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Abstrack—The Honey Badger Algorithm (HBA) represents a
novel swarm intelligence optimization algorithm introduced in
recent years. However, its predominant constraints are linked
to inadequate convergence accuracy and a vulnerability to
entrapment in local optima. In an effort to mitigate these chal-
lenges, this paper introduces an Improved Honey Badger Al-
gorithm Based on a Hybrid Strategy (OHBA). Firstly, during
the population initialization phase, a method invelving the uti-
lization of a good point set is introduced to enhance the diver-
sity and introduce more randomness into the population. Sec-
ondly, in the position update phase, the Beta distribution is
employed as an alternative to the Uniform distribution, aiming
to strike a balance between global exploration and local ex-
ploitation capabilities. Thirdly, an improved adaptive density
factor strategy is incorporated into both global and local posi-
tion updates to enhance the algorithm's convergence precision
and speed. Lastly, within the global exploration stage, a Cau-
chy mutation strategy based on the Sine chaotic mapping is
introduced to facilitate the algorithm in overcoming local op-
tima and reinforcing its optimization capabilities. The im-
proved algorithm’s performance has been evaluated through a
comprehensive set of assessments, including CEC-2017 func-
tions, CEC-2022 functions, Wilcoxon rank-sum tests, and prac-
tical engineering optimization problems. These evaluations
were undertaken to assess the algorithm in comparison to clas-
sical intelligent optimization algorithms. The experimental
results show that OHBA possesses significant advantages in
terms of convergence speed, optimization accuracy, robustness
and its practical utility and effectiveness in addressing complex
optimization challenges. This establishes OHBA as a highly
competitive option in these critical aspects of optimization.

Index Terms—Honey Badger Algorithm, Good point set,
Adaptive Density Factor, Beta distribution, Cauchy Mutati
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I. INTRODUCTION

he metaheuristic optimization algorithms have attracted

widespread attention due to their simple principles, ease
of implementation, and superior performance in the past few
decades [1][2]. These algorithms have demonstrated sub-
stantial promise, primarily aimed at expeditiously resolving
a variety of complex optimization problems and achieving
more robust optimization outcomes [3][4]. The foundation
of metaheuristic algorithms lies in diverse biological mech-
anisms and physical laws. Among metaheuristic algorithms,
swarm intelligence algorithms play a significant role, as they
attain optimal solutions through iterative adjustments within
a population. Prominent swarm intelligence algorithms in-
clude the ant colony algorithm, which mimics the foraging
patterns of ant colonies [5]; the particle swarm algorithm,
mnspired by the foraging behaviors of bird flocks [6]; the
pelican optimization algorithm, which takes inspiration from
the natural hunting behavior of pelicans [7]; and the grey
wolf optimization algorithm, which is inspired by the hunt-
ing patterns of grey woll packs [8]. In general, real-world
optimization problems often exhibit several challenging
characteristics, including nonlinearity, complexity, extensive
computational demands, and vast search spaces [9]-[11].
Swarm intelligence algorithms have demonstrated their re-
markable effectiveness in delivering superior solutions to a
broad spectrum of intricate optimization problems, in con-
trast to conventional numerical methods. As a result, they
find widespread application in tackling complex real-world
engineering challenges, such as path planning [12][13], path
tracking [14][15], combinatorial optimization [16][17], and
feature selection [18][19], consistently vielding favorable
results.

The Honey Badger Algorithm (HBA) [20], introduced by
Fatma A. and her colleagues in 2021, stands as a novel
swarm intelligence algorithm. Its fundamental principle re-
volves around modeling mathematical optimization prob-
lems by simulating the {oraging behavior of honey badgers.
The standard HBA algorithm demonstrates several notable
strengths, including robust optimization capabilities, mini-
mal tuning parameters, and high stability. In its initial ap-
plications within engineering practice, it has shown promis-
ing outcomes. Timur Dizenli and his colleagues introduced
an enhanced Honey Badger Algorithm for the extraction of
photovoltaic model parameters [21]. The proposed algo-
rithm exhibits high performance in minimizing root mean
square error (RMSE) and offers an effective alternative for
addressing the challenge of photovoltaic parameter estima-
tion, thereby contributing to the optimization of photovoltaic
model parameters. Lei W and their research team presented
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a study titled "Solar Photovoltaic Cell Parameter Identifica-
tion Based on the Improved Honey Badger Algorithm" [22].
The THBA algorithm, as proposed, is capable of rapidly
calculating the minimum objective function RMSE for three
different models. It accurately identifies the parameters that
need to be solved within these models, presenting a valuable
tool for expeditious parameter identification in the context
of solar photovoltaic cells. Ma and colleagues introduced a
groundbreaking approach for diagnosing compound faults in
rolling bearings [23]. This method harnesses the power of
optimized variational mode decomposition (VMD) and the
extreme learning machine (ELM) within the framework of
the chaotic honey badger algorithm (CHBA). Notably, this
approach demonstrates exceptional diagnostic capabilities
for compound faults, achieving an impressive fault classifi-
cation accuracy rate of up to 100%. It represents an innova-
tive solution to the challenges associated with compound
fault diagnosis. Reference [24] introduced a feature selec-
tion methodology grounded in wrapper techniques, which
seamlessly integrates the multi-objective honey badger al-
gorithm (MO-HBA) and the strength Pareto evolution algo-
rithm-II. This approach effectively alleviates redundancy
within extensive datasets while simultaneously enhancing
classification accuracy. Khan et al. [25] advocate for the
application of the Honey Badger Algorithm to optimize the
placement of Distributed Generation (DG) in IEEE 33-node
and 69-node distribution test systems. This optimization
aims to minimize power losses while simultaneously im-
proving voltage distribution and enhancing system stability.
In reference[26], Chen et al. employ the improved HBA
algorithm to optimize the frequency control sliding mode
design within a multi-area power system that incorporates
disturbance observers. The experimental results demonstrate
that this control method exhibits exceptional frequency con-
trol capabilities, especially in handling uncertain conditions
such as load disturbances, wind power fluctuations, and pa-
rameter uncertainties.

When compared to many intelligent optimization algo-
rithms, the Honey Badger Algorithm (HBA) offers several
advantages in problem optimization. However, it is not
without its challenges, including slow convergence and vul-
nerability to premature convergence towards local optima.
Currently, researchers have employed various methods to
tackle these 1ssues. In Reference [27], a multi-strategy im-

proved Honey Badger Optimization Algorithm 1s introduced.

This enhanced algorithm showcases substantial enhance-
ments in convergence speed, target precision, and optimiza-
tion search capabilities, thus demonstrating robustness in
addressing these challenges. Chen R.F. and their colleagues
[28] introduced an enhanced Honey Badger Algorithm that
incorporates elite reverse learning, spiral updates, and wild
dog survival strategies to optimize the systematic charging
of electric vehicles (EVs). This approach significantly im-
proves convergence speed and precision. Maintaining good
population diversity and striking a balance between explora-
tion and exploitation are consistently crucial for metaheuris-
tic algorithms [29]. References [30][31] introduce the utili-
zation of chaotic mapping for population initialization,
thereby increasing population diversity and introducing
randomness to help populations escape local optima. Fur-
thermore, References [32][33] introduce dynamic inertia

weight strategies aimed at enhancing the algorithm's per-
formance. This results in improved convergence speed and
dynamic balancing of the trade-off between exploration and
exploitation.

To tackle challenges such as slow convergence, vulnera-
bility to local optima, and limited convergence precision in
the Honey Badger Algorithm (HBA), this paper presents an
Improved Honey Badger Algorithm (OHBA) Based on a
Hybrid Strategy. The outcomes illustrate the applicability
and effectiveness of this algorithm in optimization. The
contributions of this study can be summarized as follows:

1.Using the method of the good point set to initialize
the mitial population, helping the population escape local
optima.

2 Replacing the Uniform distribution of the original
algorithm with a Beta distribution to balance the search and
exploitation capabilities.

3 Improving the adaptive density factor strategy to ac-
celerate the algorithm's convergence speed and enhance its
exploration capability.

4 Introducing a Cauchy mutation based on the Sine
chaotic mapping to increase perturbation, improve the up-
date of honey badger individuals' positions, and enhance
both global exploration and local exploration capabilities.

5.The efficiency and performance of the proposed
OHBA algorithm are evaluated through CEC-2017, and
CEC-2022 benchmark test functions.

6.To validate the performance of the OHBA algorithm,
it is compared to the original HBA, DBO, WOA, MFO,
SCA, and BOA algorithms.

7 Wilcoxon rank-sum tests have been conducted to
confirm the statistical superiority of the proposed OHBA.

8.The solving ability of the proposed OHBA algorithm
1s evaluated by solving two real-world engineering design
problems (pressure vessel design problem and rolling bear-
ing design problem).

The remaining structure of this research is organized as
follows: Section 2: Introduces the basic concepts of the
Honey Badger Algorithm (HBA), including its mathematical
model, fundamental principles, and pseudocode. Section 3:
Provides in-depth explanations of the strategies employed in
this research, including the good point set, generation of
random numbers using the Beta distribution, adaptive den-
sity factor, and the Cauchy mutation strategy based on the
Sine chaotic mapping. It also includes the flowchart of the
Improved Honey Badger Algorithm (OHBA). Section 4
Rigorously assesses the efficacy of the proposed Optimal
Honey Badger Algorithm (OHBA) by subjecting it to two
sets of diverse benchmark test functions, complemented by
Wilcoxon rank-sum tests. Section 5: Evaluates the effec-
tiveness of the proposed algorithm in addressing two distinct
real-world engineering design problems. Section 6: Summa-
rizes the conclusions drawn from this research and outlines
potential future directions.

II. HONEY BADGER ALGORITHM

The Honey Badger Algorithm is a swarm intelligence al-
gorithm inspired by the foraging behavior of honey badgers.
These resilient creatures utilize a combination of two dis-
tinct methods to successfully locate food sources:
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1. The Digging Phase: In this method, honey badgers
rely on their acute sense of smell to approximate the loca-
tion of prey. Once they identify a potential spot, they choose
an appropriate location to dig in search of prey.

2. The Honey Phase: Alternatively, honey badgers uti-
lize the guidance of honey guide birds to approximate the
location of prey. These birds lead them to potential food
sources.

A. Initialization phase

The population size and positions of honey badgers are
initialized using a Uniform distribution. The population ini-
tialization is defined by Eq. (1):

x =1ib +rx(ub —1b) ()

Where x, is sk honey badger position, 7 is a ran-
dom number within the range (0, 1); ub, and j5 are the
upper and lower bounds of the search space, respectively.

B. Defining intensity (I).

The intensity mainly relies on the concentration strength

of the prey and the distance between the prey and the honey
badger. 7 1is smell intensity of the prey. The higher the

smell, the faster the honey badger's movement speed will be,
and vice versa. It is defined by Eq. (2)-(4) :

S

I =nx (2)
: dxd’

8= (xz - xH—l)2 (3)

dz = xprey % (4)

Where § is source strength or concentration strength,
and di 1s defined as the distance between the prey and the
ith honey badger.

C. Update densily factor

The density factor o governs time-varying randomization
to ensure a seamless transition from exploration to exploita-
tion. With the progression of iterations, the density factor o
also decreases correspondingly to reduce the randomness
introduced by temporal changes, using Eq. (5):

o= Cx exp(r_—l) (5)

FAX

Where ¢, 1s the maximum number of iterations.

D. Digging phase.

The first way badgers find food sources is the badger
performs a motion resembling Cardioid shape. This 1s simu-
lated using Eq. (6):

X

new = Xppey TE X Iy, +Fxp

prey (6)
xeex dyx | cos(2a, ) [1—cos(2ar; )]

Where Xproy

prey found so far, "B" 1s the badger's food acquisition capa-

1s the current global optimal location for

bility, f=z1 ,(default=6) 4, is the distance between the
prey and the badger, and &, #,,# are random numbers
within the range (0, 1) respectively. "F" is a flag used to

determine the change in the search direction, as determined
by Eq. (7):

1, if r,<05

-1,

E. Honey phase

Y,

else

The second way badgers find food sources is by follow-
ing honey guide bird to locate beehive. This is simulated
using Eq. (8):

Xnew — Xprey

+ Fxmxaxd; 8

Where x_ rtepresents the current position of the honey

badger, whereas Xy

are determined by Eq. (7) and Eq. (5) respectively. Accord-
ing to Eq. (8), the badger performs search close to prey lo-
cation Xprey found so far, based on distance information

is the position of the prey. F and a

d,. The search process 1s also influenced by the density

factor o and disturbance factor I¥.

F. Pseudo-code

To clearly show the structure of the Honey Badger Algo-
rithm, the HBA pseudo-code are shown in Algorithm.

HBA pseudo-code

Input: The population size }, the number of iterations L
the variable dimension [Dim
Output: The optimal position Xpreys the best fitness value fpmy

1: Initialize the honey badger population Y using Eq. (1)
2: Calculate the fitness value f of each honey badger

(%)

- Select the optimum position X ey according to fitness values

: while (r < ) do

4 tmax
5: Update ¢ according to Eq. (5)

6: for i=1to Ndo

7: Update ]1 according to Eq. (2)
8

9

il rand <05 do

: Update the current position x,  using Eq. (6).
10: else if do
11: Update the current position Koy using Eq. (8).
12: end if
13: Evaluate new position and assignto  f,
14: if f;2 o = ﬁ
15: X T Xuew and f; - ff"aew
16: end if
17: ir new = fpmy
18: xprey T Xew and fprey = j;zew
15: end if
20: end for
21: end while
22: Return x
Prey
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ITII. IMPROVED HONEY BADGER ALGORITHM

To enhance the precision of solutions, accelerate conver-
gence, and bolster the robustness of the Honey Badger Al-
gorithm, this paper introduces four key improvements to the
algorithm: Population Initialization with the Good Point Set
Method, Utilization of the Beta Distribution for Random
Number Generation, Introduction of an Adaptive Density
Factor, Application of a Cauchy Mutation Strategy Based on
the Sine Chaotic Mapping.

A. Good point set

The conventional Honey Badger Algorithm usually be-
gins by randomly initializing the population and subse-
quently identifving the best individual from this initial set. It
1s crucial to acknowledge that the quality of this initial pop-
ulation has a substantial impact on the optimization effi-
ciency of the algorithm in subsequent iterations. Ideally, the
initial population should be uniformly distributed across the
solution space, thereby aiding the algorithm in exploring the
global space during its early stages. However, random ini-
tialization methods fail to guarantee uniformity and diversity
within the initial population.

In this paper, we employ the good point set method for
initializing the honey badger population. This approach is
designed to generate an initial population that is distributed
more evenly across the solution space, thereby improving
the algorithm's capacity to explore the global solution space
1n its initial iterations.

The basic definition and construction of the good point
set method to nitialize the population are as follows: the
population is N, select n points in an s-dimensional space

as b (k)= {({’i(n) *k}:{’”z(n) *k},-"{f;(”) *k}),l <k< n},and

—1+g

its deviation () satisfies @(n)=C(r,en , where

C(r.£) 1s a constant only related to r and e (where ¢ is any

positive number), then P, (k) is called a good point set,

and ris a good point. Take the fractional part of {rs(”) *k}.

Take y = {2005[@}1 <k< 5}( p 1is the smallest prime
p

number that satisfies (p—3)/2 = 5.

A one-dimensional initial population consisting of 500
points 1s generated using the good point set method and
compared with a random selection method, as depicted in
Fig.1 and Fig.2. The graph clearly illustrates that when an
equal number of points are chosen, the good point set se-
quence displays a more even distribution compared to the
random point selection approach. Notably, the good point
set selection method exhibits a high degree of stability, con-
sistently producing the same distribution effect regardless of
the number of computations conducted, as long as the popu-
lation size remains constant. Consequently, when mapping
these good points onto the target solution space within the
Improved Honey Badger Algorithm (OHBA), it results in a
more evenly distributed initial population of honey badgers.
This significantly enhances the algorithm's ability to explore
a broader range of solutions, thereby offering an effective
method for uniform point selection. This, in turn, contributes
to achieving superior global optimization.

0 100 200 i 300 400 500

Fig.2. n data points distributed in good point set

B. Adaptive density factor

In the standard Honey Badger Algorithm, as the number
of iterations increases, the honey badgers' exploration range
becomes increasingly limited, hindering them from fully
exploring optimal values. This reduction in population di-
versity can result in the algorithm becoming trapped in local
optima, leading to diminished search accuracy. The density
factor plays a critical role as a tuning parameter in optimiz-
ing the Honey Badger Algorithm. During the initial itera-
tions, a strong global exploration capability enables it to
explore a broad solution space, maintain population diversi-
ty, and steer clear of local optima. Conversely, in later itera-
tions, the algorithm should exhibit robust local exploitation
capabilities. A stronger local search capability contributes to
higher precision in local optimization and faster conver-
gence.

To strike the right balance between these two aspects, an
adaptive density factor 1s introduced, which aids in harmo-
nizing the algorithm's global exploration and local exploita-
tion capabilities. The improved density factor formula is
represented as Eq. (9):

Tt

) ©)

w=a+bxsin(m+ 5
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TABLEI
TEST FUNCTION EXPERIMENT RESULTS
Parameter 0.5 1 1.5 2 2.5 3
1 2.7555E+03 2.7706E+03 2.8102E+03 2.7276E+03 2.8090E+03 2.7869E+03
1.5 2.7122E+03 2.7343E+03 2.7134E+03 2.7006E+03 2.7759E+03 2.7723E+03
2 2.7261E+03 2.7606E+03 2.7223E+03 2.6334E+03 2.7638E+03 2.7091E+03
25 2.7034E+03 2.6500E+03 2.6828E+03 2 .6889E+03 2.677T1E+03 2.6615E+03

In the equation, ¢ represents the current iteration num-
ber, and ¢, is the maximum iteration number. The para-

meters 'a’ and 'b' are influential factors, and their careful
selection is crucial as they have a significant impact on the
performance of OHBA. To assess the influence of these
parameters, we conducted a sensitivity analysis using Com-
position Function 3 (N=5). For this analysis, we created six
scenarios by combining different values of 'a’ and 'b'. From
Table I and Fig.3, it becomes evident that the best fitness
value is achieved when 'a’ is set to 2 and b’ 13 set to 2. Hence,
the optimal parameter values for this algorithm are 'a=2' and
'b=2'" As a result, the position update formula for the
Digging phase, after introducing the adaptive density factor
in HBA, is presented in Eq. (10), while the position update
formula for the Honey phase 1s presented in Eq. (11).

Xgew = Xprey TFX BxIxay,,, +Fxnpx (10)
wx d.x | cos(2xr, )< [1-cos(Zxr )|
X = Figry +Fxr xwxd, (1)
2850
£
sy o o
2 2800 5
= &
£ 2750
s y
]
® 2700 —~
# 2650 " g
o
m
2600 ‘ ' ‘ : !
0.5 1 1.5 2 25 3
a

| © b=t ¢ b=15 o b=2 > b=25

Fig.3. Fitness achieved by OHBA for parameters 'a’ and ‘b’

The HBA performs global exploration based on formula
{10). When the honey badger 1s exploring for the global op-
timal solution, it employs a larger weight, enabling an ex-
tensive search to maintain the diversity of OHBA. In con-
trast, during local search based on formula {11), a smaller
weight 1s utilized. This extends the search duration during
later iterations, enhancing the algorithm's local search capa-
bilities and, consequently, improving its optimization effec-
tiveness.

C. Beta distribution

The HBA algorithm encounters challenges associated
with the imbalance between exploration and exploitation,
often requiring a considerable number of iterations to con-

verge to the optimal value. In the realm of probability and
statistics, the probability distribution function stands as one
of the most cntical characteristics of a random variable. It
serves as a valuable tool for studying the statistical proper-
ties of random variables through mathematical analysis.
Distributions extend the concept of functions beyond the
ordinary sense, and even for functions that lack differentia-
bility or are discontinuous in the conventional sense, they
can possess derivatives in the distribution sense.

Hence, we have chosen several distributions, including
the Beta distribution, Gamma distribution, Poisson distribu-
tion, Weibull distribution, Gaussian distribution, Exponen-
tial distribution, and Binomial distribution Random num-
bers generated from these diverse distributions were incor-
porated into the HBA algorithm to evaluate their influence
on the algorithm's performance. The convergence curves are
illustrated in Fig. 4.

Based on the observations from Fig4, it is evident that
the Beta distribution is better suited for enhancing the HBA
algorithm's performance. Consequently, the Beta distribu-
tion 1s chosen to be integrated into the HBA algorithm. The
Beta distribution is a continuous probability distribution and
serves as the conjugate prior distribution for the Bernoulli
and Binomial distributions. It finds significant applications
in machine learning and mathematical statistics. The math-
ematical expression of the Beta distribution is presented in
equation (12).

I'a+ 5
L) (B

- (12)

S =

Convergence curve

4000

Best score obtained so

()
(=]
(=]
(=]

100 200 300 400 500

lteration
Gamma Poiss —#—Woeibull —— Gaussian
—s#—gaometry —4—Bin —8—HBA —#—Bela

Fig4. Convergence graphs for different distributions

Compared to the Uniform distribution, the Beta distribu-
tion provides the HBA algorithm with enhanced exploration
capabilities. In the later stages of the algorithm, it can boost
the algorithm's global exploration abilities and reduce the
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likelihood of the algorithm becoming trapped in local opti-
ma. When the algorithm encounters a local optimum, the
Beta distribution can assist the HBA algorithm in escaping
from it. Importantly, to preserve the core principles of the
algorithm, the values generated by the Beta distribution ul-
timately fall within the range (0,1). The comparison between
the Uniform distribution and the Beta distribution within the
interval {0, 1) 1s illustrated in Fig.5 and Fig.6.

1 T T r
08-r
081 ’
07
06

0 1 . 1 .
1] 100 200 300 400 500

Fig.5. Generating random variates from a Uniform distribution

1

081
0.8
0.7
0.6

0.5

0.4
0.3
0.2
0.1
]

0

Fig.6. Generating random variates from a Beta distribution

100 200 300 400 500

D. Cauchy mutation based on the Sine chaotic mapping

To combat the problem of the HBA being susceptible to
getting stuck in local optima, this paper introduces Cauchy
mutation based on the Sine chaotic mapping during itera-
tions. In each iteration, a sequence generated by the Sine
chaotic mapping 1s utilized instead of randomly generated
variables. The inherently chaotic and exploratory character-
istics of the Sine chaotic mapping are leveraged to navigate
the solution space. This enhancement effectively bolsters the
algorithm's optimization performance and elevates its capa-
bility to uncover the optimal solution.

In the HBA, prior to convergence, the selection of the
target individual consistently takes place from among the
previous candidate solutions, often resulting in a lack of
diversity. To address this limitation, the introduction of a
mutation strategy that applies to the target individuals in
each iteration proves beneficial. This strategy expands the
search space, augments population diversity, and contributes

to enhancing the algorithm’s capacity for local exploration,
enabling the discovery of new optimal solutions.

Cauchy mutation and Gaussian mutation represent two
distinet strategies employed in optimization algorithms for
generating new solutions. In this paper, both Cauchy muta-
tion and Gaussian mutation are chosen to mutate candidate
solutions, with the aim of determining which mutation
strategy 1s better suited for the Honey Badger Algorithm.
The formulas for the Cauchy distribution and Gaussian dis-
tribution functions are presented in equations (13) and (14),
respectively. These two distribution functions are used to
guide the mutation process, and their effectiveness in opti-
mizing the HBA 1s being evaluated. Fig.7 and Fig.8 illus-
trate the comparative visualizations of the probability den-
sity functions and boxplots for the Cauchy and Gaussian
distributions.

_ (13)
(x* +1)

Jlx)=

=)’

(14)

1
f(x)—me

Gaussian Distribution vs. Cauchy Distribution

04

o
w
.

Gaussian
distributions

Cauchy
distributions

Probability Density
o
[\

(=]
-
T

Gaussian Distribution Cauchy Distribution|

Fig.7. The probability density

Box Plot Comparison
15] - ‘
|
1t :
05}
g +
2 o ==
o .
>
0.5
-1+ .
|
15} o ‘
Cauchy Mutation Gaussian Mutation

Data Groups
Fig.8. Box plot comparison

Based on Fig.7, it can be observed that the Cauchy dis-
tribution function has a smaller peak at the origin, and its
distribution decreases more gradually towards both ends,
while the Gaussian distribution decreases relatively quickly
from the peak towards both ends. According to Fig.6, Cau-
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chy mutation tends to produce larger mutations, while
Gaussian mutation tends to produce smaller mutations.
Cauchy mutation exhibits stronger perturbation capability
compared to Gaussian mutation. By utilizing Cauchy muta-
tion, the perturbation near the current mutated honey badger
individual becomes stronger, allowing for rapid search of
promising solutions in that region. This enhances population
diversity, prevents the algorithm from becoming trapped in
local optima, and improves its ability to search for the global
optimal solution. The perturbation formula is shown in
equation (14):

(14)

X

newbest — X prey T Xprey CauChy(Oal)

Where Xppey TEDrEsents the mutated position, x,_ ..
is the current position, » is a random factor, and Cauchy

{0,1) represents the Cauchy-distributed random variable.

E. The flowchart of OHBA

To offer a lucid portrayal of the proposed algorithm's
structure, Fig.9 presents the flowchart of OHBA. This visual
representation can significantly facilitate the comprehension
of the program framework.

(" Start OHBA

| Input information of optimization problem |
¥
‘ Initialize the honey badger population by good point set ‘
I
- Sett=1

o —

|Calculate the fitness of each honey badger individual |<—
v

| Select the optimum honey badger according to fitness values |

!

Jl Set w based on Eq.(7) |

Update the position of ith Update the pogition of honey
honey badger based on Eq.(8) badger based on Eq.(9)

\ |
l

| Evaluate new position and assign to S

Yes //’ﬁﬂm'k it:\“‘ No

i

" updated better>

The updated honey badger
replace the original ones

[ No |
o \(i Ves|. -
<cHR i -

End
Fig.9. The flowchart of OHBA

Remain the original honey
badger

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

To assess the optimization performance of the OHBA,
two distinct sets of test functions have been introduced. Ad-
ditionally, the Wilcoxon rank-sum test is employed to eval-
uate the OHBA algorithm's performance. This comprehen-
sive approach 1s designed to rigorously examine and vali-
date the algorithm's capabilities across a range of test sce-
narios.

A. Benchmark test functions and algorithms for compari-
SOn

For this study, the experimental setup employed the fol-
lowing environment and hardware specifications: MATLAB
2021a simulation software, Windows 10 operating system.
A machine with a clock speed of 2.60GHz. 8GB of RAM
These specifications outline the computational environment
used for conducting the experiments and evaluating the
OHBA algorithm's performance.

To validate the optimization performance of the Improved
Honey Badger Algorithm Based on Hybrid Strategy, a com-
prehensive evaluation was conducted using a diverse set of
benchmarks. Specifically, the study employed CEC-2017
and CEC-2022, along with the Wilcoxon rank-sum test to
assess the algorithm's performance. In this comparative
analysis, OHBA was pitted against several other algorithms,
including HBA [20], Whale Optimization Algorithm{WOA)
[34]. Sine Cosine Algorithm (SCA) [35], Butterfly Optimi-
zation Algorithm (BOA) [36], Moth-Flame Optimization
(MFO) [37], and Dung Beetle Optimizer (DBO) [38]. The
primary objective of this expenment was to rigorously
evaluate and compare the performance of OHBA against
these established algorithms. To ensure the faimess and re-
liability of the experiments, each algorithm underwent in-
dependent runs 30 times for each test function. The experi-
ments were conducted with a fixed population size of 30
individuals and a maximum iteration count of 500. This
methodology ensured a robust and consistent assessment of
algorithm performance across different test scenarios. The
parameters used for each algorithm were selected in ac-
cordance with their respective original algorithm papers, and
Table 1T presents a comparison of these different algorithm
parameters.

To further demonstrate OHBA's superiority, we conduct-
ed a comprehensive comparison among various algorithms
based on solution precision for each test function. This
comparison included their best values (Best), average values
(Mean), and standard deviations (Std). These metrics pro-
vide insights into different aspects of algorithm performance:
the best value represents the algorithm's peak solving capa-
bility, a higher "Best" value signifies a superior proficiency
in unearthing global optima. The average value indicates
overall precision, a lower " Mean" value indicates a better
convergence accuracy of the algorithm. The standard devia-
tion signifies stability and robustness, a lower "Std" suggests
greater reliability. In addition to these statistical measures,
we tecorded convergence curves, which offer a visual rep-
resentation facilitating a more mtuitive observation and
comparison of each algorithm's convergence speed, preci-
sion, and ability to navigate away from local optima. This
comprehensive evaluation aimed to showcase OHBA's ad-
vantages relative to other algorithms.
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TABLEI
ALGORITHM PARAMETER SETTINGS
Algorithm Parameter Value
WOA v [0.1]
SCA a 2
kand A 0.1
DBO Jo 0.3
S 0.5
a [-2, -1]
MFO
b 1
2 0.8
BOA [4 0.1
a 0.01
C 2
HBA
g 6
C 2
OHBA
g 6

B. The performance of the OHBA on the CEC-2017

To evaluate OHBA's capabilities in exploration, exploita-
tion, and avoidance of local minima, this study selected 15
CEC-2017 test functions encompassing various characteris-
tics. These functions encompass single-peaked, multi-modal,
composite, and hybrid attributes, providing a comprehensive
assessment of OHBA's performance. Functions F1 and F2
represent single-peaked functions, each possessing a single
global optimum within the solution space. These functions
serve as a litmus test for evaluating search accuracy and
convergence speed. Conversely, functions F3 to F5 are mul-
ti-modal in nature, featuring multiple local optima, which
pose a challenge for optimization algorithms prone to get-
ting trapped in local mimma. The results obtained from
these multi-modal functions effectively showcase the algo-
rithm's prowess in function optimization. Additionally,
functions F6 to F10 are composite functions, while functions
F11 to F15 are hybrid functions. The unique characteristics
of each function are detailed in Table I11.

OHBA underwent testing on this diverse set of functions,
and its performance was systematically compared with other
state-of-the-art optimization algorithms. Fig. 10 presents the
average convergence curves obtained from 30 independent
runs of OHBA and the comparative algorithms. Comple-
menting this, Table IV provides the corresponding statistical
metrics, including the mean, standard deviation, and best
values, also averaged over 30 runs. In Table IV. solutions
characterized by the highest precision have been accentuated
by employing bold text.

Derived from Fig.10, it becomes apparent that OHBA
consistently upholds robust exploration and exploitation
capabilities throughout the optimization procedure. Upon
reviewing the outcomes, it becomes evident that OHBA
provides commendable convergence speed and accuracy in
comparison to other optimization algorithms for the majority
of functions. In the case of unimodal functions such as F1
and F2, OHBA's convergence speed and precision exhibit a
marginal superiority over the original HBA. Conversely, for

multimodal functions like F4 and F5, OHBA markedly sur-
passes other optimization algorithms. Composite functions,
which are inherently more complex than basic multimodal
functions, offer a superior simulation of intricate real-world
scenarios. OHBA also demonstrates significant advantages
when applied to hybrid and composite functions. It main-
tains robust exploration and exploitation capabilities
throughout the entirety of the search process. Nevertheless,
due to the intricacy of specific individual functions, OHBA
may occasionally become ensnared in local optima, leading
to suboptimal results.

As illustrated in Table TV, the OHBA algorithm show-
cases remarkable advantages in optimizing a wide array of
functions. Specifically, for single-peaked functions F1 and
F2, OHBA not only attains the best averages but also reach-
es the theoretical optimum in F2. In these cases, OHBA's
overall performance outshines that of the comparison algo-
rithms. In the realm of multi-modal functions, OHBA con-
sistently achieves the lowest averages for functions F3, F4,
and F5. Notably, for function F4, OHBA excels in terms of
mean, standard deviation, and best value, marking a signifi-
cant enhancement in its problem-solving capabilities com-
pared to other algorithms. Among the composite functions,
OHBA secures the top results in terms of mean, standard
deviation, and best value for functions F6, F9, and F10.
Furthermore, it exhibits excellent performance in functions
F7 and F8 when compared to alternative algorithms, under-
scoring its robustness. Composite functions, characterized
by their higher complexity compared to basic multi-modal
and hybrid functions, also vield favorable outcomes with
OHBA. Specifically, OHBA achieves the best averages for
five functions: F11, F12, F13, F14, and F15. While, in the
cases of functions F13 and F14, its standard deviation and
best value shightly trail behind SCA and DBO, the compre-
hensive performance displayed by OHBA, as depicted in
Table IV, is undeniably exceptional. It distinguishes OHBA
as a highly advantageous algorithm when compared to its
counterparts.
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TABLE IIT
PROPERTIES AND SUMMARY OF THE CEC201 7 TEST FUNCTIONS
Bﬁ?:]ilzirgik F Descriptions Dim Range i
Unimodal F1 Shifted and Rotated Bent Cigar Function 10 [-100,100] 100
Function F2 Shifted and Rotated Zakharov Function 10 [-100,100] 300
F3 Shifted and Rotated Rosenbrock’s Function 10 [-100,100] 400
l\lfglll;i:rgsg'sl F4 Shifted and Rotated Rastrigin®s Function 10 [-100,100] 500
F5 Shifted and Rotated Schwefels Function 10 [-100,100] 1000
Fé6 Hybrid Function 1 (N = 3) 10 [-100,100] 1100
Hybrid F7 Hybrid Function 2 (N = 3) 10 [-100,100] 1200
Functions F8 Hybrid Function 3 (N = 3) 10 [-100,100] 1300
F9 Hybrid Function 6 (N = 5) 10 [-100,100] 1800
F10 Hybrid Function 6 (N = 5) 10 [-100,100] 1900
Fl11 Composition Function3 (N = 4) 10 [-100,100] 2300
Fl2 Composition Function4 (N = 4) 10 [-100,100] 2400
Composition . -
Functions F13 Composition Function5 (N = 5) 10 [-100,100] 2500
Fl4 Composition Function6 (N = 5) 10 [-100,100] 2600
Fl5 Composition Function9 (N = 3) 10 [-100,100] 2900
TABLEIV
PROPERTIES AND SUMMARY OF THE CEC2017 TEST FUNCTIONS
F Statistics HBA WOA SCA BOA MFO DBO OHBA
Avg 4.7600E+03 6.6890F+06 8.4318F+08 7.3808E+09 1.8295E+08 1.8295E+08 4.5191E+03
F1 Std 3.7178E+03 8.9309E+06 2.9287HE+08 3.9444E+09 4. 7871E+08 4. 7871E+08 3.9399E+03
Best 1.4949E+02 9.0952E+05 4 A4709E+08 1.5341E+09 1.2200E+02 1.2200E+02 1.0929E+02
Avg 3.0000E+02 3 8830E+03 2.0558E+03 1.2902E+04 1.2742E+04 1.2742E+04 3.0001E+02
F2 Std 3.4886E-07 4.7565E+03 1.2653E+03 2.0674E+03 1.1694E+04 1.1694E+04 2.9200E-02
Best 3.0000E+02 3.9792E+02 8.2562E+02 7.0807E+03 3.0000E+02 3.0000E+02 3.0000E+02
Avg 4.0816E+02 43995E+02 4.5414E+02 1.8013E+03 4.2371E+02 4.2371E+02 4.0395E+02
F3 Std 1.9187E+01 5.1965E+01 2.0878E+01 6.1605E+02 3.4896E+01 3.4896E+01 9.8240E-01
Best 4.0009E+02 4.0076E+02 4.2299E+02 6.0889E+02 4.0001E+02 4.0001E+02 4.0057E+02
Avg 5.2402E+02 5.5372E+02 5.5053E+02 5.9381E+02 5.3457E+02 5.3457E+02 5.2202E+02
F4 Std 1.0596E+01 2.5434E+01 5.8030E+00 1.6465E+01 1.1964E+01 1.1964E+01 9.3486E+00
Best 5.0995E+02 5.2120E+02 5.3950E+02 5.5807E+02 5.1181E+02 5.1181E+02 5.0796E+02
Avg 2.0154E+03 2.1992E+03 2.3700E+03 2.6715E+03 2.1039E+03 1.9900E+03 1.7305E+03
F3 Std 4 4151E+02 3.1509E+02 24621E+02 2.1741E+02 4.3308E+02 3 9668E+02 3.2900E+02
Best 1.2487E+03 1.6842E+03 1.4690E+03 2.0142E+03 1.4198E+03 1.1677E+03 1.1641E+03
Avg 1.1241E+03 1.2108E+03 1.2084E+03 1.8894E+03 1.3217E+03 1.2315E+03 1.1222E+03
Fé Std 2 4209E+01 8.6856E+01 5.2950E+01 7.5725E+02 4.9363E+02 1.3109E+02 1.9412E+01
Best 1.1030E+03 1.1156E+03 1.1523E+03 1.2286E+03 1.1014E+03 1.1161E+03 1.1013E+03
Avg 1.7240E+04 6.7146E+06 1.6501E+07 2.7722E+08 1.2499E+06 1.0071E+06 1.5725E+04
F7 Std 1.6215E+04 64151E+06 1.1541E+07 4.2599E+08 3.1221E+06 2.5377E+06 1.1628E+04
Best 2.8904E+03 31119E+04 41481E+06 6.8646E+06 2.4442E+03 2.0770E+03 3.9370E+03
Avg 5.6008E+03 1.5201E+04 5.0525E+04 5.6067E+05 1.2641E+04 1.3510E+04 6.3625E+03
F8 Std 5.9280E+03 1.0939E+04 3.8357E+04 7.9837E+05 1.1775E+04 1.2862E+04 4.1189E+03
Best 1.5787E+03 2.6078E+03 8.5202E+03 1.8539E+04 1.3324E+03 1.3950E+03 1.4855E+03
Avg 1.3167E+04 1.9305E+04 2.5042E+05 3.4292E+06 2.5792E+04 1.7216E+04 5.2833E+03
F9 Std 13315E+04 1.2956E+04 2. 2439E+05 7. 7103E+06 1.5784E+04 1 4083E+04 2.1633E+03
Best 2.3406E+03 2A4914E+03 9.9949E+03 1.0939E+05 1.8555E+03 2.1452E+03 1.9306E+03
Avg 3.0930E+03 5.5177E+04 8.2004E+03 1.0425E+05 1.3669E+04 8.4642E+03 2.2282E+03
F10 Std 5.6719E+03 1.2039E+05 5.9387E+03 1.4575E+05 1.2374E+04 1.3522E+04 6.1245E+02
Best 1.9151E+03 2.0623E+03 2.0571E+03 2 4018E+03 2.0510E+03 1.9666E+03 1.9230E+03
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TABLEIV
PROPERTIES AND SUMMARY OF THE CEC2017 TEST FUNCTIONS
F Statistics HBA WOA SCA BOA MFO DBO OHBA
Aveg 2.6339E+03 2.6459E+03 2.6572E+03 2.6802E+03 2.6298E+03 2.6535E+03 2.6281E+03
F11 Std 2.1037E+01 24765E+01 8.6603E+00 2.5118E+01 1.1226E+01 1.9209E+01 1.2975E+01
Best 2.6124E+03 2.6156E+03 2.6377E+03 2.6342E+03 2.6129E+03 2.6298E+03 2.6054E+03
Aveg 2.7403E+03 2.7834E+03 2.7794E+03 2.7072E+03 2.7609E+03 2.7034E+03 2.7015E+03
F12 Std 6.6676E+01 5.2187E+01 39211E+01 7.8761E+01 1.0806 E+01 1.0370E+02 1.1377E+02
Best 2.5000E+03 2.5701E+03 2.5772E+03 2.5558E+03 2.7427E+03 2.5000E+03 2.5000E+03
Aveg 2.9253E+03 2.9439E+03 2.9654E+03 3.6718E+03 2.9289E+03 2.9305E+03 2.9128E+03
F13 Std 2.3758E+01 2.7694E+01 1.3703E+01 2.3309E+02 2.4672E+01 6.7718E+01 2.1656E+01
Best 2.8978E+03 2.9028E+03 2.9239E+03 3.1903E+03 2.8983E+03 2.6001E+03 2.8977E+03
Aveg 3.0252E+03 3.5055E+03 3.0826E+03 3.2242E+03 3.1278E+03 3.0647E+03 3.0026E+03
Fl4 Std 32472E+02 6.2095E+02 3.9140E+01 2.0923E+02 3.2918E+02 1.3953E+02 7.7882E+01
Best 2.6000E+03 2.6166E+03 3.0212E+03 2.7990E+03 2.9000E+03 2.6000E+03 2.9000E+03
Avg 3.2658E+03 3.3537E+03 3.2539E+03 3.3669E+03 3.2378E+03 3.2294E+03 3.2228E+03
F15 Std 8.6870E+01 9.7884E+01 3.5855E+01 6.9930E+01 6.3152E+01 5.1681E+01 4.7004E+01
Best 3.1529E+03 3.2057E+03 3.2044E+03 3.2276E+03 3.1431E+03 3.1548E+03 3.1559E+03
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Fig.10. Comparison of convergence curves for CEC-2017 benchmark functions

C. The performance of the OHBA on the CEC-2022

To further validate the OHBA algorithm's proficiency in
tackling intricate problems, rigorous testing was undertaken
emploving the CECC-2022 functions. CEC-2022, being a
relatively recent test suite, presents distinctive function
characteristics detailed in Table V. Fig.11 furnishes the av-
erage convergence curves, derived from 30 independent
runs of OHBA and comparative algorithms, each compris-
ing 500 iterations. Concurrently, Table VI encompasses the
statistical metrics encompassing mean, standard deviation,
and best values, acquired from 30 executions of each algo-
rithm. In Table VI, solutions characterized by the highest
precision have been accentuated by employing bold text.

Denived from Fig.11, it becomes evident that OHBA pro-
vides commendable convergence speed and accuracy in
comparison to alternative optimization algorithms for the
majority of functions. In the case of unimoedal functions, it
becomes apparent that OHBA consistently HBA's conver-
gence speed and precision exhibit a marginal superiority
over the original HBA. Conversely, for multimodal func-
tions, OHBA markedly surpasses other optimization algo-
rithms. OHBA also demonstrates significant advantages

when applied to hybrid and composite functions. It main-
tains robust exploration and exploitation capabilities
throughout the entirety of the search process. Nevertheless,
due to the intricacy of specific individual functions, OHBA
may occasionally become ensnared in local optima, leading
to suboptimal results.

Analysis of the data presented in Table VI underscores
OHBA's superior performance across several key metrics.
Notably, OHBA excels in terms of mean values in a range
of test functions, including F2, F5, F6, F8, F9, F10, and F11.
1t also attains the best mean and standard deviation results in
functions F5 and F6. These findings collectively highlight
OHBA's exceptional performance in comparison to HBA,
with the exception of specific instances where it may not
perform as strongly, as observed in functions F1, F4, and F7.
Across the majority of the tested functions, OHBA consist-
ently outperforms HBA and other optimization algorithms.
This improvement is especially evident in optimization pre-
cision and convergence performance. Furthermore, OHBA's
demonstrated robustness further solidifies its position as a
highly effective optimization strategy. In conclusion, these
results provide compelling evidence of the efficacy of the
improvement strategy employed by OHBA.

TABLEV

PROPERTIES AND SUMMARY OF THE CEC2022 TEST FUNCTIONS
Benchmark functions No. Descriptions Dim Range L
Unimodal CF1 Shifted and full Rotated Zakharov Function 10 [-100,100] 300
CF2 Shifted and full Rotated Rosenbrock's Function 10 [-100,100] 400
Basic CF3 Shifted and full Rotated Rastrigin's Function 10 [-100,100] 600
Functions CF4 Shifted and full Rotated Non-Continuous Rastrigin's Function 10 [-100,100] 800
CF5 Shifted and full Rotated Levy Function 10 [-100,100] 900
Hybrid CF6 Hybrid Function 1 {N=3) 10 [-100,100] 1800
S CF7 Hybrid Function 2 (N=6) 10 [-100,100] 2000
CF8 Hybrid Function 3 (N=5) 10 [-100,100] 2200
CF9 Composition Function 1 (N=3) 10 [-100,100] 2300
Composition CF10 Composition Function 2 (N=4) 10 [-100,100] 2400
Functions CF11 Composition Function 3 (N=5) 10 [-100,100] 2600
CF12 Composition Function 4 (N=6) 10 [-100,100] 2700
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TABLE VI
PROPERTIES AND SUMMARY OF THE CEC2022 TEST FUNCTIONS
CF Statistics HBA WOA SCA BOA MFO DBO CHBA
Avg 3.0002E+02 2.5413E+04 2.7079E+03 1.0278E+04 7.5094E+03 2.0135E+03 3.2701E+02
CF1 Std 5.1400E-02 1.0420E+04 14535E+03 2.3604E+03 7.6546E+03 2.0130E+03 4.8751E+01
Best 3.0000E+02 8.5832E+03 1.0452E+03 5.4519E+03 3.2421E+02 3.0141E+02 3.0050E+02
Avg 4.1228E+02 4.6366E+02 4.7986E+02 2.5594E+03 4.2063E+02 4.4196E+02 4.0692E+02
CF2 Std 2.0412E+01 8.2639E+01 1.9255E+01 9.6231E+02 2.4180E+01 4.8688E+01 3.8750E+00
Best 4.0000E+02 4.0103E+02 4.5364E+02 7.6146E+02 4.0399E+02 4.0039E+02 4.0000E+02
Avg 6.0040E+02 6.4302E+02 6.2295E+02 6.4462E+02 6.0501E+02 6.0988E+02 6.0519E+02
CF3 Std 8.7740E-01 1.8505E+01 4.7089E+00 8.8220E+00 6.6786E+00 9.0351E+00 4.7512E+00
Best 6.0000E+02 6.1203E+02 6.1446E+02 6.2594E+02 6.0000E+02 6.0004E+02 6.0013E+02
Avg §.1951E+02 8.4683E+02 8A557E+02 8.5340E+02 8.3161E+02 8.2948E+02 8.2368E+02
CF4 Std 8.6578E+00 1.3004E+01 7.9599E+00 7.3085E+00 1.0886E+01 8.7991E+00 6.6121E+-00
Best 8.0895E+02 8.2321E+02 8.3156E+02 8.3479E+02 8.1293E+02 8.1293E+02 8.1194E+02
Avg 9.4078E+02 14891E+03 1.0607E+03 1.3637E+03 1.0650E+03 9.9716E+02 9.8611E+02
CF5 Std 5.3992E+01 3.8144E+02 8.2954E+01 1.9183E+02 3.0300E+02 1.0803E+02 5.1210E+01
Best 9.0018E+02 1.0318E+03 9.5574E+02 1.0193E+03 9.0000E+02 9.0500E+02 9.1194E+02
Avg 4.3724E+03 6.1390E+03 5.5127E+06 2.2643E+08 4.4522E+03 5.7304E+03 4.2721E+03
CFé6 Std 2.1743E+03 42178E+03 5.1170E+06 4.4822E+08 2.2165E+03 2.1168E+03 1.8087E+03
Best 1.8861E+03 2.1949E+03 3.9587E+05 5.9673E+06 1.8960E+03 2.5308E+03 1.9265E+03
Avg 2.0228E+03 2.0907E+03 2.0628E+03 2.0942E+03 2.0305E+03 2.0407E+03 2.0446E+03
CF7 Std 5.1863E+00 3.0713E+01 1.1150E+01 1.3708E+01 1.1769E+01 1.5919E+01 4.1109E+01
Best 2.0096E+03 2.0436E+03 2.0388E+03 2.0680E+03 2.0201E+03 2.0201E+03 2.0010E+03
Avg 2.2278E+03 2.2404E+03 2.2361E+03 2.3937E+03 2.2251E+03 2.2300E+03 2.2297E+03
CF8 Std 2.2690E+01 9.7616E+00 3.6298E+00 1.7443E+02 3.9056E+00 8.3653E+00 2.3652E+01
Best 2.2204E+03 2.2275E+03 2.2281E+03 2.2376E+03 2.2205E+03 2.2207E+03 2.2091E+03
Avg 2.5319E+03 2.6090E+03 2.5803E+03 2.8282E+03 2.5361E+03 2.5554E+03 2.5306E+03
CF9 Std 6.0303E+00 5.5967E+01 24135E+01 7.2089E+01 1.9277E+01 3.5848E+01 3.8040E+00
Best 2.5293E+033 2.5305E+03 2.5463E+03 2.6267E+03 2.5293F+03 2.5293F+03 2.5293E+03
Avg 2.6348E+03 2.6203E+03 2.5127E+03 2.5263E+03 2.5679E+03 2.5389E+03 2.5006E+03
CF10 Std 2.3011E+02 2.1056E+02 3.7739E+01 4.7029E+01 1.4874E+02 6.4369E+01 2.0750E-01
Best 2.5004E+03 2.5005E+03 2.5014E+03 2.5018E+03 2.5003E+03 2.5005E+03 2.5003E+03
Avg 2.6800E+03 2.8362E+03 2.8044E+03 34371E+03 2.7726E+03 2.7977E+03 2.6185E+03
CF11 Std 1 4948E+02 1.6795E+02 8.9465E+01 5.4012E+02 1.1829E+02 1.6929E+02 7.7476E+01
Best 2.6000E+03 2.6557E+03 2.7558E+03 2.8225E+03 2.6000E+03 2.6100E+03 2.6000E+03
Avg 2.8910E+03 2.9082E+03 2.8721E+03 2.9535E+03 2.8646E+03 2.8696E+03 2.9434E+03
CF12 Std 3.1328E+01 3.2361E+01 3.2441E+00 4.5581E+01 2.5057E+00 6.2048E+00 4.2404E+01
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D. Wilcoxon rank-sum tests

Robustness, in the context of an algorithm, refers to its
ability to maintain stability when confronted with uncertain-
ties or exceptional circumstances. It stands as a pivotal met-
ric for assessing algorithmic performance. To further sub-
stantiate OHBA's robustness, an evaluation was conducted
employing the Wilcoxon rank-sum test. This statistical
analysis sought to determine whether OHBA exhibited sta-
tistically significant differences in performance compared to
other algorithms. Calculations were carried out at a signifi-
cance level of 5%. A resulting p-value less than 5% would
signify a noteworthy disparity in optimization outcomes
between the two algorithms, while a p-value greater than 5%
would indicate that the optimization results of the two algo-
rithms are generally similar.

In this section, OHBA is compared with standard HBA,
WOA, BOA, MFO, SCA, and DBO algorithms across 10

test functions. The function characteristics, including ex-
pressions, dimensions, search ranges, and theoretical opti-
mal solutions, are shown in Table VII. The symbols "+," "-",
and "=" were employed to respectively denote OHBA's su-
periority, inferiority, or equivalency to the comparison algo-
rithm. The "NaN" label was used to signify cases where no
conclusive determination could be made.

The outcomes of the Wilcoxon rank-sum test are outlined
in Table VIII. Within this table, OHBA, in conjunction with
the other six algorithms, demonstrated p-values below the
5% significance threshold in 35 instances. There were four
cases with results deemed inconclusive and two cases with
p-values exceeding 5%. This comprehensive analysis
strongly indicates that OHBA demonstrates significant ex-
cellence in optimization compared to other algorithms.
Consequently, OHBA exhibits superior robustness in com-
parison to the analyzed algorithms.

TABLE VII
BENCHMARK FUNCTIONS
Benchmark functions Dim Range Fonin
fi(x) = ZD”” %2 30/50/100 | [-100,100] 0
1 =1 1
Dim Dim
fé(x):zizl |x1\+1_[1:1 x| 30/50/100 [-10,10] 0
B Diw N 2.2
L= ZFI (ZF1 ) 30/500100 | [-100,100] 0
Su(x) = max, {|x,|,1 <i < Dim) 30/50/100 | [-100,100] 0
Dim-1 7.3 7
fi= (ZH [100¢x,,, — x7)* + (x, - 1)*] 30/50/100 [-30,30] 0
D
fi= zi;’” ix* + randoml0, ) 3050100 | [-1.28,1.28] 0
D
= Zi:lm[x} ~10cos(27x,)+10] 30/50/100 | [-5.12,512] | o0
1 Tin 1 Dim
__ _ {_ 2| _exp| — _ ;
fa= 20exp[ 0.2 30 2imt X } exp 30 Zl:coﬂﬁ'xi +20+e 30/50/100 [-32,32] 0
pn
1 Dim 5 Dim X
o = 2000 2oit ¥ 71_[;:1 cos[\lz__}rl 30/50/100 |  [-600,600] 0
D=1 Dy
Fo =00 (73x)+ 3 " (= D[+ sind (73 )]+ (x, = D [Lsin (P33, )1+ Y a(,,5,100,4) | 30/50/100 | [-50,50] 0
TABLE VIII
THE VATLUES OF WILCOXON SIGNED RANK TEST
Benchmark HBA WOA SCA BOA MFO DBO
functions
F1 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12
F2 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12
F3 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12
F4 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12 1.2118E-12
F5 6.6955E-11 23768E-07 5.4941E-11 3.0199E-11 3.0199E-11 7.6171E-03
Fé6 2.9215E-09 6.7220E-10 3.0199E-11 3.3384F-11 3.0199E-11 2.3715E-10
F7 NaN NaN 1.2118E-12 3.1349E-04 1.2118E-12 4.1926E-02
F8 3.3371E-01 1.8210E-06 1.2118E-12 1.2118E-12 1.2118E-12 1.6074E-01
F9 NaN 4.1926E-02 1.2118E-12 5.7258E-11 1.2118E-12 NaN
F10 3.0199E-11 3.3384E-11 3.0199E-11 3.0199E-11 3.0199E-11 1.7769E-10
+i=/- 8/2/1 9/1/0 10/0/0 10/0/0 10/0/0 8/1/1
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V. ENGINEERING OPTIMIZATION DESIGN PROBLEMS

In order to evaluate OHBA's effectiveness in real-world
engineering applications, we selected two optimization
problems: the pressure vessel design problem and the rolling
bearing design problem. OHBA was subjected to a system-
atic comparison with five alternative optimization algo-
rithms, which included WOA, SCA, DBO, Golden Jackal
Optimization (GJO) [39], and Aquila Optimizer (AO) [40],
1n addition to the conventional HBA algorithm. These com-
parative experiments were meticulously carried out to pro-
vide a comprehensive assessment of OHBA's performance
and its suitability for engineering applications in the realm
of academic optimization.

A. Pressure vessel problem

The primary objective of the pressure vessel optimization
design problem is the minimization of economic costs while
adhering to specific constraints[41]. These economic costs
encompass material expenses, forming costs, and welding
expenditures associated with the vessel's fabrication. A vis-
ual representation of the pressure vessel design problem is
provided in Fig.12. Derived from Fig.12, this problem en-
tails four critical constraints that must be satisfied, and it
relies on four variables for the computation of the objective
function. These variables include shell thick-ness ( z,), head

thickness ( z,), inner radius ( x,), and the vessel's length,
excluding the 138 head ( x, ).

X i

Fig.12. The model of pressure vessel problem

Minimize:
FX)=1.7781z,x5 +0.6224zx,x, +3.1661z7x, +19.84 2% x,
Subject to:
£ (X)=0.00954x, —z, <0

2, (X)=00193x; -z, <0

g (X)=X,-240<0

2, (X)) =1296000— zx5x, — 4/37x] <0
Where, z =0.0625x,z, = 0.0625x,

Withbounds:  x <99, l=<x,, x =200, 10<x,
104 Pressure Vessel design
4.5] ' ' ' ' i
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Fig.13. Comparison of convergence curves for pressure vessel problem

The experimental outcomes for OHBA and the compara-
tive algorithms concerning the pressure vessel design prob-
lem are depicted in Fig.13. Each algorithm underwent 30
independent runs to address the pressure vessel design
problem, and the ensuing results encompass means, standard
deviations, optimal values, and worst values, all of which
are compiled in Table IX. For the sake of clarity, the most
favorable experimental data extracted from the table have
been highlighted.

In the context of pressure vessel problems, the practicality
and stability of the OHBA are demonstrated from multiple
perspectives. The OHBA exhibits significantly lower stand-
ard deviation compared to other algorithms, indicating its
strong robustness. Furthermore, the average and best values
of the OHBA outperform those of other comparative algo-
rithms, and the optimization results further illustrate the high
efficiency of the OHBA in addressing complex real-world
engineering problems.

TABLEIX
COMPARISON RESULTS OF SIX ALGORITHMS UNDER THE PRESSURE VESSEL PROBLEM
WOA SCA DBO AO GIO HBA OHBA
fix) 11142346 8038.696 682041 6240.676 7400.952 6059.714 6059.7154
X1 16.22131 16.7732 18.3813 12.94245 20.3539 13.37172 12.5013
X2 24.93488 11.9765 8.72841 6.904851 9.65965 6.963087 7.480618
X3 478123 531361 58.2902 40.69833 63.6565 42.09845 42.09844
X4 116.7081 79.6451 43.6927 154.9216 16.9702 176.6366 176.6367
Ave 9721.2 7551.5 6619.7 6848.5 6531.6 6340.1 6285.1
Std 2480.7 580.1611 536.228 529.9373 566.3045 452.5891 330.9291
Best 6351.6 6269.8 6059.7 6149 6064.7 6059.7 6059.7
Worst 7560.9 7680.5 7544.5 8715.9 17611 7544.5 7332.8
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B. Rolling element bearing

The rolling bearing issue involves transforming shding
contact into rolling contact, thereby reducing friction losses,
with the optimization objective of maximizing dynamic load
capacity [42]. This optimization is formulated considering
five design variables and five design parameters. Among the
design variables are the pitch diameter ( p )), ball diameter

( p,). outer raceway curvature coefficient ( s )), inner race-
way curvature coefficient ( z), and the total number of balls

{ z). Additionally, the five design parameters, namely
e, & & Ky Kby Dlay a role primarily within the con-

straints of the problem. The problem encompasses nine non-
linear constraints rooted in manufacturing and kinematic
considerations, aiming to solve for the values of ten design
variables and dynamic load capacity. The problem encom-
passes nine non-linear constraints rooted in manufacturing
and kinematic considerations. A visual representation of the
rolling bearing design problem can be found in Fig.14.

T

Vs

Fig.14. The model of rolling element bearing

Minimize:
Z
Z3DLE, ifD, < 25.4nm
)= Je b . if D,
3.6471.23DY otherwise
Subject to:
o
q(X)=2Z- ~1<0
; 2sin (D, /1 D,)
g,(X)=K, . (D-d)-2D, <0
83(X) = 2D, =K e (D—d) <0

g.£X)=D,, 20
g (X)) =05D+d)-D, <0
g0 =D, —(05+e)dD+d)<0
g, (X)=D,-05D-D,-D,)1<0
g:(X)=0515—- 7 <0
go(X)=0515-f, <0

With bounds:
0.5(D+d)< D, <0.6(D+d)
013D-d) <D, <0.45D—-d)
4<7<50
0.515< £ <0.6
0.515< f, <06

04<K,,,, <05
06<K,,,. <07
03< <04
0.02<e=<0.1
0.06< ¢ <0.85

Where,

- 10/3
o -y Ji(2/0 —Dom
1. =317.91 1+{1.04[1+}/J (]%(Zﬁ—l) }

0.3

¢y = 27— Z2cos 7w

{(D—d)2- T/} +{DI2—(T/4)-D,}* —{d/2+(T/4)}
( 20D —dY2— AT/} D12~ (T/14)—D,}
T=D-d-2D, , D=160 , d=90 , B,=30
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Fig.15. Comparison of convergence curves for Rolling element bearing

The OHBA algorithm underwent a rigorous svstematic
evaluation through a comparative analysis with prominent
algorithms such as WOA, SCA, DBO, AO, GIO, and HBA.
Each algorithim was executed independently in 30 instances
to address the challenges associated with rolling bearing
design problems. The findings from these experiments are
depicted in Fig.15. The resulting statistics, including means,
standard deviations, optimal values, and worst values, are
detailed in Table X. To facilitate a clearer interpretation, the
most favorable experimental data have been highlighted in
beld within the table.

When addressing the rolling bearing design problems, the
OHBA achieved the optimal optimization results. According
to experimental findings, OHBA consistently exhibited the
lowest averages, standard deviations, optimal values, and
worst values compared to other comparative algorithms. In
all aspects, OHBA has obtained the highest ranking, demon-
strating the best overall performance and emphasizing the
effectiveness of this method when applied to practical prob-
lem-solving scenarios.
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COMPARISON RESULTS OF SIX ALGOE‘IIEII;];S);NDER THE ROLLING ELEMENT BEARING
WOA SCA DBO AQO GIO HBA OHBA
fx 17672.758 17513.146 17058.767 17045251 17045.56 16958.202 16958.202
X1 129.9129 125.2312 125 127.7706 125.9213 131.2 1312
X2 18 18.17614 18 18.01677 18.00068 18 18
X3 4.51 4.893674 4.51 5.219708 5164455 4.51 4.51
X4 0.6 0.6 0.6 0.6 0.6 0.6 0.6
X5 0.5402832 0.587077 0.6 0.6 0.6 0.6 0.6
X6 0.4855557 0.5 0.4 04 0494259 0.5 04
X7 0.7 06 0.7 0.6 0.658151 0.6 0.7
Xs 0.3330657 0.3739817 0300028 03 0327157 0.3 03
X9 0.02 0.02 0.0288869 0.1 0.051192 0.1 0.0997939
X10 06 06 0.6 0.6 0.6 0.6 0.6
Ave 19049 17507 17515 17540 17046 17262 16974
Std 24333 315.3726 1601.4 1453.7 31.3332 1565.2 21.3759
Best 16976 17103 16958 17045 16977 16958 16958
Worst 24559 18300 25749 23741 17096 25548 17018
[2] Lud, GaolL, and Yi J. Grey wolf optimizer with cellular topological
VI CONCLUSIONS structure[J]. Expert Systems with Applications, vol.107, pp. 89-114,
In this study, we have introduced an Improved Honey [3] 2A(i)11.18'a:ligah L, Diabat A, Mirjalili S, et al. The arithmetic optimization
Badger Algorithm Based on a Hybrid Strategy. This paper glgorithm[]]. Computer methods in applied mechanics and engineer-
: . . ing, vol.376, pp. 113609, 2021.
outlines four key enhancement strategies built upon the [4]  Sattar D, and Salim R. A smart metaheuristic algorithm for solving

foundation of the standard Honey Badger Algorithm. Ini-
tially, the 'good point set’ method is integrated for popula-
tion nitialization, introducing a randomized population dis-
tribution. Subsequently, the conventional Uniform random
number generation is replaced with the Beta distribution to
achieve a balance between global exploration and local ex-
ploitation capabilities. In the following step, the adaptive
density factor is refined, effectively facilitating a seamless
transition between global and local search phases. Lastly,
the Cauchy mutation is introduced, leveraging the Sine cha-
otic mapping, to enhance the algorithm's diversity, thereby
augmenting its search capabilities and ultimately improving
convergence accuracy. Performance evaluation involves a
thorough assessment across the CEC-2017 and CEC-2022
benchmark functions, simultaneously benchmarking OHBA
against five other prominent metaheuristic algorithms. To
determine OHBA's statistical significance, we employ the
Wilcoxon rank-sum test for comparison with other optimi-
zation algorithms. Finally, we apply the OHBA algorithm to
address two real-world engineering problems. The obtained
results unequivocally affirm the superiority of the OHBA
algorithm over other competing algorithms. Therefore, it can
be confidently concluded that OHBA, the newly developed
algorithm, surpasses state-of-the-art metaheuristic algo-
rithms, demonstrating its excellence, effectiveness, and
promising potential for practical applications. In the future,
we will continue to enhance OHBA's performance and ex-
tend its application to a broader spectrum of practical engi-
neering challenges.
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