02 8.3414E+02 8.2414E+02 8.1824E+02 
Std 9.1268E+00 9.1689E+00 1.1425E+01 9.1526E+00 1.3768E+01 7.8663E+00 9.6184E+00 6.2745E+00 

9 
Avg 1.4067E+03 1.1122E+03 9.9627E+02 1.2852E+03 1.0478E+03 1.6026E+03 9.9832E+02 9.0284E+02 
Std 2.2426E+02 1.3963E+02 9.3767E+01 2.7963E+02 2.8678E+02 1.9473E+02 1.5237E+02 6.6373E+00 

10 
Avg 2.3646E+03 2.4796E+03 2.0367E+03 1.9978E+03 1.9807E+03 2.0685E+03 1.8004E+03 1.5867E+03 
Std 2.3267E+02 1.8468E+02 3.8557E+02 3.4396E+02 2.8397E+02 2.8850E+02 3.5285E+02 2.4953E+02 

11 
Avg 3.2625E+03 1.2780E+03 1.1878E+03 1.1996E+03 1.3978E+03 1.2007E+03 1.1374E+03 1.1296E+03 
Std 2.0325E+03 7.0709E+01 7.1989E+01 8.3446E+01 6.0457E+02 7.8496E+01 1.8726E+01 4.0554E+01 

12 
Avg 2.8190E+08 3.0497E+07 1.2846E+06 1.8346E+06 1.6675E+06 4.6653E+06 4.4656E+05 5.5507E+05 
Std 3.5035E+08 2.1970E+07 1.8389E+06 1.8490E+06 3.0362E+06 4.8532E+06 5.9352E+05 6.1707E+05 

13 
Avg 1.2553E+04 7.1207E+04 1.0632E+04 1.3697E+04 1.1251E+04 1.7026E+04 1.1352E+04 1.1267E+04 
Std 7.0435E+03 6.5374E+04 7.6757E+03 8.5359E+03 1.1521E+04 1.2237E+04 7.8017E+03 1.0835E+04 

14 
Avg 6.7353E+03 2.2896E+03 3.4885E+03 2.8249E+03 4.9132E+03 2.3984E+03 2.9917E+03 1.6626E+03 
Std 5.8625E+03 1.1064E+03 1.7734E+03 1.4770E+03 4.8893E+03 1.1748E+03 1.8921E+03 3.9933E+02 

15 
Avg 1.7725E+04 4.2236E+03 4.8834E+03 5.8525E+03 7.9359E+03 8.5884E+03 3.8895E+03 3.3132E+03 
Std 5.8166E+03 1.6922E+03 2.4556E+03 3.9679E+03 7.3779E+03 3.4694E+03 2.7922E+03 2.3625E+03 

16 
Avg 2.1222E+03 1.8126E+03 1.8089E+03 1.8639E+03 1.7418E+03 1.9248E+03 1.7742E+03 1.7274E+03 
Std 1.2568E+02 1.0569E+02 1.5345E+02 1.8159E+02 1.1515E+02 1.1694E+02 1.2253E+02 1.3937E+02 

17 
Avg 1.8877E+03 1.8090E+03 1.7867E+03 1.7822E+03 1.7828E+03 1.7894E+03 1.7885E+03 1.7597E+03 
Std 1.1185E+02 2.1939E+01 4.1847E+01 4.0268E+01 5.0882E+01 3.9493E+01 4.6363E+01 2.1685E+01 

18 
Avg 1.7667E+07 3.4959E+05 3.8845E+04 1.6958E+04 1.9827E+04 1.6821E+04 1.7254E+04 2.7758E+04 
Std 8.9714E+07 2.7490E+05 9.2412E+03 1.2380E+04 1.2352E+04 1.1727E+04 1.2697E+04 1.4206E+04 

19 
Avg 2.1409E+05 1.1378E+04 2.9814E+04 8.9284E+03 1.5259E+04 1.3736E+04 9.1525E+03 6.5964E+03 
Std 4.8296E+05 9.3544E+03 7.0856E+04 6.7025E+03 1.2959E+04 1.2214E+04 7.3442E+03 6.2236E+03 

20 
Avg 2.1706E+03 2.1247E+03 2.1372E+03 2.1417E+03 2.0930E+03 2.1873E+03 2.1065E+03 2.0344E+03 
Std 7.9360E+01 2.9745E+01 7.1921E+01 7.3418E+01 5.8348E+01 8.1137E+01 6.0793E+01 1.6345E+01 

21 
Avg 2.3464E+03 2.2913E+03 2.3306E+03 2.3072E+03 2.3084E+03 2.3206E+03 2.3155E+03 2.2832E+03 
Std 4.0807E+01 6.9613E+01 2.3761E+01 6.9327E+01 5.8083E+01 6.7206E+01 4.6613E+01 5.8788E+01 

22 
Avg 3.0840E+03 2.4166E+03 2.4252E+03 2.3028E+03 2.3137E+03 2.3265E+03 2.4125E+03 2.3253E+03 
Std 3.8058E+02 6.6925E+01 1.9685E+02 2.1426E+01 1.9384E+01 4.4853E+00 3.4244E+02 1.0408E+02 

23 
Avg 2.7553E+03 2.6627E+03 2.6484E+03 2.6478E+03 2.6328E+03 2.6931E+03 2.6544E+03 2.6309E+03 
Std 4.0325E+01 1.0713E+01 1.2486E+01 2.2937E+01 1.3117E+01 2.7214E+01 1.6021E+01 8.1805E+00 

24 
Avg 2.8627E+03 2.7912E+03 2.7780E+03 2.7478E+03 2.7626E+03 2.8285E+03 2.7663E+03 2.7607E+03 
Std 6.9528E+01 9.8514E+00 2.5378E+01 8.5057E+01 4.9594E+01 1.2173E+02 7.4653E+01 1.3780E+01 

25 
Avg 3.4428E+03 2.9977E+03 2.9544E+03 2.9357E+03 2.9339E+03 2.9284E+03 2.9297E+03 2.9364E+03 
Std 2.1128E+02 2.7556E+01 3.6289E+01 3.5927E+01 2.7136E+01 6.1342E+01 6.4009E+01 2.3478E+01 

26 
Avg 4.0495E+03 3.1242E+03 3.1449E+03 3.3225E+03 3.0795E+03 3.6619E+03 3.1486E+03 2.9745E+03 
Std 2.9740E+02 4.8242E+01 2.2656E+02 5.6945E+02 1.7660E+02 5.3595E+02 4.6086E+02 1.9618E+02 

27 
Avg 3.2589E+03 3.1123E+03 3.1089E+03 3.1183E+03 3.1006E+03 3.1753E+03 3.1163E+03 3.1022E+03 
Std 5.3429E+01 3.6345E+00 1.3263E+01 2.5930E+01 3.6037E+00 4.9532E+01 2.1369E+01 6.7095E+00 

28 
Avg 3.7949E+03 3.3356E+03 3.4079E+03 3.3285E+03 3.3768E+03 3.4629E+03 3.3196E+03 3.2847E+03 
Std 1.9337E+02 8.7167E+01 1.2524E+02 1.4825E+02 7.9288E+01 1.6094E+02 1.2996E+02 1.1558E+02 

29 
Avg 3.4569E+03 3.2667E+03 3.2467E+03 3.3063E+03 3.2337E+03 3.3542E+03 3.2595E+03 3.2190E+03 
Std 1.4490E+02 4.9978E+01 6.0389E+01 7.4757E+01 6.0358E+01 1.2282E+02 6.2194E+01 6.0080E+01 

30 
Avg 3.0483E+07 1.8690E+06 2.2106E+06 4.7748E+05 7.8726E+05 3.3039E+06 5.4836E+05 3.1783E+05 
Std 3.2330E+07 9.4689E+05 2.5047E+06 6.2497E+05 6.8532E+05 3.5086E+06 5.8356E+05 4.9128E+05 

Friedman Rank 7.6000 5.2667 6.0333 3.5000 3.6667 5.4333 2.8000 1.7000 
Rank 8 5 7 3 4 6 2 1 
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(s) F24                                                                (t) F26                                                                 (u) F27 
 

 
(v) F28                                                                (w) F29                                                              (x) F30 

Fig. 3. Comparison of convergence curves for CEC-2017 benchmark functions 
 

C. The performance of the IDO on the CEC2020 
Description of CEC2020 

To further investigate the ability of the algorithm IDO to 
handle complex problems, it was validated using the com-
petitive problem CEC2020. The result will reflect the per-
formance of the IDO algorithm in optimizing complex 
problems. Table IV provides a specific description of 
CEC2020, with different parameter settings as above. 

 
Comparison with other optimization algorithms on CEC2020 

Table V shows the average and variance of 30 runs of 30 
test functions, and the optimal results of the algorithm are 
shown in bold. Fig. 4 shows the convergence diagram of 
representative functions. In this section of the experiment, the 
proposed algorithm IDO performed best on the vast majority 
of the test sets. However, there are still some algorithms, such 
as the SCA algorithm and the original DO algorithm, that can 
achieve optimal values. The experimental results are suffi-
cient to demonstrate the superior performance of the IDO 
algorithm in dealing with complex problems. 

Table V shows a complete comparison of the average 
Friedman results of all algorithms for the CEC2020 test 

function. From the graph, it can be seen that the algorithm 
proposed in this paper is among the top eight function groups 
in CEC2020. From the diagram, it can be seen that the algo-
rithm proposed in this article can solve complex problems 
and replace previous algorithms. 

 
TABLE IV 

PROPERTIES AND SUMMARY OF THE CEC2020 TEST FUNCTIONS 

Func. No. Dim Range fmin 
Unimodal Functions 1 10 [-100,100] 100 

Basic Functions 2 10 [-100,100] 1100 

3 10 [-100,100] 700 

4 10 [-100,100] 1900 

Hybrid Functions 5 10 [-100,100] 1700 

6 10 [-100,100] 1600 

7 10 [-100,100] 2100 

Composition Functions 8 10 [-100,100] 2200 

9 10 [-100,100] 2400 

10 10 [-100,100] 2500 
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TABLE V 
PROPERTIES AND SUMMARY OF THE CEC2020 TEST FUNCTIONS 

No. Mea 
sure AOA SCA WOA AVOA MFO HHO DO IDO 

CEC-01 
Avg 9.1744E+09 1.1569E+09 7.7475E+07 2.8688E+03 1.9385E+08 1.0503E+07 4.1156E+03 7.3458E+03 
Std 4.4878E+09 3.9564E+08 1.1203E+08 3.1167E+03 4.7475E+08 3.4062E+07 3.2853E+03 4.5874E+03 

CEC-02 
Avg 2.3113E+03 2.4667E+03 2.2031E+03 1.9789E+03 2.0097E+03 2.1327E+03 1.8543E+03 1.6093E+03 
Std 2.9090+02 2.4974E+02 2.8115E+02 3.1352E+02 2.9963E+02 3.0827E+02 2.9156E+02 2.1867E+02 

CEC-03 
Avg 8.03534+02 7.8374E+02 7.8156E+02 7.7174E+02 7.3858E+02 7.8427E+02 7.5623E+02 7.3383E+02 
Std 1.4793E+01 1.0878E+01 1.7531E+01 1.9144E+01 1.1808E+01 2.1548E+01 1.5032E+01 9.7926E+00 

CEC-04 
Avg 2.1137E+05 1.9558E+03 1.9115E+03 1.9007E+03 1.9096E+03 1.9148E+03 1.9043E+03 1.9052E+03 
Std 1.7426E+05 3.9295E+01 6.9966E+00 2.0257E+00 4.9764E+00 3.1052E+00 1.5365E+00 6.5315E-01 

CEC-05 
Avg 4.5709E+05 7.7838E+04 4.4509E+05 4.2385E+04 1.8842E+05 7.1873E+04 1.9086E+04 1.9569E+04 
Std 1.7246E+05 1.0108E+05 7.3963E+05 5.6549E+04 2.4458E+05 6.9573E+04 3.6789E+04 5.3196E+04 

CEC-06 
Avg 1.6228E+03 1.6053E+03 1.6142E+03 1.6046E+03 1.6028E+03 1.6231E+03 1.6008E+03 1.6062E+03 
Std 9.2296E+00 6.9053E-01 1.3728E+01 6.4542E+00 4.2328E+00 1.4117E+01 4.2374E+00 2.9728E-01 

CEC-07 
Avg 5.3304E+05 1.5067E+04 3.3028E+05 1.1228E+04 3.8136E+04 7.5017E+04 9.1526E+03 7.5373E+03 
Std 1.3879E+06 8.2489E+03 5.2726E+05 8.4858E+03 7.1528E+04 1.8183E+05 6.6047E+03 5.3573E+03 

CEC-08 
Avg 3.1037E+03 2.4128E+03 2.4327E+03 2.3463E+03 2.3185E+03 2.3884E+03 2.3556E+03 2.3006E+03 
Std 3.0973E+02 5.2537E+01 3.9644E+02 1.5632E+02 2.2325E+01 2.5508E+02 1.8779E+02 1.1453E+00 

CEC-09 
Avg 2.8532E+03 2.7927E+03 2.7990E+03 2.7621E+03 2.7628E+03 2.8084E+03 2.7762E+03 2.7338E+03 
Std 5.1762E+01 1.0927E+01 4.9759E+01 7.1252E+01 3.6148E+01 1.2873E+02 5.5358E+01 7.9427E+01 

CEC-10 
Avg 3.3884E+03 2.9809E+03 2.9680E+03 2.9464E+03 2.9579E+03 2.9473E+03 2.9335E+03 2.9163E+03 
Std 2.0274E+02 2.3937E+01 3.5200E+01 2.6666E+01 3.6430E+01 2.8524E+01 2.3375E+01 6.3497E+01 

Friedman Rank 7.8000 5.8000 6.0000 3.3000 3.9000 5.4000 2.5000 1.3000 
Rank 8 7 4 5 6 2 3 1 

 

 
(a) F2                                                                    (b) F3                                                                (c) F4 
 

 
(d) F5                                                                   (e) F6                                                                  (f) F7 

 

 
(g) F8                                                                   (h) F9                                                                 (i) F10 

Fig. 4. Comparison of convergence curves for CEC-2020 benchmark functions 
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D. The performance of the IDO on the CEC2022 
Description of CEC2022 

CEC2022 is currently a relatively new test set whose 
functional characteristics are listed in Table VI. It can be used 
to effectively evaluate the performance of algorithms. To 
comprehensively evaluate the ability of IDO to explore, ex-
ploit, and avoid local minima, these features were tested and 
compared with other known algorithms. 

 
Comparison with other optimization algorithms on CEC2022 

IDO was tested in the CEC2022 competition, as shown in 
Table VII. Fig. 5 shows the convergence curves of all algo-
rithms. From the data in Table VII, the experimental results 
show that IDO outperforms the other algorithms and achieves 
the optimal values on half of the dataset, including F3, F4, F5, 
F7, F8, and F11. Overall, the performance of IDO is signif-
icantly better than that of DO, except for its unsatisfactory 
performance in F1, F8, and F9, which is better than DO in all 
other test functions. Table VII presents the results of the

Friedman test, which shows that the IDO algorithm ranks 
first with absolute advantage, the MFO ranks second, and the 
DO algorithm ranks third, fully demonstrating the effec-
tiveness of the improvement strategy. 

 
TABLE VI 

PROPERTIES AND SUMMARY OF THE CEC2022 TEST FUNCTIONS 
Func No. Dim Range fmin 

Unimodal 
Functions 1 10 [-100,100] 300 

Basic 
Functions 

2 10 [-100,100] 400 
3 10 [-100,100] 600 
4 10 [-100,100] 800 
5 10 [-100,100] 900 

Hybrid 
Functions 

6 10 [-100,100] 1800 
7 10 [-100,100] 2000 
8 10 [-100,100] 2200 

Composition 
Functions 

9 10 [-100,100] 2300 
10 10 [-100,100] 2400 
11 10 [-100,100] 5260 
12 10 [-100,100] 2700 

 

  
(a) F1                                                         (b) F2                                                            (c) F3 

 
(d) F4                                                            (e) F5                                                         (f) F6 

 
(g) F7                                                           (h) F8                                                          (i) F9 

 
(j) F10                                                       (k) F11                                                       (l) F12 

Fig. 5. Comparison of convergence curves for CEC-2022 benchmark functions 
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TABLE VII  
PROPERTIES AND SUMMARY OF THE CEC2022 TEST FUNCTIONS 

No. Mea- 
sure AOA SCA WOA AVOA MFO HHO DO IDO 

CEC-
01 

Avg 1.1666E+04 2.8805E+03 2.6468E+04 5.1124E+02 4.7086E+03 1.0436E+03 3.0074E+02 3.0003E+02 
Std 4.8245E+03 1.2567E+03 1.3309E+04 2.5123E+02 6.3897E+03 3.0994E+02 1.5845E-01 6.2609E-01 

CEC-
02 

Avg 1.6960E+03 4.7727E+02 4.7563E+02 4.1952E+02 4.1772E+02 4.4353E+02 4.2314E+02 4.1970E+02 
Std 6.4312E+02 2.0538E+01 9.3748E+01 2.6364E+01 2.2326E+01 3.8653E+01 3.0213E+01 2.7205E+01 

CEC-
03 

Avg 6.4216E+02 6.2208E+02 6.3957E+02 6.1953E+02 6.0468E+02 6.4337E+02 6.0862E+02 6.0040E+02 
Std 7.9769E+00 4.0563E+00 1.5716E+01 1.1134E+01 5.2327E+00 1.1783E+01 7.22E+00 1.4582E-01 

CEC-
04 

Avg 8.3925E+02 8.4552E+02 8.4184E+02 8.3474E+02 8.3506E+02 8.2927E+02 8.3188E+02 8.2327E+02 
Std 9.2726E+00 5.9782E+00 1.4273E+01 9.8937E+00 1.4056E+01 1.0874E+01 1.213E+01 8.3209E+00 

CEC-
05 

Avg 1.3789E+03 1.0595E+03 1.4814E+03 1.31E+03 1.0579E+03 1.4096E+03 1.1246E+03 9.1073E+02 
Std 1.7056E+02 6.2806E+01 3.3357E+02 1.9577E+02 2.2304E+02 2.1852E+02 2.8574E+02 2.5533E+01 

CEC-
06 

Avg 7.5699E+07 4.8862E+06 8.2367E+03 3.1794E+03 5.5164E+03 6.7628E+03 5.1356E+03 5.1948E+03 
Std 2.2529E+08 3.9007E+06 1.0208E+04 1.2926E+03 2.3235E+03 3.2648E+03 1.5628E+03 2.5449E+03 

CEC-
07 

Avg 2.1039E+03 2.0663E+03 2.0835E+03 2.0562E+03 2.0325E+03 2.0947E+03 2.0353E+03 2.0239E+03 
Std 2.4980E+01 1.0701E+01 3.5669E+01 2.2593E+01 1.4349E+01 3.2449E+01 1.3063E+01 2.2720E+00 

CEC-
08 

Avg 2.3048E+03 2.2441E+03 2.2424E+03 2.2324E+03 2.2276E+03 2.2369E+03 2.2225E+03 2.2232E+03 
Std 7.5825E+01 3.4041E+00 1.0757E+01 4.5567E+00 6.2409E+00 9.2623E+00 2.2947E+00 7.5138E+00 

CEC-
09 

Avg 2.7547E+03 2.5864E+03 2.6009E+03 2.5442E+03 2.5475E+03 2.6238E+03 2.5332E+03 2.5396E+03 
Std 4.1643E+01 2.3946E+01 5.0634E+01 2.8004E+01 2.8924E+01 3.8436E+01 2.0653E-03 2.6869E+01 

CEC-
10 

Avg 2.8445E+03 2.5125E+03 2.6223E+03 2.5507E+03 2.5223E+03 2.6736E+03 2.5979E+03 2.5653E+03 
Std 2.4298E+02 2.6660E+01 2.8712E+02 6.6285E+01 4.4535E+01 1.6559E+02 9.5325E+01 6.5236E+01 

CEC-
11 

Avg 3.5689E+03 2.8026E+03 2.8414E+03 2.7618E+03 2.7576E+03 2.8146E+03 2.7983E+03 2.7445E+03 
Std 3.6224E+02 8.5625E+01 1.5868E+02 1.7124E+02 1.1612E+02 1.6144E+02 2.7443E+02 1.9983E+02 

CEC-
12 

Avg 3.0505E+03 2.8716E+03 2.9124E+03 2.8774E+03 2.8616E+03 2.9256E+03 2.8775E+03 2.8795E+03 
Std 7.8512E+01 1.9708E+00 4.3064E+01 7.6765E+00 1.9956E+00 4.1732E+01 9.4188E+00 4.8566E+00 

Friedman Rank 7.5000  5.0833  6.5833  3.2500  2.9167  5.8333  3.0000  1.8333  
Rank 8 5 7 4 2 6 3 1 

 

E. The performance of the proposed algorithm on real 
problems 

In this section, IDO is used to solve three constrained en-
gineering optimization problems to reflect its capacity to 
solve constrained engineering optimization problems, and the 
IDO algorithm is compared with other algorithms. The pa-
rameter settings of the algorithm are detailed in Table I, and 
the number of iterations is 500. 

 
Three-bar Truss Design Problem 

The three-bar truss design problem is particularly im-
portant mechanical constraint problems, aiming to achieve 
the minimum weight under the constraint conditions. The 
optimization process is mainly carried out for the two pa-
rameters (X1 and X2) of the cross-sectional area. The model 
illustrating the studied problem is shown in Fig. 6. The 
three-bar truss design problem is constrained by three ine-
qualities, and the constraints are as follows. 
Objective function:  

Constraints：  

                       

                       

where, variable X1 and X2 is the cross-sectional area of rod 1 
and 2,  , l =100cm, P =2KN/cm, =2KN/cm. 

The convergence curve of IDO and other swarm intelligent 
optimization algorithms for the design problem of a three-bar 

truss is shown in in Fig. 7. Each algorithm independently runs 
this problem 30 times and obtains the optimal values, mean, 
and standard deviation, as shown in Table VIII. The optimum 
experimental data are also shown in bold in the table. The 
experiment showed that IDO ranked first in 30 runs, while the 
original DO ranks second. The algorithms IDO, DO, WOA, 
AVOA, MFO and HHO all found the same minimum value, 
with the minimum standard deviation coming from IDO, 
which demonstrates the robustness of IDO algorithm. 

 

 
Fig. 6. Three-bar truss design problem model 

 

 
Fig.7. Convergence diagram of three-bar truss optimized by IDO and other 

algorithms. 
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Welded Beam Problem 
This problem is concerned with the minimization of 

welded beams under certain constraints and the reduction of 
manufacturing costs by optimizing process parameters. The 
constraint conditions for this problem include bending stress, 
buckling load, shear stress, etc. The model diagram of this 
optimization problem is shown in Fig. 8, and the mathemat-
ical expressions for its objective function and constraint 
conditions are as follows. 
Objective function： 

 
Constraints：  
                       
                       
                       

 
                       

    

Where ，
, ,

, ，  ， 

，  

, ,

 

, , ， 

, , ; X1 is 
the thickness of the weld, ranging from 0.1≤ X2 ≤2; X2 is the 
length of the attachment part of the steel bar, ranging from 
0.1≤ X2 ≤10; X3 is the height, ranging from 0.1≤ X3 ≤10; X4  is 
the thickness, ranging from 0.1≤ X4 ≤2. 

 

 
Fig. 8. Welded beam design problem model 

 

 
Fig. 9. Convergence diagram of the welded design problem optimized by 

IDO and other algorithms. 

The experimental results of the IDO algorithm and other 
contrast algorithms on the design welded beam are shown in 
Fig. 9. Each algorithm independently runs this problem 30 
times, obtaining the optimal values, mean, and standard de-
viation as shown in Table IX. The best experimental data 
obtained in the table is also bolded. It is evident that IDO 
performs best in terms of mean and standard deviation, with 
DO reaching the minimum value. 
 
Pressure Vessel Problem 

The goal of this problem is to optimize the production 
costs of containers under given constraints, such as forming 
costs, consumables costs, and welding costs. The model 
diagram of the problem is shown in Fig. 10. The mathemat-
ical function expression and constraint conditions for this 
problem are as follows.  
Objective function： 

Constraints：  
                       

                       

                       
where,  X1 represents the cylinder head (Th) and X2 represents 
the cylinder wall thickness (Ts). Among them 

，  , X3 represents the radius (R) of 
the cylinder and cylinder head, X4 represents the length of the 
cylinder (L). Among these four variables, X1 and X2 is a 
uniformly discrete variable with an interval of 0.0625, X3 and 
X4 is a continuous variable. 

The experimental results of IDO and other algorithms on 
pressure vessel design problems are shown in Fig.11. Each 
algorithm independently runs this problem 30 times, obtain-
ing the best values, average value, and standard deviation as 
shown in Table X. The best experimental data obtained in the 
table are also bolded. The experiment showed that IDO 
achieved the minimum value in a single experiment. The IDO 
ranked first in terms of average and variance in 30 runs, 
demonstrating the robustness of this method in solving prac-
tical problems. 

 

 
Fig. 10. Pressure vessel design problem model 

 

 
Fig. 11. Convergence diagram of the pressure vessel design problem opti-

mized by IDO and other algorithms.  
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TABLE VIII  
SOLUTION OF IDO AND OTHER ALGORITHMS FOR THE THREE-BAR TRUSS DESIGN PROBLEM 

 AOA SCA WOA AVOA MFO HHO DO IDO 
f(x) 264.033 263.914 263.896 263.896 263.896 263.896 263.896 263.896 
X1 0.7928 0.7902 0.7874 0.7882 0.7885 0.7890 0.7887 0.7887 
X2 0.3975 0.4039 0.4119 0.4096 0.4087 0.4074 0.4082 0.4083 
Best 264.033 263.914 263.896 263.896 263.896 263.896 263.896 263.896 
Ave 266.355 267.872 266.442 263.921 263.946 264.150 263.898 263.897 
Std 4.6561 7.6153 3.9729 0.0411 0.1106 0.3180 0.0031 0.0020 

 
TABLE IX  

SOLUTION OF IDO AND OTHER ALGORITHMS FOR THE WELDED BEAM PROBLEM 
 AOA SCA WOA AVOA MFO HHO DO IDO 
f(x) 1.489438  1.355169  1.359921  1.339991  1.340052  1.340753  1.339957  1.339966  
X1 0.1635  0.1738  0.1640  0.1826  0.1830  0.1638  0.1826  0.1830  
X2 2.7963  2.6168  2.8222  2.4145  2.4073  2.7647  2.4129  2.4075  
X3 10.0000  10.0000  9.3695  9.5759  9.5818  9.8375  9.5818  9.5819  
X4 0.1859  0.1818  0.1914  0.1832  0.1830  0.1814  0.1830  0.1830  
Best 1.489438  1.355169  1.359921  1.339991  1.340052  1.340753  1.339957  1.339961  
Ave 2.815356  1.402795  1.623356  1.340362  1.341116  1.344331  1.340004  1.340003  
Std 1.11E+00 3.13E-02 2.53E-01 3.01E-04 1.06E-03 2.31E-03 3.45E-05 3.36E-05 

 
TABLE X  

SOLUTION OF IDO AND OTHER ALGORITHMS FOR THE PRESSURE VESSEL PROBLEM 
 AOA SCA WOA AVOA MFO HHO DO IDO 
f(x) 6674.699  6172.894  6154.616  5882.494  5880.671  6214.174  5880.859  5880.722  
X1 0.799  0.810  0.939  0.778  0.778  0.830  0.778  0.778  
X2 0.518  0.447  0.537  0.383  0.383  0.412  0.383  0.383  
X3 40.974  40.792  48.301  40.328  40.320  42.841  40.320  40.320  
X4 200.000  200.000  112.424  199.889  200.000  167.653  199.992  200.000  
Best 6674.699  6172.894  6154.616  5882.494  5880.671  6214.174  5880.859  5880.722  
Ave 11741.417  7535.900  9488.520  6362.568  6414.315  6826.969  6321.864  6357.286  
Std 4119.637  853.174  2749.840  379.566  490.083  371.782  497.413  536.449  

 

V. CONCLUSIONS AND FUTURE WORKS 
In this paper, we propose IDO, an improved version 

of the Dandelion Optimizer (DO). IDO incorporates 
three improvement strategies to enhance the explora-
tion and exploitation of the algorithm. To evaluate the 
performance of the algorithm, we conducted experi-
ments using three challenging standard test functions 
from CEC2017, CEC2020, and CEC2022. We com-
pared the results of IDO with seven other excellent 
algorithms under the same experimental conditions to 
highlight the optimization ability of our proposed al-
gorithm. The statistical results from the benchmark 
demonstrate that IDO consistently outperforms the 
other algorithms in terms of solution quality and 
convergence speed. The proposed improvement strat-
egy allows for a more rational allocation of exploration 
and exploitation stages, leading to faster convergence 
and avoidance of local optimization. Furthermore, the 
results of three mechanical engineering optimization 
problems indicate that IDO has significant advantages 
in dealing with engineering optimization problems in 
restricted or unidentified search spaces. We compre-
hensively evaluate the proposed improvement strategy, 
the working principle, stability, and optimization abi- 
lity of the algorithm. Although IDO demonstrates ou- 
tstanding performance in most cases, it does have a few 
shortcomings. For example, when dealing with certain 
unimodal problems, its advantages are not significant, 

and there is a lack of in-depth development mecha-
nisms. Therefore, we plan to conduct further research 
in these areas. In future work, we intend to apply IDO 
to more complex engineering optimization problems 
and propose both base-level and multi-objective ver-
sions of the algorithm. 
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