
Abstract—The Whale Optimization Algorithm (WOA) is
an efficient meta-heuristic algorithm inspired by the feeding
behavior of whales. Although it has successfully solved many
optimization problems, it still suffers from premature
convergence and poor accuracy when solving complex
problems. To address these issues, this paper proposes an
improved whale optimization algorithm called EIWOA to
improve the search efficiency and accuracy. First, we
introduce a new global search mechanism and encircling prey
strategy in EIWOA, which utilizes differential evolution, and
sine-cosine search strategy to improve the global search
efficiency and avoid premature convergence. Second, we use a
lévy flight-based spiral update position strategy to improve
the local search efficiency of the algorithm, thus improving the
convergence speed and accuracy. Again, we introduce a
balancing factor with fluctuating decay properties into
EIWOA to better balance exploration and exploitation.
Finally, we introduce a dynamic opposite learning-based
whale-fall strategy in EIWOA to equip the algorithm with the
ability to jump out of the local optimum. The qualitative
analysis of the algorithm shows that the EIWOA algorithm
converges quickly, is highly accurate, and has the ability to
jump out of the local optimum. In order to validate the
performance of the proposed EIWOA algorithm, we evaluated
the algorithm on CEC2017 benchmark function and four real
world engineering problems. We also conduct a comparative
study of the EIWOA algorithm with EWOA, an excellent
variant of WOA, as well as some excellent meta- heuristics
developed recently. The results of numerical experiments
demonstrate the superiority of the proposed EIWOA, which is
further confirmed statistically by the results of Friedman's
test and Wilcoxon signed rank test. The proposed EIWOA
algorithm is significantly better than WOA and other
competing algorithms in terms of convergence speed, accuracy
and optimization ability in dealing with complex optimization
problems.

Index Terms— whale optimization algorithm, exploration
and exploitation, balancing factor, whale-fall strategy

I. INTRODUCTION

ptimization problems exist widely in social life and
scientific research, such as task allocation, path plann-
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ing, resource scheduling, and so on. In many practical
scenarios, optimization problems are more and more
dynamic, nonlinear, uncertain and high dimension.
Traditional optimization algorithms such as conjugate
gradient and variational methods are often powerless to
solve these problems. With the progress of society and the
continuous development of artificial intelligence,
optimization methods based on swarm intelligence have
emerged. Swarm Intelligence was a very popular intelligent
computing technique in the last decade [1, 2].

Swarm intelligence is the characteristic of individuals
with no or simple intelligence that exhibit swarm intelligent
behavior through group cooperation and organization.
Group intelligence algorithms utilize probabilistic search to
find optimal solutions in the solution space without
requiring excessive prior knowledge and are well suited for
solving non-deterministic polynomia problems. Various
meta-heuristic algorithms are based on different natural
phenomena and philosophies, such as Genetic Algorithm
(GA) [3], Particle Swarm Optimization (PSO) [4], Gravitat-
Ional Search Algorithm (GSA) [5], Differential Evolution
algorithm (DE) [6], Animal Migration Optimization (AMO)
[7], Backtracking Search Optimization Algorithm (BSA)
[8], Grey Wolf Optimization Algorithm (GWO) [9], Tree
Species Optimization Algorithm (TSA) [10], Whale Optim-
ization Algorithm (WOA) [11], Beluga whale optimization
(BWO) [12], Artificial Ecosystem Based Optimizattion
Algorithm (AEO) [13], Rat Swarm Optimizer (RSO) [14],
Flow Direction Algorithm (FDA) [15], Transit Search (TS)
[16], and White Shake Algorithm (WSO)[17], have been
proposed and successfully applied in many optimization
areas.

WOA is proposed by Mirjalili et al. in 2016. It is a
meta-heuristic optimization algorithm that simulates the
hunting behavior of humpback whales. The main difference
between WOA and other swarm optimization algorithms is
the use of stochastic or optimal search agents to simulate
hunting behavior and the use of spirals to simulate the
humpback whale bubble net attack mechanism. The
algorithm has the advantages of the simple mechanism, few
parameters, and strong optimization ability, etc. The
algorithm requires fewer parameters to be set, is simple to
operate, and has strong optimization performance. At
present, the algorithm has been successfully applied to
cloud resource scheduling, location path planning, optimal
power flow in power system, industrial design, engineering
field, economic scheduling, optimal control, photovoltaic
system, image segmentation and so on.
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Compared with classical optimization algorithms such as
PSO and GA, WOA has better global exploration ability,
but its local search ability and convergence speed need to
be improved. In recent years, researchers have proposed
many variants of WOA to enhance the performance of
WOA, which can be roughly divided into three categories:
(1) parameter optimization; (2) Strategy improvement; (3)
Algorithm fusion. Nadimi-Shahraki et al., proposed an
enhanced whale optimization algorithm (EWOA) in 2019
[18]. Chen et al. used improved Bernoulilli Shift mapping
to initialize the whale population to maintain the diversity
of the population and proposed an improved whale
algorithm named IWOA. The adaptive convergence factor
is introduced to balance the local and global optimization
capability of the algorithm[19]. Mafar et al.[20] hybridized
the WOA with simulated annealing to solve feature
selection problems. Ling et al. [21] proposed an improved
WOA algorithm (LWOA) based on lévy behavior in 2017.
Tawhid et al proposed an BWOA algorithm for finding
optimal minimum subsets in feature selection problems,
which combines the rough set method, wrapper method and
whale optimization algorithm. A quantum-based whale
optimization algorithm (QWOA) [23] for the wrapper
feature selection problem was proposed to improve the
population diversity and convergence rate of WOA. In the
QWOA, a quantum bit representation was proposed to
maintain the population diversity, and a quantum rotation
gate operator was introduced to balance the search
strategies. Debashis et al. proposed the modified whale
optimization algorithm named MWOA [24] realizes the
application of two-degree-of-freedom fractional order fuzzy
proportional integral derivative controller in automatic
generation control of multi-region interconnected power
system. Zhao et al. [25] proposed a cooperative whale
optimization algorithm (CWOA) for energy-efficient sche-
duling of the distributed blocking flow-shop with sequence
dependent setup time. Wang et al. [26] developed a cross
domain algorithm based on a hybrid whale optimization
algorithm with simulated annealing (CDWOASA). Got et
al. [27] proposed an multi-objective algorithm that hybridi-
zzed the filter-wrapper feature selection approach with the
WOA. Chen et al. [28] proposed a multi-objective whale
optimization algorithm (MONIWOA) to solve the non
convex optimized power flow problem. In MONIWOA, the
piece wise non-linear strategy, dual dynamic weights mode
and constrains-prior Pareto-dominant rule are adopted to
enhance the performance of the algorithm.

Inspired by those methods, an efficient improved whale
optimization algorithm, named EIWOA, is proposed in this
paper. Five improved strategies, including new global
search mechanism, new encircle prey method, new spiral
updating position strategy, new balancing factor, and a
whale-fall strategy are used to balance the exploration and
exploitation and to improve the convergence speed and
accuracy. The new global search mechanism and encircling
prey strategy based on sine-cosine operator and differential
evolution strategy improves the global search efficiency so
that the algorithm can search as many as desired optimal
regions as possible, avoiding the algorithm from falling
into local optimum. The new lévy flight-based spiral
updating position strategy enhances the whale's ability to

search the unknown regions. It can better adapt to the
search requirements of different distances and avoid
duplicate paths during the search process, thus improving
the local search efficiency and accuracy. The new
balancing factor has a fluctuating decay property, which is
used to balance the exploration and exploitation, so that the
new algorithm has a certain global search ability at the late
stage of the search. The whale-fall strategy based on
dynamic opposite learning equips the algorithm with the
ability to jump out of the local optimum and better
facilitates the algorithm to converge to the global optimum.

The structure of this paper is as follows: original WOA
algorithm is introduced in Section Ⅱ. and the detailed
presentation of the proposed EIWOA is provided in Section
Ⅲ. Section Ⅳ shows the results of experiment and
statistical analysis. In Section Ⅴ, EIWOA is used to solve
four engineering problems. Finally, the paper gives
conclusions in Section VI.

II. WHALE OPTIMIZATION ALGORITHM

The model of WOA is constructed mathematically [29].
The specific definition of the model is as follows, assuming
that there are n whales in the D-dimensional space, the �th
individual of the tth iteration can be expressed as:

max,2,1, ,,2,1 ),,,,( tixxxX Diii
t
i  (1)

Where, tmax is the maximum number of iterations. In the
process of optimization, the algorithm includes three search
mechanisms: the local search of encircling prey, the local
search of bubble net attack and the global search of the
random learning mechanism.

A. Encircle the prey

This process mimics that of a humpback whale
recognizing the location of its prey and encircling it. Since
the optimal position in the search space is unknown [30],
the WOA algorithm assumes that the current optimal
solution is the target prey or a near-optimal solution. After
determining the concept of optimal position, other whales
swim to the vicinity of the current optimal position to
realize the encirclement of the prey. At this stage, the
specific update formula for whale position is defined as
follows:

| ( ) ( ) |D C X t X t   (2)

*( 1) ( )X t X t A D    (3)

Where t is the current iteration, A and C are the distance
adjustment parameters, | ∙ | is the absolute value, and the
distance adjustment parameters are defined as follows:

12A a r a   (4)

22D r  (5)
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2(1 )ta
T

  (6)

Where r1, r2 are random numbers between [0,1], a is a
parameter that varies with the number of iterations and
decreases linearly within [2,0], and Tmax is the maximum
number of iterations.

B. Bubble-net attacking method

Bubble net attacks mimic the hunting behavior of
humpback whales, which swim upward along a spiral path
of decreasing radius of curvature and encircle prey by
blowing bubbles to form a wall of air. The bubble net
attack model consists of two strategies: contraction
encircles and spiral position updating.

(1) Contraction encircles. This is achieved by reducing
the convergence factor a in Eq.(3). As the value of a
decrease, the range of fluctuation of A decreases
simultaneously. When | A | < 1, the position of each whale
gradually approaches the target position as it moves,
ultimately realizing the contraction of the prey.

(2) Spiral position updating. Firstly, the distance between
the whale and the prey is calculated, and then the spiral
swimming of the whale is simulated to capture the prey.
The mathematical model is shown as follows:

' *( 1) cos(2 ) ( )blX t D e l X t     (7)

' *| ( ) ( ) |D X t X t  (8)

Where D represents the distance between each individual
and the current optimal solution; b is a constant defining
the shape of the logarithmic spiral; and l is a random
number in the interval [-1, 1].

When encircling prey along a spiral path, whales also
need to narrow their encirclement. To model this effect, the
probability p is chosen to narrow the envelope and update
the spiral position. The mathematical model is shown
below:

*

' *

( ) , 0.5,| | 1
( 1)

cos(2 ) ( ), 0.5bl

X t A D p A
X t

D e l X t p

      
   

(9)

Where, p is the probability factor of uniform distribution in
the interval [0,1].

C. Random global search mechanism

This mechanism updates the position of each individual
by randomly changing the position of whales. When P<0.5
and |A| ≥ 1, individual whales no longer update their
position based on the position of the best whale in the
current population, but instead randomly select other
individual whales and move to them. The expression for
position update is as follows:

| ( ) ( ) |randD C X t X t   (10)

( 1) ( )randX t X t A D    (11)

Where, Xrand represents the position of the whale randomly
selected from the current population.

III. THE PROPOSED EIWOA ALGORITHM

In this section, a new variant of WOA called EIWOA is
proposed to balance the exploration and exploitation, avoid
the algorithm from falling into local optimums, improve the
global and local search efficiency, and increase the
convergence speed and accuracy. The block diagram of
EIWOA is given in Fig. 1.

A. New global search mechanism

In WOA, random global search mechanism updates
individual positions by randomly changing the position of
whales. This search method is too random and lacks the
guidance of historical search information, so the search
efficiency is low, in order to improve the efficiency of the
algorithm global search, this paper designs a new global
search formula based on the inspiration of PSO algorithm.
The new global search formulas are defined as follows:

)()())(( tXtXCXtXCD PbestrandCbestrand  (12)

DAAtXtX rand  )()()1(  (13)

Where, XPbest is the personal best solution of each whale,
XCbest is the best solution of personal best solutions. Ψ(·) is
the probability density function of the standard normal
distribution.

From Eqs. 11 and 12, it can be seen that the algorithm
performs a global search in which the position of the whale
is guided by the personal best solutions. It will improve the
search efficiency compared to a completely randomized
search.

B. New method to encircle prey

The WOA algorithm uses a grid search strategy to
encircle the prey. This strategy basically searches around
the neighborhood of the current optimal solution and
gradually narrows the search range to complete the
encirclement of the prey. Since the encirclement operation
is guided only by the current best solution, it can accelerate
the convergence speed, but it also leads to the rapid loss of
population diversity of the WOA algorithm, and the
algorithm is prone to fall into a local optimum. To alleviate
this shortcoming, a new prey encirclement formula is
designed in this paper, as shown in Eq. (14) .









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even is  if)2(cos)),(),((5.0),(
odd is  if)2sin()),(),((5.0),(
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3211

jjrXjrXjrX
jjrXjrXjrX
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，

，


 (14)
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Fig.1 Block diagram of the EIWOA algorithm.

Where r1, r2 and r3 are random integers between 0 and D (r1

≠r2 , r2≠r3 , r1≠r3), respectively. D is the dimension of the
problem to be solved.

Eq.14 combines a differential evolution strategy [31] and
a sin-cosine search strategy [32], both of which have been
shown to be effective in improving the search efficiency of
the meta-heuristic algorithms. The new encircle prey
strategy is effective in maintaining the diversity of the
population and also provides a better search for possible
optimal regions.

C. New Spiral updating position strategy

In WOA, during the stage of updating positions, the
whale adjusts the moving distance according to the distance
between the prey (the current best solution) and its own

position, so as to complete the search of the neighborhood
of the current best solution, thus improving the
convergence accuracy. This simple spiral search pattern
approaches the target along a fixed spiral path each time, as
shown in Eq. (6). It makes the algorithm prone to fall into
local optimum and weakens its local search capability. To
address this problem, we propose a new spiral updating
position strategy. This strategy dynamically adjusts the
search path of the whale during the search process and
introduces the personal best solution and lévy flight
strategy in the WOA, which enhances the whale's ability to
search unknown regions. It can better adapt to the search
requirements of different distances and avoid duplicate
paths during the search process, thus improving the search
efficiency and accuracy of the algorithm. The new formula
for updating the spiral updating position is as follows:

vyelparXparXleXX t
Pbest

t
Pbest

ltt  )],(),([2cos 25
)(

14
)()*()1(  (15)

Where r4 and r5 are random integers between 0 and N (r4≠
r5), respectively, and N is the population size. lévy is a
D-dimensional vector, generated by the lévy flight operator.
pa1 and pa2 are two D-dimensional vectors, respectively,
and the value of each dimension is a non-repeating random
integer from 1 to D.

D. Design of new balancing factor
Balancing exploration and exploitation is an important

element in the improvement of meta-heuristic algorithms.
In WOA, whether the whale performs contraction encircles,
spiral position updating, or random search search strategy
is determined by the balancing factor P ( P=0.5 in WOA).
This coordination modalities is not conducive to adjusting
the algorithm's exploration and exploitation capabilities.
We would like the algorithm to perform more exploration
operations in the early stages of the search to better traverse
the possible optimal regions, and more exploitation

operations in the later stages of the search to improve
convergence accuracy. Therefore, in this paper, a new
balancing factor is designed as shown in Eq. (16).

))2)(2)(1(2
max

max6 T
tTrP  (16)

Where r6 is a random vector in [0,1] α is a parameter that
needs to be determined manually in advance.

In EIWOA, the algorithm generates a random number
r7, when r7<P, the algorithm performs contraction encircles
and random search operations and otherwise performs
spiral position updating operations. Fig.2 gives a curve of
the balancing factor P when the value of α is 1.5 and the
maximum number of iterations is 1000. From Fig. 2, it can
be seen that the value is of P fluctuating and decaying with
the increase of iterations. In the early stage, the number of
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Fig.2 The curve of the balancing factor.

iterations t is small, the value of the balance factor is large,
the algorithm has more chances to carry out contraction
encircles and global search operations, the exploration
ability of the algorithm is stronger, which is conducive to
the algorithm searching for more optimal regions with
expectations, and with the increase in the number of
iterations, the value of P will continue to decay, and the
algorithm will have more chances to carry out the operation
of spiral updating position, which is conducive to the
improvement of the convergence speed and the search
accuracy. It can also be seen from Fig. 2 that the EIWOA
algorithm still has the opportunity to perform contraction
encircles and global search operations in the later stages of
the search due to the random fluctuations of P, which helps
to avoid the algorithm from falling into local optimum.

E. whale-fall strategy for jumping out of local optimum
Falling into local optimum is the drawback of most

meta-heuristic algorithms, and how to help the algorithms
jump out of the local optimum is also an important
direction for the improvement of meta-heuristic algorithms.
In this paper, we introduce the whale-fall strategy to help
the EIWOA algorithm jump out of the local optimum.

During migration and foraging, whales are threatened by
polar bears and humans. Most whales are smart enough to
avoid threats by exchanging information with each other.
However, a few whales are not survived and crashed into
the deep ocean. This phenomenon is known as whale-fall
[33]. This phenomenon is conducive to ensuring the vitality
of the population, and its application to the EIWOA
algorithm can effectively avoid the algorithm from falling
into a local optimum. In order to keep the population size
of the algorithm constant, after generating whale-fall, the
algorithm will use the DOL strategy to generate new
whales based on the location of the whale-fall and the step
size of the whale-fall[34,35].

In the EIWOA algorithm, we stipulate that if the whale
fails to find new prey (a better personal best solution) over
multiple iterations of the search process, it starves to death,
producing a whale fall. In order to mathematically simulate
the whale fall, we define the whale fall factor β, when a
whale fails to find a better personal best solution for a
number of times C>β*Tmax, the whale fall is generated, and
the formula for the generation of new whale is as follows:

])([ 98 fallBBfallnew XXULrrXX  (17)

Where, Xnew represents a new whale generated by dynamic
opposite learning, Xfall represents a whale that dies and
produces a whale-fall, LB and UB are the boundary of the
problem. r8 and r9 are two random numbers between 0 and
1. The program flowchart of EIWOA is shown in Fig.3.

IV. EXPERIMENTS

In this section, experimental comparative study and
statistical analysis are carried out to examine the efficiency,
effectiveness and stability of the proposed EIWOA
algorithm. To make a fair comparison, all experiments are
implemented in MATLAT 2018a and conducted on the PC
with i7-9400 CPU @ 2.90GHz, 16GB RAM under
Microsoft Windows 10 operating system.

A. Benchmark functions

To measure the performance of the proposed EIWOA,
the CEC2017 benchmark functions [36] will be used for
verification. The CEC2017 benchmark functions consist of
30 functions with four types. In this paper, f2 is removed
due to its instability in high dimensions.

The reserved functions are unimodal functions (f1 and f3,),
simple multimodal functions (f4 to f10), hybrid functions (f11

to f20) and composition functions (f21 to f30), respectively.
Different types of functions can comprehensively and
effectively test the optimization ability and stability of the
algorithm.

B. Parameters selection of EIWOA

In EIWOA, the parameters α and β need to be
determined in advance. These two parameters affect the
performance of the algorithm. the value of α affects the
exploration and exploitation intensity of the algorithm,
while β affects the probability of whale-fall. In this subsect-

TABLE I
DIFFERENT PARAMETER COMBINATION OF EIWOA ALGORITHM

NO. Parameter combination α β

1 P1 1.5 0.005
2 P2 1.7 0.005
3 P3 1.9 0.005
4 P4 2.1 0.005
5 P5 1.5 0.01
6 P6 1.7 0.01
7 P7 1.9 0.01
8 P8 2.1 0.01
9 P9 1.5 0.025

10 P10 1.7 0.025
11 P11 1.9 0.025
12 P12 2.1 0.025
13 P13 1.5 0.05
14 P14 1.7 0.05
15 P15 1.9 0.05
16 P16 2.1 0.05
17 P17 1.5 0.075
18 P18 1.7 0.075
19 P19 1.9 0.075
20 P20 2.1 0.075
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Fig.3 Program flowchart of EIWOA.

ion, we design 20 parameter combinations to investigate
the effects of these two parameters on the performance of
EIWOA. The specific parameter combinations are shown in
Table I. In order to determine the appropriate parameters of
the EIWOA algorithm from Table I, we compare the
performance of the algorithm under each parameter
combination on 12 functions in the CEC2022 benchmark
function [37]. The dimensions of these 12 functions are
randomly chosen as 10 and 20, as shown in TableⅡ.

TABLE Ⅱ
DIMENSION OF FUNCTIONS USED FOR PARAMETER SELECTION

Type f(x) Dimension

Unimodal functions f1 20

multimodal functions

f2 10
f3 20
f4 10
f5 10

Hybrid functions
f6 20
f7 20
f8 20

Composition functions

f9 10
f10 10
f11 20
f12 20

When parameterizing the EIWOA, the other parameters
of the algorithm are set as follows: populations size N is 50,
maximum evaluations maxFEs are 1.0×105, maximum
iterations T are 2000, and each algorithm independently
runs 30 times for each test function. The performance of
EIWOA with 20 kinds of parameter combinations is list in
Table Ⅲ. In Table III, "Total rank" is the cumulative result
of "rank", and "rank" is the ascending sorting result of the
average value of the best results obtained by EIWOA for
each test function. The smaller the "Total rank", the better
the comprehensive optimization ability of the EIWOA
algorithm under this parameter combination. It can be seen
from Table Ⅲ that EIWOA has best comprehensive
performance under P9 parameter combination. Although
this parameter combination may not be optimal, it is the
best of the 20 optional parameters. Therefore, we choose
α=1.5, β=0.025 as the initial parameter of EIWOA.

C. Qualitative comparison between WOA and EIWOA

To show the difference of WOA and the proposed
EIWOA, this paper compared them qualitatively from the
aspects of population diversity and convergence curve on a
unimodal function (f3) and a multimodal function (f10) in
CEC2017. Unimodal function can provides a better test of
the convergence speed and accuracy of EIWOA and Multi-

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 392-411

 
______________________________________________________________________________________ 



TABLE Ⅲ

PERFORMANCE OF EIWOA UNDER DIFFERENT PARAMETER COMBINATIONS

Index
f(x)

Parameter combinations

P1 P1 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

Rank

f1 17 18 19 20 8 10 12 15 3 6 11 16 2 5 9 14 1 4 7 13

f2 17 18 19 20 11 12 16 5 3 15 10 4 8 6 13 2 9 7 1 14

f3 17 18 19 20 16 5 15 6 1 7 2 8 9 3 4 10 14 11 12 13

f4 18 17 19 20 13 15 16 14 10 11 7 2 9 5 3 1 12 8 6 4

f5 18 17 19 20 3 8 16 14 7 15 11 1 5 9 10 12 2 13 6 4

f6 5 18 19 20 11 4 9 7 15 10 3 13 8 6 16 14 12 17 2 1

f7 17 18 19 20 15 13 16 14 10 3 2 9 11 4 7 6 12 5 8 1

f8 17 18 19 20 3 1 9 12 7 2 8 6 13 4 10 14 5 16 15 11

f9 17 18 19 20 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

f10 18 17 19 20 15 13 12 3 4 9 7 2 14 6 5 1 8 10 11 16

f11 17 18 19 20 11 13 16 15 2 6 3 1 8 9 10 12 7 14 4 5

f12 17 18 19 20 16 15 11 10 8 2 12 7 9 14 3 6 1 4 13 5

Total Rank — 195 213 228 240 138 110 150 118 74 91 82 76 104 80 100 103 95 122 99 102

(a) f3 (b) f10

Fig.4. 3D figures of f3 and f10

modal function can be a better test of the algorithm's ability
to overcome local optima. The 3D figures of the two
functions are shown in Fig.4. To observe and compare the
results more intuitively, the dimension is set to 2, the
maximum iteration T is set to 200, the population size is set
to 20, and the diversity of population is defined and shown
as Eq. (18).





N

i
i

BB

txtx
LUN

tdiv
1

)(),(
,5.0

1)( (18)

Where t is the current iteration, N is population size, D is
dimension, xi is the ith individual, || ∙ || represents european
distance, UB, LB are the lower and upper bounds of the
search space, respectively.

The results of qualitative comparison between WOA and
EIWOA are graphically shown in Fig. 5 and Fig.6. In Fig.
5(a) and Fig. 5(b), we divided the whole search process into
four stages, i.e., initial stage (t<50), pre-stage (50≤t<100),
mid-stage (100≤t<150) and post-stage (150≤t<200). We
can see that there is no significant difference in population

dispersion between WOA and EIWOA during the whole
search process. However, EIWOA has a higher degree of
population dispersion in the post-stage, which is mainly
due to the whale-fall effect. At the post-stage of the whole
search process, EIWOA has obtained the minimum value
of f3, and the fitness values of all individuals cannot
continue to be updated and tend to stagnate, at which time
EIWOA guides the individuals to search other possible
optimal regions. From Fig. 5(c) and Fig. 5(d), it can be seen
that for unimodal function, EIWOA can concentrate on the
search for the optimal solution, and thus the search is more
efficient. From Fig. 5(e), it can be seen that the diversity of
EIWOA decreases faster in the early and middle stages of
the search, which is conducive to a fast search for the
optimal solution of the unimodal function, while in the later
stages of the search, the algorithm can automatically
regulate the population diversity and guide the individuals
to search for the better solution (The present algorithm
itself is not aware of the type of the search function.). As
can be seen from Fig.5(f), the EIWOA algorithm has a
better convergence accuracy than the WOA algorithm.

For function f10, it can be seen from Fig.6(a) and Fig.6(b)
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(a) Population distribution map of WOA (b) Population distribution map of EIWOA

(c) Search Process of x1 (d) Search Process of x2

(e) Diversity Curves (f) Convergence Curves
Fig.5. Results of qualitative comparison on function f3

that EIWOA has a better population dispersion, which
facilitates the algorithm to perform an effective search for
each local minimum of multimodal function. From Fig.6(c)
and Fig.6(d), it can be seen that the individuals of the
EIWOA have a clear jump out of the local optimum
operation around the iteration number of 80, while the
WOA always converges to a single objective. From Fig.
6(e), it can be seen that the population diversity of
EIWOA fluctuates more in the later stages of the search,
which indicates that the whale-fall strategy is in its role.
From Fig.6(f), it can be seen that EIWOA has the ability to
jump out of the local optimum and converge to the global
optimal solution, while WOA is stuck in the local optimum
and cannot jump out.

From the above comparison results, we can see that
EIWOA shows different characteristics and performance
from WOA during the search process. The EIWOA is more

efficient in searching for unimodal functions with better
search accuracy and demonstrates its ability to overcome
the local optimum for multimodal function. Therefore, the
improvement strategies proposed in this paper are effective.

D. Quantitative comparison with other algorithms
In order to verify the superiority of the proposed EIWOA,

this paper compares EIWOA with WOA, EWOA (An
excellent variant of WOA), BWO, AEO, RSO, FDA, TS
and WSO. The parameters of all the compared algorithms
are based on the recommendations of the corresponding
references, see Table IV. For the comparison experiments,
the population size N of each comparison algorithm is 50,
the maximum number of evaluations maxFEs are 1.0×105,
and each algorithm is run independently for 30 times. The
comparative results of the numerical experiments for the 50
and 100 dimensional test functions of CEC2017 are shown
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in TableⅤ and Table VI, the "Rank" is sorted in ascending
order of the "Mean" value, and the "Total Rank" is the
cumulative result of the "Rank". "Final Rank" is sorted in
ascending order of "Total Rank". As can be seen from
TableⅤ and Table VI, the "Final Rank" of EIWOA is
ranked first in both 50 and 100 dimensional test functions,
and the value of the "total ranking" of the EIWOA
algorithm is significantly smaller than that of the other
comparison algorithms. In order to intuitively compare the
comprehensive performance, stability, and ability to obtain
the optimal solution of each algorithm, Table VIII provides
detailed statistics on the results of TableⅤ and Table VI.

The "Mean" indicator provides a good analysis of the
comprehensive performance of the algorithm. For the
"Mean" indicator, Table Ⅶ shows that EIWOA obtained

22 best and 4 second best results in 50 dimension, 24 best
and 3 second best results in 100 dimension and no worst
results. AEO is the second best algorithm in 50 dimension,
and it only obtained 4 best and 6 second best results. AEO
is also the second best algorithm in 100 dimension and it
only obtained 4 best and 10 second best results. Therefore,
the EIWOA significantly outperforms the AEO algorithm,
and the advantages of the EIWOA algorithm over the WOA
and EWOA algorithms are even more significant.

The "Std" indicator can be used to analyze the stability
of the algorithm. For the "Std" indicator, Table Ⅶ shows
that EIWOA obtained 16 best and 6 second best results in
50 dimension, 19 best and 4 second best results in 100
dimension and no worst results. The stability of EIWOA is
significantly better than other algorithms.

(a) Population distribution map of WOA (b) Population distribution map of EIWOA

(c) Search Process of x1 (d) Search Process of x2

(e) Diversity Curves (f) Convergence Curves

Fig.6. Results of qualitative comparison on function f10
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TABLE Ⅳ
TABLE IV PARAMETERS SETTINGS OF COMPARISON ALGORITHMS

No. Name Parameter settings Publication year Literature
1 AEO a=(1-t/T)*rand; 2020 [13]
2 BWO Wf decreases linearly from 0.1 to 0.05 2022 [12]
3 RSO E=2*(1 - t/T ) 2020 [14]
4 FDA α=N (Popsize), β=8 2021 [15]
5 TS ns = 5 (Number of Stars), SN = 10 (Signal to Noise Ratio) 2022 [16]
6 WSO pmin=0.5, pmax=1.5, a0=6.250, a1=100, a2=0.0005 2022 [17]
7 WOA a decreases linearly from 2 to 0 2016 [11]

8 EWOA wMax = 0.7, wMin = 0.2, γ, μ is a random number in the range of in
[0, 1], and a linearly decreases from 2 to 0.2. 2022 [18]

9 EIWOA α=1.5, β=0.025, a decreases linearly from 2 to 0 — —

The ability of the meta-heuristic algorithm to obtain the
best value is also very important, and more attention will be
paid to the ability of the algorithm to obtain the best value
when solving real engineering optimization problems. For
the "Best" indicator, Table Ⅶ shows that EIWOA
obtained 21 best and 1 second best results in 50 dimension,
24 best and 2 second best results in 100 dimension. The
other algorithms are far worse than EIWOA in obtaining
the best value.

Comparing WOA and EIWOA individually, it can be
seen from Tables V and VI that EIWOA is ranked higher
than WOA in all the test functions, which indicates that the
improvement strategy proposed in this paper is effective.
The advantages of EIWOA over the EWOA algorithm are
also obvious. Literature [18] has confirmed that the EWOA
algorithm outperforms other improved versions of the
WOA such as LWOA (2017), CWOA (2018), MWOA
(2018), BWOA (2019), WOA-Mm (2020) and HS-WOA+
(2020). Thus, the proposed EIWOA is an excellent variant
of the WOA algorithm.

In summary, the improved strategies, i.e., new global
search mechanism, new encircling prey strategy, new lévy
flight-based spiral updating position strategy, new
balancing factor with fluctuation decay properties, and
DOL-based whale-fall strategy, are satisfactory and
competitive for enhancing the performance of WOA.

E. Statistic analysis
It would be more scientifically meaningful to statistically

validate the advantages of the EIWOA algorithm. In this
paper, two non-parametric statistical methods, Friedman's
test [38] and Wilcoxon signed rank test [39], which are
widely used in data analysis, are used to further analyze the
experimental results.

Table VIII shows the Friedman test results of on the
indicators of "Mean", "Std" and "Best". For ease of
observation, the graphical results are shown in Fig. 7. As
can be seen in Table VIII, the p-values of each comparison
is much less than 0.05, so the results can be considered
significant. From Fig.5, we can see that, for the “Mean”,
“Std” and “Best” indicators, the Friedman values of
EIWOA are obviously smaller than those of comparison
algorithms no matter in 50 or 100 dimension. It indicates
that statistically, EIWOA significantly outperforms other
comparison algorithms in terms of stability, obtaining mean
and best values.

In addition, a critical difference graph was used to show
the critical difference of the Friedman Rank that combines
the above three indicators, and the results are shown in
Fig.8. As can be seen from Fig.8, EIWOA has the best
performance and is significantly better from the other
comparison algorithms.

In the Wilcoxon signed rank test, the significance level α
is set to 0.05. The results of the test are shown in Table IX.
In Table IX, R+ is the value of the rank sum of EIWOA
that is superior to the comparison algorithm, and R-
indicates that the rank sum of EIWOA is inferior to the
comparison algorithm. "+" indicates the number of test
functions for which EIWOA outperforms the comparison
algorithm. "-" indicates the opposite result and "="
indicates that there is no statistically significant difference

(a) Friedman results of ‘Mean’ indicator

(b) Friedman results of ‘Std’ indicator

(c) Friedman results of ‘Best’ indicator

Fig.7. Results of Friedman results on 50 and 100 Dimension
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TABLE Ⅴ
RESULTS OF COMPARING ALGORITHMS ON THE CEC2017 BENCHMARK FUNCTION (D=50)

f(x) Index AEO BWO RSO TS WSO FDA WOA EWOA MIWOA
f1 Mean 2.7891E+04 1.1472E+11 8.2434E+10 5.3472E+07 1.4159E+09 1.4826E+09 5.8141E+08 7.8489E+09 7.2321E+03

Std 7.1701E+04 3.4048E+09 1.4069E+10 1.2122E+07 3.7293E+09 5.4018E+08 3.1633E+08 5.2712E+09 2.9946E+03
Best 2.6546E+03 1.0605E+11 6.1171E+10 3.3904E+07 4.0558E+02 7.0457E+08 2.5578E+08 1.5515E+04 1.0482E+02
Rank 2 9 8 3 5 6 4 7 1

f3 Mean 2.0238E+04 3.1744E+05 1.4908E+05 1.0645E+05 8.5574E+04 6.5644E+04 1.5845E+05 1.9332E+05 1.0832E+05
Best 3.7997E+03 9.2944E+04 1.6153E+04 1.1269E+04 5.4424E+04 1.3751E+04 4.4966E+04 3.7482E+04 2.0822E+04
Std 1.2712E+04 2.1036E+05 1.2473E+05 8.8286E+04 1.6945E+04 4.2415E+04 9.2482E+04 1.3025E+05 5.9346E+04

Rank 1 9 6 4 3 2 7 8 5
f4 Mean 5.6032E+02 3.8869E+04 1.9114E+04 5.6486E+02 7.7764E+02 6.8954E+02 1.0813E+03 1.6705E+03 4.5288E+02

Std 5.5015E+01 2.5963E+03 4.8501E+03 3.5305E+01 3.9940E+02 4.3578E+01 1.9017E+02 9.6496E+02 3.5326E+01
Best 4.4567E+02 3.1563E+04 1.3685E+04 4.9695E+02 5.0508E+02 6.1365E+02 8.5367E+02 5.4109E+02 4.2223E+02
Rank 2 9 8 3 5 4 6 7 1

f5 Mean 8.3590E+02 1.2223E+03 1.1213E+03 8.0083E+02 7.0141E+02 8.1354E+02 9.7367E+02 8.8558E+02 5.8187E+02
Std 5.4601E+01 2.3095E+01 3.9829E+01 1.6384E+01 4.2864E+01 5.2986E+01 7.6482E+01 8.5069E+01 1.9202E+01
Best 7.5474E+02 1.1801E+03 1.0594E+03 7.6986E+02 5.9651E+02 7.2770E+02 8.7507E+02 7.6514E+02 5.4081E+02
Rank 5 9 8 3 2 4 7 6 1

f6 Mean 6.5410E+02 7.0644E+02 6.9585E+02 6.2843E+02 6.0887E+02 6.6305E+02 6.8196E+02 6.5767E+02 6.0000E+02
Std 7.0885E+00 5.7335E+00 5.8199E+00 5.6505E+00 4.7394E+00 6.4643E+00 1.0159E+01 1.3704E+01 4.9398E-06
Best 6.3386E+02 6.9451E+02 6.8354E+02 6.1838E+02 6.0188E+02 6.4743E+02 6.6903E+02 6.3242E+02 6.0000E+02
Rank 4 9 8 3 2 6 7 5 1

f7 Mean 1.5355E+03 2.0290E+03 1.8938E+03 1.1839E+03 1.1074E+03 1.1822E+03 1.7754E+03 1.2731E+03 8.4577E+02
Std 1.4849E+02 4.4955E+01 7.7381E+01 6.5920E+01 6.9720E+01 8.9714E+01 9.6328E+01 1.2617E+02 3.0769E+01
Best 1.2762E+03 1.8896E+03 1.7729E+03 1.0409E+03 1.0006E+03 1.0304E+03 1.6475E+03 1.0635E+03 8.0065E+02
Rank 6 9 8 4 2 3 7 5 1

f8 Mean 1.1451E+03 1.5385E+03 1.3991E+03 1.1184E+03 9.8504E+02 1.1158E+03 1.2778E+03 1.1529E+03 8.8117E+02
Std 4.8761E+01 2.4469E+01 3.6626E+01 2.9628E+01 3.1615E+01 4.7218E+01 8.6708E+01 6.6966E+01 2.0108E+01
Best 1.0408E+03 1.4988E+03 1.3096E+03 1.0666E+03 9.2835E+02 1.0277E+03 1.1199E+03 1.0152E+03 8.4417E+02
Rank 5 9 8 4 2 3 7 6 1

f9 Mean 1.1306E+04 4.2753E+04 3.3756E+04 1.5588E+04 4.4347E+03 1.0824E+04 2.7277E+04 1.5257E+04 9.0000E+02
Std 1.7165E+03 2.8769E+03 4.5842E+03 1.6573E+03 1.8544E+03 3.9315E+03 8.1204E+03 5.8482E+03 1.4048E-09
Best 8.1580E+03 3.5751E+04 2.6162E+04 1.2416E+04 2.1420E+03 5.4412E+03 1.8556E+04 6.5212E+03 9.0000E+02
Rank 4 9 8 6 2 3 7 5 1

f10 Mean 8.1767E+03 1.5735E+04 1.4423E+04 7.0016E+03 9.0776E+03 8.9368E+03 1.1085E+04 9.0127E+03 5.8956E+03
Std 9.0689E+02 5.1990E+02 7.3835E+02 5.5640E+02 1.5333E+03 1.2120E+03 1.8869E+03 9.1873E+02 7.6730E+02
Best 6.4899E+03 1.4470E+04 1.2353E+04 5.7397E+03 6.3127E+03 6.8677E+03 8.4643E+03 6.9564E+03 4.5687E+03
Rank 3 9 8 2 6 4 7 5 1

f11 Mean 1.3216E+03 2.5242E+04 1.3814E+04 1.6160E+03 5.9318E+03 1.5929E+03 2.2622E+03 2.5089E+03 1.2469E+03
Std 4.3281E+01 1.5422E+03 2.6395E+03 1.9069E+02 2.3549E+04 1.2967E+02 2.8284E+02 1.1174E+03 7.1623E+01
Best 1.2454E+03 2.1167E+04 1.0524E+04 1.2847E+03 1.3736E+03 1.3696E+03 1.8100E+03 1.4057E+03 1.1606E+03
Rank 2 9 8 4 7 3 5 6 1

f12 Mean 3.2828E+06 7.5228E+10 6.0068E+10 1.2852E+07 5.3564E+09 4.0597E+07 6.1935E+08 2.3172E+09 5.8661E+06
Std 2.2227E+06 1.2593E+10 9.0592E+09 5.1569E+06 5.0139E+09 1.8829E+07 4.0896E+08 2.2557E+09 1.5660E+06
Best 7.8397E+05 4.1659E+10 4.5134E+10 2.8500E+06 2.2811E+06 1.0729E+07 1.3263E+08 1.8021E+07 2.8203E+06
Rank 1 9 8 3 7 4 5 6 2

f13 Mean 1.6717E+04 5.1578E+10 3.3738E+10 2.3867E+04 2.5587E+09 4.9948E+04 1.1624E+07 6.0797E+08 3.2844E+03
Std 1.4338E+04 1.0019E+10 9.9158E+09 5.6970E+03 5.1648E+09 2.6810E+04 2.2066E+07 8.3552E+08 2.4937E+03
Best 3.3980E+03 2.1570E+10 2.1511E+10 1.4135E+04 5.7644E+04 1.6033E+04 7.5009E+05 8.1532E+04 1.5422E+03
Rank 2 9 8 3 7 4 5 6 1

f14 Mean 4.4451E+04 1.2824E+08 1.6780E+07 1.1260E+06 1.1522E+07 6.4863E+04 2.2359E+06 8.6612E+05 4.8689E+05
Std 4.3563E+04 6.6101E+07 1.3291E+07 7.0041E+05 2.0851E+07 6.8839E+04 1.7527E+06 9.8431E+05 2.2200E+05
Best 2.7026E+03 3.2372E+07 4.6570E+06 1.5424E+05 1.1717E+04 3.7012E+03 3.6234E+05 8.4244E+04 2.1312E+05
Rank 1 9 8 5 7 2 6 4 3

f15 Mean 1.4073E+04 8.5494E+09 5.9968E+09 6.5493E+03 2.6723E+08 1.3464E+04 1.0796E+06 3.9823E+07 9.7622E+03
Std 7.4798E+03 1.9975E+09 9.7477E+08 3.6266E+03 7.7381E+08 6.7312E+03 2.1817E+06 1.0632E+08 6.9959E+03
Best 2.3253E+03 4.0896E+09 3.6205E+09 2.3518E+03 1.3381E+04 3.2012E+03 5.8455E+04 1.6190E+04 1.8390E+03
Rank 4 9 8 1 7 3 5 6 2

f16 Mean 3.5614E+03 9.9805E+03 5.4697E+03 3.1342E+03 3.7480E+03 3.5985E+03 5.4334E+03 4.2836E+03 2.6799E+03
Std 4.5212E+02 1.2070E+03 5.2343E+02 3.6326E+02 8.3724E+02 5.2004E+02 4.8142E+02 5.9826E+02 2.9275E+02
Best 2.6018E+03 7.2830E+03 4.4584E+03 2.4163E+03 2.2826E+03 2.8583E+03 4.6812E+03 3.3728E+03 2.1757E+03
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CONTINUED TABLE Ⅴ

f(x) Index AEO BWO RSO TS WSO FDA WOA EWOA MIWOA
Rank 3 9 8 2 5 4 7 6 1

f17 Mean 3.3132E+03 8.9360E+03 6.9277E+03 2.9898E+03 3.1285E+03 3.3709E+03 3.8880E+03 3.8706E+03 2.5514E+03
Std 4.2647E+02 3.1420E+03 1.8335E+03 2.8652E+02 4.6499E+02 3.7523E+02 4.7892E+02 4.7857E+02 3.7641E+02
Best 2.6996E+03 5.7032E+03 5.6026E+03 2.3337E+03 2.3678E+03 2.1648E+03 3.1990E+03 3.0070E+03 1.8604E+03
Rank 4 9 8 2 3 5 7 6 1

f18 Mean 2.3764E+05 2.5883E+08 6.6970E+07 2.4261E+06 5.3484E+06 8.7447E+05 1.8022E+07 2.0661E+06 9.0375E+05
Std 1.9419E+05 1.1138E+08 5.0163E+07 1.3250E+06 1.0490E+07 7.8077E+05 1.0746E+07 3.7973E+06 5.1659E+05
Best 4.5791E+04 8.7076E+07 2.3901E+07 6.4814E+05 5.2153E+04 1.6532E+05 1.5214E+06 1.3804E+05 2.2163E+05
Rank 1 9 8 5 6 2 7 4 3

f19 Mean 2.2187E+04 4.7205E+09 6.8875E+09 9.5053E+03 1.0948E+06 1.5937E+04 3.1449E+06 9.9350E+06 1.2080E+04
Std 1.3154E+04 1.1777E+09 1.9680E+09 3.5259E+03 2.6009E+06 8.8588E+03 2.8951E+06 1.8499E+07 7.2496E+03
Best 2.3592E+03 1.3484E+09 3.6615E+09 2.8912E+03 4.5532E+03 4.3347E+03 3.7509E+04 2.2946E+03 1.9939E+03
Rank 4 8 9 1 5 3 6 7 2

f20 Mean 3.4776E+03 4.3335E+03 3.7332E+03 3.0157E+03 3.1058E+03 3.5128E+03 3.7580E+03 3.4906E+03 2.4896E+03
Std 3.5336E+02 2.0972E+02 3.6487E+02 2.5358E+02 3.8968E+02 3.2296E+02 2.8681E+02 3.9112E+02 2.8203E+02
Best 2.7857E+03 3.8762E+03 2.9956E+03 2.3950E+03 2.4330E+03 2.8826E+03 3.0103E+03 2.6830E+03 2.0709E+03
Rank 4 9 7 2 3 6 8 5 1

f21 Mean 2.6526E+03 3.2594E+03 3.0441E+03 2.6089E+03 2.5648E+03 2.5903E+03 2.9049E+03 2.6860E+03 2.3787E+03
Std 8.6063E+01 5.4525E+01 5.4396E+01 6.3940E+01 5.6112E+01 6.2614E+01 7.7332E+01 6.1615E+01 1.3876E+01
Best 2.5084E+03 3.0888E+03 2.9356E+03 2.3495E+03 2.4392E+03 2.4285E+03 2.7528E+03 2.5837E+03 2.3641E+03
Rank 5 9 8 4 2 3 7 6 1

f22 Mean 1.0190E+04 1.7526E+04 1.6909E+04 8.7639E+03 1.0240E+04 1.0264E+04 1.3153E+04 1.0278E+04 7.4456E+03
Std 9.6435E+02 3.7869E+02 6.1511E+02 2.2624E+03 2.4269E+03 2.3899E+03 9.5926E+02 8.8306E+02 1.0244E+03
Best 8.2555E+03 1.6835E+04 1.4704E+04 2.3454E+03 2.4508E+03 2.4274E+03 1.1096E+04 8.5083E+03 6.3948E+03
Rank 3 9 8 2 4 5 7 6 1

f23 Mean 3.1663E+03 4.2706E+03 3.7865E+03 3.2186E+03 3.5226E+03 3.0763E+03 3.6533E+03 3.2448E+03 2.8054E+03
Std 8.9211E+01 1.0105E+02 8.9077E+01 9.0181E+01 2.1987E+02 9.9752E+01 1.7415E+02 8.4700E+01 2.2990E+01
Best 2.9954E+03 4.0201E+03 3.6368E+03 3.0603E+03 3.1731E+03 2.9026E+03 3.3527E+03 3.1091E+03 2.7780E+03
Rank 3 9 8 4 6 2 7 5 1

f24 Mean 3.2448E+03 4.7462E+03 4.2674E+03 3.5265E+03 3.8181E+03 3.2178E+03 3.7555E+03 3.3859E+03 2.9891E+03
Std 8.7385E+01 2.3096E+02 2.0610E+02 1.2249E+02 1.7174E+02 6.6630E+01 1.5246E+02 1.0653E+02 2.0731E+01
Best 3.0916E+03 4.3863E+03 4.1011E+03 3.3361E+03 3.5859E+03 3.0544E+03 3.4944E+03 3.1517E+03 2.9527E+03
Rank 3 9 8 5 7 2 6 4 1

f25 Mean 3.0904E+03 1.5400E+04 1.4271E+04 3.1074E+03 3.1532E+03 3.1865E+03 3.4322E+03 3.4700E+03 3.0651E+03
Std 2.5736E+01 8.5016E+02 9.3275E+02 2.3196E+01 3.0334E+02 4.6765E+01 1.0259E+02 6.1620E+02 1.9863E+01
Best 3.0291E+03 1.3585E+04 1.2963E+04 3.0557E+03 2.9634E+03 3.0920E+03 3.2353E+03 2.9699E+03 3.0205E+03
Rank 2 9 8 3 4 5 6 7 1

f26 Mean 7.6860E+03 1.7260E+04 1.3541E+04 3.1577E+03 1.0255E+04 6.9907E+03 1.2948E+04 8.6034E+03 4.5274E+03
Std 3.1654E+03 4.4971E+02 7.9784E+02 1.0403E+02 2.8629E+03 8.1998E+02 8.5837E+02 9.5986E+02 2.0790E+02
Best 2.9072E+03 1.6372E+04 1.2238E+04 3.0181E+03 3.2022E+03 5.1627E+03 1.1394E+04 6.5061E+03 4.2182E+03
Rank 4 9 8 1 6 3 7 5 2

f27 Mean 3.5567E+03 6.5898E+03 5.4734E+03 3.5102E+03 4.6446E+03 3.6211E+03 4.4369E+03 3.6644E+03 3.4546E+03
Std 1.1402E+02 4.6375E+02 4.5230E+02 7.8197E+01 5.4864E+02 1.1842E+02 3.9457E+02 1.5839E+02 7.5751E+01
Best 3.3760E+03 5.6520E+03 4.6130E+03 3.3519E+03 3.9719E+03 3.3872E+03 3.7663E+03 3.4216E+03 3.2967E+03
Rank 3 9 8 2 7 4 6 5 1

f28 Mean 3.3516E+03 1.3302E+04 7.9046E+03 3.3727E+03 4.5282E+03 3.5422E+03 4.0491E+03 4.6853E+03 3.2977E+03
Std 3.1478E+01 7.2297E+02 9.1966E+02 2.4130E+01 2.4029E+03 8.2206E+01 2.3444E+02 1.0660E+03 1.5627E+01
Best 3.3003E+03 1.1803E+04 6.5102E+03 3.3241E+03 3.2710E+03 3.4195E+03 3.7297E+03 3.3164E+03 3.2648E+03
Rank 2 9 8 3 6 4 5 7 1

f29 Mean 4.8095E+03 5.6168E+04 3.5909E+04 4.1918E+03 5.9817E+03 5.0465E+03 8.2036E+03 5.1409E+03 3.6167E+03
Std 3.4894E+02 3.1553E+04 4.0832E+04 2.1772E+02 1.4833E+03 3.7802E+02 1.3783E+03 4.9871E+02 1.7896E+02
Best 4.3011E+03 1.5127E+04 1.1188E+04 3.7823E+03 4.4524E+03 4.3915E+03 6.4161E+03 4.1428E+03 3.3033E+03
Rank 3 9 8 2 6 4 7 5 1

f30 Mean 2.6336E+06 6.2721E+09 6.5116E+09 1.4813E+06 3.9352E+07 8.0156E+06 1.5578E+08 8.5640E+07 1.1307E+06
Std 1.8910E+06 1.4266E+09 1.5648E+09 2.8385E+05 4.3441E+07 5.9151E+06 5.9340E+07 1.4294E+08 1.5309E+05
Best 1.0182E+06 3.2456E+09 4.9261E+09 9.9617E+05 2.3441E+06 1.6709E+06 6.6586E+07 5.6615E+06 8.7006E+05
Rank 3 8 9 2 5 4 7 6 1

Total Rank 89 259 231 88 139 107 185 166 41
Final Rank 3 9 8 2 5 4 7 6 1
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TABLE Ⅵ
RESULTS OF COMPARING ALGORITHMS ON THE CEC2017 BENCHMARK FUNCTION (D=100)

f(x) Index AEO BWO RSO TS WSO FDA WOA EWOA MIWOA
f1 Mean 2.4520E+07 2.6890E+11 2.3860E+11 1.7674E+09 2.9132E+09 2.0982E+10 1.3456E+10 3.0975E+10 4.1727E+04

Std 1.8722E+07 8.6327E+09 1.2780E+10 2.1621E+08 3.1210E+09 2.8662E+09 3.4978E+09 1.5733E+10 2.5746E+04
Best 8.4687E+06 2.4581E+11 2.1201E+11 1.3552E+09 5.7005E+05 1.5170E+10 8.0989E+09 1.4448E+10 9.5647E+03
Rank 2 9 8 3 4 6 5 7 1

f3 Mean 2.0097E+05 5.0718E+05 3.2588E+05 3.0820E+05 4.2985E+05 2.6875E+05 8.3786E+05 7.5815E+05 2.5958E+05
Std 3.2414E+04 2.2711E+05 1.2239E+04 1.0366E+04 1.4645E+05 3.3914E+04 1.0162E+05 7.0237E+04 4.9743E+04
Best 1.3694E+05 3.5651E+05 2.9393E+05 2.8521E+05 2.1435E+05 2.0775E+05 6.2892E+05 5.9718E+05 1.7812E+05
Rank 1 7 5 4 6 3 9 8 2

f4 Mean 9.1531E+02 1.0836E+05 6.8847E+04 1.0886E+03 1.5333E+03 2.2179E+03 3.9306E+03 4.0139E+03 6.7882E+02
Std 1.0808E+02 1.0663E+04 9.3134E+03 5.9737E+01 1.8631E+03 3.8628E+02 7.0001E+02 2.1181E+03 2.3967E+01
Best 7.7880E+02 8.1699E+04 5.4155E+04 9.1077E+02 7.3965E+02 1.5696E+03 2.6410E+03 1.1255E+03 6.2057E+02
Rank 2 9 8 3 4 5 6 7 1

f5 Mean 1.3211E+03 2.1487E+03 1.9138E+03 1.4383E+03 1.1064E+03 1.3631E+03 1.6609E+03 1.3925E+03 7.7082E+02
Std 5.9135E+01 3.5260E+01 7.6341E+01 5.1834E+01 6.5405E+01 9.3062E+01 1.2951E+02 1.3870E+02 4.3166E+01
Best 1.2099E+03 2.0554E+03 1.7800E+03 1.3302E+03 9.7563E+02 1.1571E+03 1.4172E+03 1.1655E+03 6.8512E+02
Rank 3 9 8 6 2 4 7 5 1

f6 Mean 6.6117E+02 7.1574E+02 7.0349E+02 6.5706E+02 6.2828E+02 6.7242E+02 6.9398E+02 6.6952E+02 6.0019E+02
Std 4.8075E+00 2.4317E+00 3.7152E+00 4.4773E+00 3.3171E+00 5.4478E+00 1.0740E+01 8.0704E+00 6.1347E-02
Best 6.5017E+02 7.1060E+02 6.9820E+02 6.4636E+02 6.2262E+02 6.6265E+02 6.8116E+02 6.4928E+02 6.0012E+02
Rank 4 9 8 3 2 6 7 5 1

f7 Mean 3.0876E+03 3.9330E+03 3.7618E+03 2.5642E+03 2.1571E+03 2.5863E+03 3.4633E+03 2.5862E+03 1.0695E+03
Std 2.1593E+02 6.3768E+01 9.0274E+01 1.1685E+02 2.1898E+02 2.0712E+02 1.0444E+02 3.6718E+02 5.1278E+01
Best 2.4907E+03 3.7600E+03 3.6011E+03 2.3039E+03 1.6830E+03 2.0813E+03 3.2420E+03 1.9360E+03 9.7787E+02
Rank 6 9 8 3 2 5 7 4 1

f8 Mean 1.7428E+03 2.6365E+03 2.3365E+03 1.8195E+03 1.4451E+03 1.7396E+03 2.1124E+03 1.7941E+03 1.0572E+03
Std 8.5406E+01 3.9135E+01 6.9907E+01 6.7322E+01 9.1795E+01 9.8295E+01 1.1441E+02 1.6361E+02 3.6178E+01
Best 1.4846E+03 2.5190E+03 2.1989E+03 1.6632E+03 1.2578E+03 1.5735E+03 1.9045E+03 1.4981E+03 1.0015E+03
Rank 4 9 8 6 2 3 7 5 1

f9 Mean 2.4906E+04 8.4417E+04 7.6278E+04 4.7997E+04 1.8048E+04 4.0861E+04 5.7648E+04 3.5606E+04 9.2630E+02
Std 2.3238E+03 3.8031E+03 9.0371E+03 2.7380E+03 2.3839E+03 7.5876E+03 1.1830E+04 7.4636E+03 2.7196E+01
Best 2.0292E+04 7.4275E+04 6.3820E+04 3.9799E+04 1.3704E+04 2.5971E+04 4.0270E+04 2.0128E+04 9.0086E+02
Rank 3 9 8 6 2 5 7 4 1

f10 Mean 1.7317E+04 3.3133E+04 3.2093E+04 1.8465E+04 1.7034E+04 2.2078E+04 2.5053E+04 1.7416E+04 1.3440E+04
Std 1.6442E+03 6.6671E+02 9.7053E+02 1.1061E+03 2.4097E+03 2.3055E+03 1.7709E+03 1.4214E+03 1.1375E+03
Best 1.4410E+04 3.1787E+04 2.8513E+04 1.5676E+04 1.2445E+04 1.8675E+04 2.1377E+04 1.4553E+04 1.1330E+04
Rank 3 9 8 5 2 6 7 4 1

f11 Mean 4.2498E+03 4.6662E+05 1.6472E+05 2.7653E+04 5.1806E+04 3.0542E+04 9.8361E+04 3.8798E+04 6.3449E+03
Std 6.5777E+02 1.0556E+05 1.1171E+05 5.6772E+03 9.0602E+04 5.3162E+03 4.5660E+04 1.6814E+04 1.6694E+03
Best 3.0707E+03 2.0118E+05 1.0769E+05 1.7756E+04 4.6074E+03 2.0376E+04 3.6656E+04 1.2210E+04 3.4500E+03
Rank 1 9 8 3 6 4 7 5 2

f12 Mean 5.3831E+07 2.1130E+11 1.4450E+11 3.1543E+08 2.2691E+09 2.0248E+09 2.8230E+09 1.1720E+10 3.4760E+07
Std 2.9388E+07 1.3090E+10 1.9076E+10 5.7380E+07 2.7841E+09 7.1879E+08 6.6039E+08 1.0836E+10 1.1157E+07
Best 2.0210E+07 1.7711E+11 1.1741E+11 2.2134E+08 2.4190E+07 8.3492E+08 1.4693E+09 1.5189E+09 1.2682E+07
Rank 2 9 8 3 5 4 6 7 1

f13 Mean 1.9086E+04 4.8459E+10 4.3999E+10 8.6904E+05 8.0367E+08 1.0357E+07 2.3382E+07 1.5810E+09 5.0409E+03
Std 6.9642E+03 2.6030E+09 2.5885E+09 2.1829E+05 1.4993E+09 7.7714E+06 1.6477E+07 1.8188E+09 3.7571E+03
Best 7.2742E+03 4.0869E+10 3.9980E+10 4.7543E+05 1.4341E+04 2.6567E+06 8.6822E+06 1.0330E+05 1.8938E+03
Rank 2 9 8 3 6 4 5 7 1

f14 Mean 4.7260E+05 1.0954E+08 2.7752E+07 3.4999E+06 3.6902E+06 1.9863E+06 8.7379E+06 1.2216E+07 2.6597E+06
Std 2.0570E+05 4.0388E+07 1.1603E+07 1.0791E+06 8.6200E+06 1.0839E+06 4.8958E+06 1.3034E+07 1.4341E+06
Best 1.7277E+05 6.4206E+07 1.0396E+07 1.5105E+06 6.5075E+04 8.0769E+05 1.1924E+06 5.9703E+05 5.1976E+05
Rank 1 9 8 4 5 2 6 7 3

f15 Mean 9.9142E+03 2.6348E+10 1.7020E+10 5.2537E+04 9.2360E+07 1.1499E+05 1.2935E+07 9.9299E+08 2.9253E+03
Std 7.7934E+03 2.1674E+09 1.5051E+09 1.4029E+04 3.5411E+08 6.7008E+04 4.8731E+07 9.2873E+08 1.0065E+03
Best 3.6263E+03 2.0521E+10 1.3686E+10 2.6465E+04 5.5381E+03 4.4693E+04 4.1161E+05 3.4376E+04 1.9733E+03
Rank 2 9 8 3 6 4 5 7 1

f16 Mean 6.4294E+03 2.5042E+04 1.9337E+04 5.9433E+03 6.2998E+03 7.0153E+03 1.3179E+04 7.5377E+03 5.2058E+03
Std 7.8901E+02 1.6639E+03 1.2203E+03 4.6061E+02 8.7740E+02 8.7254E+02 2.0597E+03 8.1950E+02 6.7089E+02
Best 5.0803E+03 2.1752E+04 1.7616E+04 4.7187E+03 4.8416E+03 5.0465E+03 9.3837E+03 5.4828E+03 3.9250E+03
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CONTINUED TABLE Ⅵ
f(x) Index AEO BWO RSO TS WSO FDA WOA EWOA MIWOA

Rank 4 9 8 2 3 5 7 6 1
f17 Mean 5.6527E+03 9.3358E+06 1.9298E+05 5.2117E+03 7.7327E+03 5.7323E+03 8.4066E+03 9.1726E+03 4.3573E+03

Std 6.0268E+02 5.7857E+06 5.1754E+05 4.9899E+02 2.5382E+03 7.4091E+02 1.4117E+03 4.4433E+03 4.9829E+02
Best 4.6575E+03 2.3374E+06 3.0863E+04 3.9551E+03 4.3444E+03 4.3914E+03 5.6335E+03 5.6495E+03 3.3616E+03
Rank 3 9 8 2 5 4 6 7 1

f18 Mean 8.0782E+05 3.2194E+08 2.9785E+07 3.4712E+06 1.7424E+07 2.3606E+06 6.3716E+06 1.1789E+07 4.9625E+06
Std 3.1116E+05 9.9658E+07 1.7507E+07 9.7625E+05 2.4374E+07 9.5758E+05 2.9317E+06 1.0456E+07 1.5171E+06
Best 3.4563E+05 1.3406E+08 1.1677E+07 1.0477E+06 3.3486E+05 6.3021E+05 1.6351E+06 1.7370E+06 2.1716E+06
Rank 1 9 8 3 7 2 5 6 4

f19 Mean 1.0979E+04 2.5048E+10 2.0824E+10 6.5188E+04 3.1479E+08 6.0987E+05 1.8470E+07 8.1752E+08 5.5652E+03
Std 9.5641E+03 3.7835E+09 2.3046E+09 2.3461E+04 5.4841E+08 4.3445E+05 1.8345E+07 1.1310E+09 3.1216E+03
Best 2.4270E+03 1.5697E+10 1.4067E+10 2.9916E+04 2.8137E+03 1.6168E+05 2.2873E+06 5.7578E+05 2.1508E+03
Rank 2 9 8 3 6 4 5 7 1

f20 Mean 5.7501E+03 8.2429E+03 7.4608E+03 5.1557E+03 4.9814E+03 6.0435E+03 6.4955E+03 6.1359E+03 4.3100E+03
Std 5.4593E+02 2.9725E+02 3.6988E+02 3.8792E+02 7.2851E+02 5.1341E+02 6.0990E+02 5.8301E+02 4.6324E+02
Best 4.6968E+03 7.6232E+03 6.4453E+03 4.3704E+03 3.9440E+03 5.1531E+03 5.2363E+03 5.2442E+03 3.3947E+03
Rank 4 9 8 3 2 5 7 6 1

f21 Mean 3.3188E+03 4.9086E+03 4.5255E+03 3.4829E+03 3.2589E+03 3.1817E+03 4.1588E+03 3.4062E+03 2.6004E+03
Std 1.3857E+02 1.1183E+02 1.8825E+02 9.4380E+01 1.3868E+02 9.2950E+01 1.6457E+02 1.9396E+02 4.9471E+01
Best 3.0395E+03 4.6229E+03 4.2891E+03 3.2413E+03 3.0769E+03 3.0416E+03 3.8230E+03 3.1208E+03 2.5319E+03
Rank 4 9 8 6 3 2 7 5 1

f22 Mean 2.0324E+04 3.5699E+04 3.4258E+04 2.2255E+04 2.0360E+04 2.4589E+04 2.8257E+04 2.0481E+04 1.5205E+04
Std 1.9856E+03 5.7619E+02 1.2185E+03 1.1044E+03 4.1157E+03 2.0650E+03 1.8736E+03 1.3071E+03 1.2137E+03
Best 1.7225E+04 3.4501E+04 3.1339E+04 1.9865E+04 1.5925E+04 2.0107E+04 2.3537E+04 1.7654E+04 1.3519E+04
Rank 2 9 8 5 3 6 7 4 1

f23 Mean 3.7180E+03 6.3163E+03 5.8617E+03 3.9219E+03 5.1419E+03 3.8726E+03 4.9216E+03 4.0156E+03 3.0363E+03
Std 1.4733E+02 1.7008E+02 3.4396E+02 1.1253E+02 4.2123E+02 1.5394E+02 2.5302E+02 1.6329E+02 2.4147E+01
Best 3.4698E+03 6.0355E+03 5.6307E+03 3.6763E+03 4.2623E+03 3.6269E+03 4.3516E+03 3.7698E+03 2.9856E+03
Rank 2 9 8 4 7 3 6 5 1

f24 Mean 4.5549E+03 1.0494E+04 8.2028E+03 4.5626E+03 7.2781E+03 4.5231E+03 6.1715E+03 4.7507E+03 3.5295E+03
Std 2.3577E+02 1.5557E+03 3.1607E+02 1.2806E+02 6.5632E+02 1.7466E+02 4.0606E+02 2.0543E+02 3.9274E+01
Best 4.1675E+03 8.8338E+03 7.6523E+03 4.2778E+03 5.7689E+03 4.2237E+03 5.2915E+03 4.3223E+03 3.4509E+03
Rank 3 9 8 4 7 2 6 5 1

f25 Mean 3.5817E+03 2.9120E+04 2.1524E+04 3.8038E+03 3.5212E+03 4.7214E+03 5.1496E+03 5.6345E+03 3.3523E+03
Std 5.4973E+01 1.3404E+03 2.9050E+03 5.4907E+01 1.6240E+02 2.9429E+02 3.1539E+02 1.9858E+03 3.0580E+01
Best 3.4733E+03 2.5735E+04 1.8115E+04 3.7236E+03 3.3303E+03 4.2287E+03 4.4640E+03 3.6813E+03 3.2760E+03
Rank 3 9 8 4 2 5 6 7 1

f26 Mean 2.1448E+04 5.2108E+04 3.5644E+04 7.1219E+03 3.2480E+04 1.9068E+04 3.4015E+04 2.0579E+04 9.0252E+03
Std 4.1741E+03 1.4786E+03 3.2095E+03 4.9104E+03 6.5706E+03 1.7338E+03 3.0900E+03 2.5753E+03 7.3345E+02
Best 4.8336E+03 4.8851E+04 2.9274E+04 4.6385E+03 2.1282E+04 1.5659E+04 2.5375E+04 1.5998E+04 7.7471E+03
Rank 5 9 8 1 6 3 7 4 2

f27 Mean 3.8202E+03 1.3490E+04 8.5641E+03 3.7447E+03 6.6806E+03 4.1786E+03 5.7029E+03 3.9219E+03 3.5013E+03
Std 1.6554E+02 1.0414E+03 1.0627E+03 9.8414E+01 1.5368E+03 1.9780E+02 6.9320E+02 2.1870E+02 4.3765E+01
Best 3.5556E+03 1.1134E+04 7.0144E+03 3.5649E+03 4.4473E+03 3.8590E+03 4.6578E+03 3.5883E+03 3.3994E+03
Rank 3 9 8 2 7 5 6 4 1

f28 Mean 3.7013E+03 2.8423E+04 2.2112E+04 3.8531E+03 7.4582E+03 6.1577E+03 6.4462E+03 1.0054E+04 3.4071E+03
Std 6.3577E+01 9.6943E+02 2.5994E+03 7.4565E+01 6.3739E+03 5.8454E+02 6.6736E+02 3.6116E+03 2.5316E+01
Best 3.5634E+03 2.6510E+04 1.6851E+04 3.7063E+03 3.5149E+03 4.8977E+03 5.3787E+03 4.1067E+03 3.3711E+03
Rank 2 9 8 3 6 4 5 7 1

f29 Mean 7.6833E+03 6.8253E+05 1.8448E+05 7.4546E+03 7.7392E+03 9.0883E+03 1.6013E+04 1.0278E+04 5.7308E+03
Std 6.0057E+02 3.6078E+05 2.0407E+05 4.9459E+02 1.1658E+03 8.4336E+02 2.0237E+03 2.1872E+03 5.2132E+02
Best 6.4994E+03 6.5335E+04 5.9046E+04 6.6848E+03 6.3697E+03 7.6484E+03 1.1966E+04 7.1472E+03 4.3585E+03
Rank 3 9 8 2 4 5 7 6 1

f30 Mean 1.9978E+06 4.5700E+10 3.1900E+10 2.8878E+06 1.3010E+09 2.1313E+07 6.7383E+08 1.1691E+09 4.7526E+04
Std 2.3640E+06 3.6416E+09 4.0757E+09 9.0766E+05 2.0821E+09 1.0245E+07 3.4610E+08 8.8148E+08 1.8997E+04
Best 9.6462E+04 3.1647E+10 2.3099E+10 1.4119E+06 3.1959E+06 7.6080E+06 1.8980E+08 6.6662E+06 1.2224E+04
Rank 2 9 8 3 7 4 5 6 1

Total Rank 79 259 229 102 129 120 183 167 37
Final Rank 2 9 8 3 5 4 7 6 1
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TABLE Ⅶ
PERFORMANCE OF COMPARISON ALGORITHMS ON CEC2017

Name

Comparative results under different indicators
D=50 D=100

Mean Std Best Mean Std Best
Best/Second/Worst Best/Second/Worst Best/Second/Worst Best/Second/Worst Best/Second/Worst Best/Second/Worst

AEO 4/6/0 4/2/3 5/4/0 4/10/0 3/7/0 2/12/0
BWO 0/0/27 3/2/9 0/0/26 0/0/28 4/4/10 0/0/28
RSO 0/0/2 0/2/6 0/0/3 0/0/0 0/3/4 0/0/0
TS 3/8/0 6/11/0 2/6/0 1/4/0 3/9/0 1/2/0

WSO 0/6/0 0/1/5 1/11/0 0/8/0 0/0/7 2/13/0
FDA 0/5/0 0/4/0 0/5/0 0/4/0 0/2/0 0/0/0

WOA 0/0/0 0/0/3 0/0/0 0/0/1 0/0/3 0/0/1
EWOA 0/0/0 0/1/3 0/2/0 0/0/0 0/0/5 0/0/0
EIWOA 22/4/0 16/6/0 21/1/0 24/3/0 19/4/0 24/2/0

TABLE Ⅷ
MEAN RANKS OF DIFFERENT ALGORITHMS ON DIFFERENT INDICATORS OBTAINED BY FRIEDMAN TEST ON CEC2017

Name
Mean ranks

D=50 D=100
Mean Std Best Mean Std Best

AEO 3.1333 4.1333 3.3333 2.8000 3.5667 2.9667
BWO 8.8000 6.1667 8.7667 8.8000 6.0333 8.8000
RSO 7.8667 6.4333 7.9000 7.8000 6.5333 7.8333
TS 3.1000 2.8000 3.6667 3.5667 2.9333 4.2667

WSO 4.8000 6.5333 3.5667 4.4667 6.6333 3.0333
FDA 3.7333 4.4333 4.1667 4.1667 4.6333 4.9000
WOA 6.3333 6.1667 6.8667 6.2667 6.1667 6.7000

EWOA 5.7000 6.3333 4.8333 5.7333 6.6333 4.9667
EIWOA 1.5333 2.0000 1.9000 1.4000 1.8667 1.5333
p-value 1.3028e-36 8.4193e-18 2.6655e-34 3.0632e-36 5.5232e-20 7.9822e-37

Fig.8 Critical difference in Friedman’s ranking

TABLE Ⅸ
RESULTS OF WILCOXON SIGNED RANK TEST (MEAN)

EIWOA
vs

Dimension
50 100

p-Value R+ R- +/=/- p-Value R+ R- +/=/-
AEO 1.03E-03 340.10 124.90 24/0/5 4.60E-04 375.97 89.03 29/0/0
BWO 1.73E-06 465.00 0.00 29/0/0 1.73E-06 465.0 0.0 29/0/0
RSO 1.86E-06 461.93 3.07 29/0/0 2.24E-06 459.31 5.69 29/0/0
TS 2.85E-02 356.24 108.76 24/3/2 4.88E-04 409.90 55.10 26/0/3

WSO 3.45E-02 387.55 77.45 25/2/2 1.02E-02 409.90 55.10 27/2/0
FDA 2.41E-02 387.76 77.24 24/2/3 1.77E-02 421.00 44.00 26/2/1
WOA 2.29E-06 460.03 4.97 29/0/0 9.34E-04 454.17 10.83 28/0/1

EWOA 2.45E-02 434.66 30.34 27/2/0 1.21E-04 449.34 15.66 28/0/1
Mean Value 1.41E-02 411.66 53.34 26.38/0.73/1.5 3.74E-03 430.57 34.43 27.75/0.5/0.75

between the two algorithms. In Table Ⅸ, all p-Value values
are less than 0.05, this shows that the statistical results are
significant. The results of Wilcoxon signed rank test show
that EIWOA achieves a large score victory for both 50-and
100-dimensional test functions. For the second best AEO

algorithm, the advantages of EIWOA are also obvious.
Therefore, in a statistical sense, the performance of
EIWOA is significant better to comparison algorithms.

F. Convergence comparisons on the selected functions
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Convergence curves are an intuitive way to observe the
convergence speed and accuracy of the algorithms. We
plotted the convergence curves of the comparison
algorithms for six functions selected from the test
functions( D=100), as shown in Fig.9. From Fig.9, it can be
seen that for the majority of functions, EIWOA has obvious
advantages in convergence speed and convergence
accuracy. Its search efficiency is significantly improved
over both WOA and EWOA algorithms. This indicates that
the improvement of EIWOA algorithm is successful.

V. APPLICATION OF EIWOA IN ENGINEERING PROBLEM

The use of the EIWOA algorithm to solve real-world
engineering optimization problems was the original intent
of the algorithm's design [40, 41]. In this section, two

engineering problems, i.e., speed reducer design problem,
wireless sensor network (WSN) coverage optimization
problem, and two feature selection problems in data mining
are selected to validate the ability of the EIWOA algorithm
to solve engineering problems.

A. Speed reducer design problem
The design of reducers is an optimization problem in the

field of mechanical engineering, which involves a set of
constraints such as gear bending stress, tooth surface stress,
axial deflection of shafts and axial stress as shown in Fig.10.
The goal of this problem is to minimize the weight of the
reducer[42]. The mathematical model of this problem is
presented in the literature [43].

(a) f6 (b) f10

(c) f19 (d) f20

(e) f22 (f) f28

（g）Curve Legend

Fig.9. Convergence curve of comparison algorithms under different functions (D=100)
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Fig. 10. Speed reducer design problem

TABLE Ⅺ
THE DATASETS FOR FEATURE SELECTION PROBLEM

NO. Datasets Instances Features Classes
1 Musk1 476 166 2
2 Libras 309 90 3

B. WSN coverage optimization problem
WSN is a network of many wireless sensors that can

accomplish data collection and transmission tasks through
information interaction between nodes. How to arrange the
location of sensor nodes so as to arrive at the maximum
spatial coverage is an important issue in WSN research. A
WSN network has as few as dozens of nodes or as many as
hundreds of nodes, and determining the optimal location of
each sensor node to reach the maximum network coverage
is a challenging optimization problem.

A mathematical model of 2D wireless sensor network
coverage is given in literature [44] and a schematic of the
2D WSN coverage optimization process is given in Fig. 11.
In this paper, the parameters of the 2D WSN are set as
follows: regional edge length L = 50, number of nodes
V=40, perception radius Rs = 5, communication radius Rc =
10, perception error Pe = 0.01 and discrete granularity
dg=1.

C. Feature selection problems
Dealing with optimization problems with discrete

variables is also an important application of meta- heuristic
algorithms. Feature selection problem is typical discrete
variable optimization problem in data mining. Two feature
selection problems in UCI data set are used to verify the

performance of EWOA. The information of the two data
datasets used for feature selection is described in Table Ⅺ.

The two problems are classification problems. This paper
uses k-nearest neighbor (k-NN) method (K=5) to build the
classification models [45]. The U-shaped transfer function
[18] is used to map the continuous search space to binary
space. The U-shaped transfer is shown in Eq. (19).

5.10.1)( xxu  (19)

The binary conversion result is calculated by Eq. (20).









)1,0()(,0
)1,0()(,1

randxu
randxu

b (20)

Where 1 means that the feature is selected whereas 0 means
that the feature is not selected.

The fitness value is defined as Eq.(21).

tot

sel

cv N
n

ACC
fitness  05.0195.0

5

(21)

Where nsel is the number of selected features, Ntot is the total
number of features. ACCcv5 is the accuracy of 5 fold
cross-validation of the classification model.

The results of comparison algorithms (The population
size is 50, and the maximum number of evaluations are
1×105) over 30 runs on these four real world problems are
shown in Table Ⅻ.

As can be seen from Table Ⅻ, for all the real world
engineering problems, the EIWOA algorithm achieves the
best performance. For the other algorithms, only AEO,
TS22 and WSO are able to achieve satisfactory results on
the speed reducer design problem. The comparison
algorithm performs inferior to the EIWOA algorithm in
handling all other problems. The average convergence
curves of each algorithm on the four problems are shown in
Fig.12. As can be seen from Fig.12, the advantages of the
EIWOA algorithm are obvious both in terms of
convergence speed and convergence accuracy.

(a) Sensors initial layout (b) Sensors best layout

Fig. 11 Coverage optimization of 2D wireless sensor network

Engineering Letters

Volume 32, Issue 2, February 2024, Pages 392-411

 
______________________________________________________________________________________ 



(a) Speed reducer design problem (b) 2D-WSN coverage problem

(c) Musk1 (d) Libras

（e）Curve Legend

Fig.12. Convergence curve of comparison algorithms on engineering problems

TABLE Ⅻ
RESULTS OF THE FOUR ENGINEERING PROBLEMS ACHIEVED BY ALL COMPARISON ALGORITHMS

Problem Index AEO BWO RSO TS22 WSO FDA WOA EWOA EIWOA

Speed Reducer
Design

Mean 2.9963E+03 3.1193E+03 7.7025E+05 2.9963E+03 2.9963E+03 2.9995E+03 3.3020E+03 3.0048E+03 2.9963E+03
Std 4.9318E-04 3.9338E+01 4.2979E+05 4.6910E-07 2.0942E-12 3.7515E+00 5.7657E+02 1.6173E+01 1.3876E-12
Best 2.9963E+03 3.0133E+03 4.2631E+03 2.9963E+03 2.9963E+03 2.9964E+03 3.0015E+03 2.9963E+03 2.9963E+03
Rank 1 4 6 1 1 2 5 3 1

2D-WSN

Mean 0.9327 0.7471 0.7398 0.9366 0.9693 0.8971 0.8744 0.9355 0.9826
Std 1.19E-02 1.20E-02 1.36E-02 4.73E-03 5.85E-03 1.40E-02 1.53E-02 1.51E-02 4.28E-03
Best 0.9516 0.7762 0.7651 0.9469 0.9781 0.9143 0.9027 0.9550 0.9885
Rank 5 8 9 3 2 6 7 4 1

Musk1

Mean 1.0285E+00 1.0997E+00 1.1363E+00 1.0304E+00 1.0959E+00 1.0915E+00 1.0696E+00 1.0483E+00 1.0226E+00
Std 1.3589E-02 1.0351E-02 1.5149E-02 7.7225E-03 1.7924E-02 1.9916E-02 1.9643E-02 1.0889E-02 1.0440E-02
Best 1.0088E+00 1.0821E+00 1.0844E+00 1.0181E+00 1.0666E+00 1.0347E+00 1.0301E+00 1.0251E+00 1.0010E+00
Rank 2 8 9 3 7 6 5 4 1

Libras

Mean 1.1461E+00 1.2132E+00 1.2471E+00 1.1519E+00 1.2168E+00 1.2102E+00 1.1890E+00 1.1604E+00 1.1439E+00
Std 1.2000E-02 1.3273E-02 1.7243E-02 9.4344E-03 1.3761E-02 1.5406E-02 1.6112E-02 1.1895E-02 9.1934E-03
Best 1.1319E+00 1.1888E+00 1.2087E+00 1.1330E+00 1.1804E+00 1.1810E+00 1.1543E+00 1.143434847 1.125673181
Rank 2 7 9 3 8 6 5 4 1

Total Rank 10 27 33 10 18 20 22 15 4
Final Rank 2 8 9 2 5 6 7 4 1
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(a) ACCcv5 obtained by each algorithm on Musk1 (b) ACCcv5 obtained by algorithm on Libras

(c) Number of features selected by each algorithm on Musk1 (d) Number of features selected by each algorithm on Libras

Fig.13. Cross validation accuracy(ACCcv5) and number of selected features of each algorithm on feature selection problems

In order to observe cross validation accuracy (ACCcv5)
and number of features selected by each algorithm on
feature selection problems, we draw boxplots, as shown in
Fig.13. From Fig. 13(a) and (b), it can be seen that among
the comparison algorithms, the AEO and EIWOA obtain
better 5-fold cross-validation accuracy of the k-NN model
on the two feature selection problems than other algorithms.
From Fig. 13(c) and (d), it can be seen that the number of
features selected by EIWOA is generally smaller than that
of the AEO, which is favorable to the simplification of the
model structure. Thus in summary, the EIWOA algorithm
can handle the feature selection problem well.

In conclusion, the improved strategies, i.e., the new
global search mechanism and encircling prey strategy, the
lévy flight-based spiral updating position strategy, the
balancing factor with fluctuation decay properties, and a
dynamic opposite learning-based whale-fall strategy, are
satisfactory and competitive in improving the performance
of EIWOA. Experimental results on engineering problem
problems show that the comprehensive performance of
EIWOA is significantly better than other similar algorithms,
and shows good performance in solving optimization
problems with continuous or discrete variables.

VI. CONCLUSIONS AND PROSPECTS

In this paper, an improved WOA algorithm, i.e., EIWOA,
is proposed to solve the problems of low accuracy, slow
convergence and tendency to local optimization of WOA.
The results of the qualitative analysis of EIWOA and WOA
showed that the new global search mechanism, new
encircling prey strategy based on differential evolution and
sine-cosine search strategy improved the global search
efficiency of WOA, the new Lévy flight-based spiral
update position strategy enhanced the ability of whales to
search unknown regions, the new balancing factor could
better balance the exploration and exploitation, and the
DOL-based whale-fall strategy gave the algorithm the
ability to jump out of the local optimum. The proposed
EIWOA was fully compared with WOA, EWOA and
recently developed meta-heuristic algorithms, i.e., AEO,
BWO, RSO, TS, WSO and FDA. The numerical results and
convergence curves on CEC2017 benchmark functions
show that the comprehensive performance of EIWOA is

significantly better than those of comparison algorithms.
Friedman and Wilcoxon signed rank test provided further
statistical evidence. Comparison results on real world
problems showed that EIWOA has obvious advantages in
dealing with the optimization problems with continuous or
discrete variables. For continuous optimization problems,
EIWOA had fast convergence and good accuracy. For
discrete optimization problems, EIWOA was able to build
classification models with good performance using fewer
features. Therefore, the proposed EIWOA has good
application prospects.

In the future, we will strengthen the theoretical analysis
of the EIWOA algorithm, such as convergence proof. The
improvement strategies proposed in this paper will provide
inspiration for other meta-inspired algorithms, and we will
develop more efficient variants of WOA.
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