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Abstract—In January 2020, COVID-19 broke out in Wuhan,
China. In just a few months, the virus spread around the
world. In the past three years, the virus has undergone
continuous mutations, with the latest variant being the Omicron
variant. Whenever a new variant emerges, there are significant
changes in the transmission rate, mortality rate, and other
essential disease characteristics. These characteristics of the
virus have posed considerable challenges to countries and
health departments. Time series models used in this study
incorporate text sentiment. To achieve this, we utilized snscrape
to retrieve tweets and applied different keywords to filter
the tweets. Subsequently, we used clean text as input for a
pre-trained model to conduct the sentiment analysis. Finally,
the sentiment analysis results and other epidemic features
were combined as inputs for time series models to generate
predictions. We can observe changes in the virulence of different
variants through the models’ outcomes. Research has shown
that incorporating sentiment analysis results can effectively
improve the model’s predictive performance. When a model
is trained using historical data, it cannot accurately predict
viruses that will emerge in the future. The same holds in
reverse. The result indicates that the nature of the virus has
changed during different stages, suggesting the emergence of
new variants. The study will help local health departments
improve control measures, enabling adjustments to be made
specifically for different variants.

Index Terms—COVID-19, mutant strains, deep learning,
sentiment analysis, time series prediction.

I. INTRODUCTION

THE COVID-19 pandemic, also known as the coron-
avirus pandemic, is a new respiratory disease [36]. In

December 2019, an ophthalmologist from Wuhan discovered
the first case of COVID-19 in China. On 30 January 2020
following the recommendations of the Emergency Commit-
tee, the WHO Director General declared that the outbreak
constitutes a Public Health Emergency of International Con-
cern. In March 2020, experts classified it as a pandemic
and determined that the virus could spread among humans
through respiratory droplets. COVID-19 has significantly
impacted our lives [51], [52], [53], [54]. We need to for-
mulate corresponding policies according to the changes in
the characteristics of the virus so that our lives can return to
normal as soon as possible.
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Fig. 1. The cumulative number of confirmed cases in America

Taking the United States as an example, by the end
of 2022, it had experienced about five waves of signif-
icant outbreaks. Due to limited interventions by the US
government and local health departments, the population’s
daily lives were not significantly affected. That is also why
the pandemic has spread faster now in the United States.
During the early to mid-2020 period, the original variant
was prevalent in society. The original variant has a high
virulence and mortality rate, marking the first wave of a
significant outbreak in the United States. Subsequently, local
health departments began to require people to stay at home
and wear masks when going out. From July to October 2020,
the premature reopening of certain states without strictly
adhering to new preventive measures led to the second wave
of the pandemic.

As some individuals had already developed antibodies
in mid-2020, both infection and mortality rates decreased.
In October 2020, the Alpha variant was detected for the
first time among confirmed cases [55]. The emergence of
the Alpha variant led to an increase in both diagnosis and
mortality rates, marking the beginning of the third wave of
the pandemic. Towards the end of 2020, the US government
began to implement immunization programs for the popula-
tion. In 2021, the Delta and Omicron variants emerged [56].
Each occurrence of a new variant typically will lead to a
recent major outbreak. Fig. 1 shows the cumulative number
of confirmed COVID-19 cases in the United States.

Due to the constantly evolving nature of RNA viruses,
the prevention and control of the epidemic have been
significantly affected. It requires us to promptly identify
changes in viral characteristics and design more effective
diagnostic tests. At the same time, it can also help local
health departments adjust their preventive measures. Biolo-
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gists have analyzed viral mutation and evolutionary trends
from the perspectives of genes and proteins. Scientists have
proposed different detection methods to track the mutations
more effectively. The most effective and widely used way
is RT-PCR testing [57]. This technique combines reverse
transcription of RNA and polymerase chain reaction (PCR)
amplification of cDNA to detect gene expression levels in
cellular tissues. Since different variants may be circulating
in other regions, some countries conduct wastewater testing
on incoming flights to prevent imported cases. However, this
method has certain limitations as most passengers do not
use the restroom on the plane. In hospitals, biosensors and
CT scans of the lungs are also standard diagnostic methods
[50], [58]. Akhtar et al. [49] employed machine learning
algorithms using full blood count to predict the prevalence
of COVID-19 in the future. Fig. 2 shows these diagnostic
methods.

Fig. 2. Common testing methods for COVID-19

In addition to measures such as detecting incoming cases
and conducting relevant biological analyses of strains, we can
also use deep learning models and mathematical models [7],
[8], [25], [27], [28], [34], [42], [43] to identify changes in the
various characteristics of the virus. It can provide local health
departments with a rough assessment of mutations, allowing
for the dynamic adjustment of defense measures [39], [41]. It
also provides the health authorities with a guide for handling
mutations [29], [30], [31], [32], [33].

II. RELATED RESEARCH WORKS

To detect the rapid mutations of the viruses, Wang et al. [6]
investigated the characteristics of the virus through various
channels, including its structure, epidemiology, and differ-
ent therapeutic approaches. They determined the sequence
variations of nucleotides and amino acids by investigating
the virus’s genomic sequences and protein structures. After
evaluating the complete genome sequences of 11 variants,
they inferred that COVID-19 might produce new mutations,
specifically in glycoproteins. They calculated the mutation
rates to validate the effectiveness of the currently used diag-
nostic reagents. Their study contributed to the development
of effective diagnostic methods and therapeutic drugs.

In addition to conducting biological analyses of the virus,
we can indirectly reflect the mutations of the virus through
machine learning. Before this study, some individuals also
devoted themselves to researching fields related to the pan-
demic. These studies [9] - [24] analyzed various datasets,
such as Weibo, Twitter, and other international platforms.
Furthermore, there are many types of research in this field
with different focuses, including research on public opinions
regarding mask-wearing and analyzing public attitudes to-
wards different vaccine brands.

Nanning et al. proposed a hybrid AI model for predicting
the COVID-19 epidemiological trends in China [1]. The
model combined natural language processing (NLP) with
LSTM networks. The dataset used in their study includes text
data from reports and news related to the pandemic. The text
data serves as input to the NLP model, which then outputs
the text features. Traditional methods of forecasting usually
assume that the infectivity of patients remains the same.
However, in reality, the infectivity of confirmed cases varies
in the early and middle stages. The ISI model in the article
aims to address this issue. However, the data calculated by
the ISI model does not consider the impact of implemented
measures. Therefore, the research ultimately combines the
NLP model with LSTM to help correct the results obtained
from the ISI model. Sumit et al. proposed an improved model
based on Prophet for predicting cumulative confirmed cases
in India [2]. Their study used natural language processing
libraries (TextBlob, VADER, Stanza) for sentiment analysis.
The results indicate that the improved model outperforms the
commonly used ARIMA in long-term forecasting capability,
per previous studies. In India’s second COVID-19 wave,
Delta presented enhanced infectivity levels compared with
others. Additionally, they provided a comparative comparison
of natural language processing libraries for text analysis and
visualized text data using word clouds.

In the waves of COVID-19, national governments and
local health departments implemented various measures. For
example, implementing social distancing policies and closing
public venues are common restrictions. Vaccination is also a
crucial step that plays an important role in reducing the harm
caused by the virus. Sattar [3] analyzed the perception of the
U.S. population towards vaccines produced by different com-
panies. The study utilized a tweets dataset. High-frequency
words in the text included ”vaccine willingness” and ”vaccine
side effects”. Although most tweets exhibited neutral senti-
ments, the proportion of tweets expressing negative sentiment
did not exceed that of tweets expressing positive sentiment.
Therefore, the majority of people are not opposed to vaccine
administration. The model results indicated that after July
2021, the percentage of the population who received at
least one dose of the vaccine would reach 62.44% of the
U.S. population. As the vaccination coverage continued to
rise, most people showed a greater willingness to reopen.
High-frequency words in tweets during this period were
mainly about ”gatherings”, ”reopening”, and ”travel”, with
roughly equal proportions of tweets expressing positive and
negative sentiment. Before implementing the vaccination
program, high-frequency words in the text were primarily
about ”thrombosis” and ”fever”. The public’s attitude to-
wards vaccines evolved from anxiety to acceptance. Their
study would assist local health departments and policymak-
ers in understanding the psychological state of people and
determining what services and resources should be provided
to the public during such a period.

LSTM (Long Short-Term Memory) is a type of artificial
neural network [1], [5], [61]. Unlike feedforward neural
networks, LSTM has feedback connections. It can process
not only individual data points but also data sequences.
LSTM has been the most cited neural network in the mid-
20th century. In this study, we also use LSTM as a represen-
tative deep learning model. Compared to the recurrent neural
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network (RNN), LSTM can better capture the COVID-19
epidemiological trends. LSTM has several benefits that make
it a powerful tool for modeling sequential data.

In our research, the first step is to collect relevant tweets.
After preprocessing the text, it will be used as input to a pre-
trained model. The output provides the sentiment analysis
results. Finally, the sentiment analysis results and the virus’s
characteristic data will be combined as inputs to the model
to predict the COVID-19 epidemiological trends.

III. RESEARCH METHODS

A. Dataset

In this study, Twitter will be used as a social platform to
obtain public attitudes towards COVID-19 and new variants.
The snscrape library is a text-scraping tool that helps us
retrieve tweets [35]. To collect tweets from the United
States, the tweets will be filtered based on the geographical
coordinates. In order to ensure the relevance of the collected
tweets to the epidemic, the tweets will be filtered again using
several keywords related to the epidemic, such as ”COVID-
19”, ”coronavirus”, ”Omicron”, and so on. After that, the
timeline is divided into multiple stages to compare the
characteristics of different variants. During different periods,
different keywords related to the variants will be used for
further filtering during the tweet retrieval process.

Once we have the text dataset, the time series models
require relevant statistical data, such as the infection rate,
mortality rate, control measures, and so on. We can prelim-
inarily identify specific variants’ transmission patterns and
characteristics with these statistical data. For example, as
the vaccination rate rises, there is going to be a declining
trend in the mortality rate among the population. After
discovering new variants, the infection rate initially rises and
then declines, indicating the formation of herd immunity.
Additionally, as the number of input variables in the model
increases, its performance improves compared to the models
training with a single variable, resulting in higher accuracy.
Table I shows the characteristics of the virus.

B. Data Cleaning

First of all, the text data must be preprocessed to optimize
the model’s performance. This step could avoid noise affect-
ing the experimental results. The NLTK (Natural Language
Toolkit) is used to clean the noise in the text. Also, it
can be used for tasks such as stemming or lemmatization
[1]. Since the collected text is in English, it is necessary
to tokenize all the words and convert them to lowercase.
Unlike Chinese, English sentences have words separated by
spaces, making tokenization relatively straightforward. Next,
most tweets contain web links, which could not be more
helpful for sentiment analysis. Therefore, they need to be
removed from the sentences. Then, the stop words in the text
should also be removed. After completing the above steps,
we perform stemming and lemmatization on the remaining
vocabulary. In text processing, the original form of words can
be obtained through stemming and lemmatization. However,
stemming is more aggressive and may produce incorrect
results when searching for word stems [59]. For example,
”leaves” could be incorrectly called ”leav”. Lemmatization,
however, is more conservative and typically handles only

TABLE I
PRIMARY INPUT VARIABLES OF THE MODEL

Id Feature Description
a. Cumulative confirmed cases The number of

cumulative confirmed cases

b. New confirmed cases The number of
new confirmed
cases on that day

c. Cumulative deaths The number of
cumulative deaths

d. New deaths The number of
new deaths
on that day

e. ICU patients The number of
patients in ICU

f. Hospitalized cases The number of
hospitalized cases

g. Vaccination The number of
individuals who
have received at
least one dose
and those who are
fully vaccinated

h. Not fully vaccinated The number of
people who have
received only one
dose of the vaccine

i. Fully vaccinated The number of
people who have been
fully vaccinated with
two or three doses

j. New vaccinations The number of
newly vaccinated
individuals with at
least one dose

k. Booster dose The number of
people who received
an additional dose

l. Blocking measures Quantified restriction
level: the larger the
number, the more
restrictive measures

words that can be correctly transformed. This study uses the
WordNet provided by NLTK. WordNet aims to preserve the
original meaning of the words instead of overly simplifying
them. Fig. 3 illustrates this process. Finally, the clean words
must be put into sentences since only sentences can serve as
input for the pre-trained model.

Fig. 3. Process of text preprocessing

IV. MODELS

A. Pre-Training Model

RoBERTa is a pre-trained model optimized based on the
BERT (Bidirectional Encoder Representations from Trans-
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formers) model, with some hyperparameter modifications
[60]. RoBERTa is a transformers model trained on a large
corpus of English data in a self-supervised fashion. This
means it was trained on the raw texts only, with no humans
labeling them in any way (which is why it can use lots of
publicly available data) with an automatic process to generate
inputs and labels from those texts. In this research, the pre-
trained model categorizes the sentiment of sentences into
three classes: negative, neutral, and positive. This process
involves scoring each word in the sentence individually and
deriving the final result. It also highlights the importance
of text preprocessing, as we must ensure that each word in
the sentences carries meaningful information for the model’s
output to be accurate.

B. Time Series Forecasting

1) Time series concepts: Time series data, also called
time-stamped data, is a sequence of data points indexed
in time order. Time series forecasting is a regression pre-
diction method and falls under quantitative forecasting. Its
fundamental principle is twofold: firstly, it recognizes the
continuity of the development of phenomena and utilizes
past time series data for statistical analysis to infer the
development trends of the phenomena [62]. Secondly, it takes
into account the randomness caused by incidental factors.

Time series prediction is an essential field in prediction
research. Davidescu et al. [26] used ARIMA to predict
social unemployment and studied uncertainty based on sector
graphs. Gunay et al. [37] combined the epidemic forecast
with the economic situation and predicted the COVID-19
epidemiological trends in China in the second quarter of
2020.

2) Deep learning models: Generally, time series fore-
casting involves two types of approaches. The first type
is traditional forecasting methods, including ARIMA [15],
[43], [65], mean regression, exponential smoothing, and so
on [38], [63]. The second type is machine learning models
[44], [45], [46], [47], [48]. In the field of time series
forecasting, we can further classify machine learning models
into two categories: tree-based models and neural network
models. Tree-based models are widely used in machine
learning, and they have many variants, including decision
trees, random forests, XGBoost, and more [2], [12], [16],
[33]. Tree-based models are easier to interpret than deep
learning models. They are less prone to overfitting during
training and require fewer computational resources. Deep
learning has gained popularity recently as traditional methods
struggle to capture the mixed information of long-term and
short-term sequences. Deep learning models can capture
non-linear interdependencies in the data, compensating for
the limitations of traditional machine learning methods. It
has led to the gradual superiority of deep learning models
over conventional methods [40]. This research will focus on
four deep learning models showing results in time series
forecasting, including LSTM, GRU, CNN, and BiLSTM
[45].

C. Deep Learning Models

1) LSTM: An ordinary LSTM unit comprises a cell, an
input gate, an output gate, and a forget gate. The cell has the

ability to retain values across arbitrary time intervals, while
the three gates govern the inflow and outflow of information
within the cell. Forget gates play a crucial role in determining
which information from the previous state to discard; they
assign a value between 0 and 1, where 1 signifies infor-
mation retention and 0 implies discarding. Similarly, input
gates decide which new information to incorporate into the
current state using a comparable mechanism as forget gates.
Output gates, considering both the prior and present states,
dictate the information to be output by assigning values from
0 to 1. This selective outputting of pertinent information
empowers the LSTM network to preserve valuable, long-
term dependencies for making predictions across current and
future time-steps. Fig. 4 shows the basic structure of the
LSTM model.

Fig. 4. The architecture of LSTM

It = σ(XtWxi +Ht−1Whi + bi) (1)

Ft = σ(XtWxf +Ht−1Whf + bf ) (2)

Ot = σ(XtWxo +Ht−1Who + bo) (3)

C̃t = tanh(XtWxc +Ht−1Whc + bc) (4)

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t (5)

Ht = Ot ⊙ tanh(Ct) (6)

2) BiLSTM: Bidirectional LSTMs (Long Short-Term
Memory) represent a type of recurrent neural network (RNN)
architecture that evaluates input data in both forward and
backward directions. Unlike conventional LSTMs, which
exclusively process information from past to future for pre-
dictions, bidirectional LSTMs consider both past and future
contexts. Comprising two LSTM layers—one processing
input in the forward direction and the other in the back-
ward direction—this design allows simultaneous access to
information from preceding and succeeding time steps. Con-
sequently, bidirectional LSTMs prove highly advantageous
for tasks demanding a thorough comprehension of input
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sequences, including applications like sentiment analysis,
machine translation, and named entity recognition in natural
language processing. Fig. 5 shows the basic structure of the
BiLSTM model.

Fig. 5. The architecture of BiLSTM

3) CNN: A convolutional neural network operates as
a feed-forward neural network, featuring artificial neurons
capable of responding to adjacent units within a specific
coverage area. Renowned for its exceptional performance
in extensive image processing, the convolutional neural net-
work includes one or more convolutional layers, culminating
in a fully connected layer akin to a conventional neural
network. These layers, along with associated weights and
pooling layers, enable the network to effectively leverage
the two-dimensional structure of input data. In comparison to
alternative deep learning architectures, convolutional neural
networks consistently yield superior results in tasks such
as image and speech recognition. Notably, max pooling, a
specific pooling operation, extracts the maximum element
from the region covered by the filter in the feature map,
resulting in an output feature map that encapsulates the most
prominent features from the previous layer. Fig. 6 shows the
pooling process of the CNN model.

Fig. 6. Polling layer

4) GRU: To some extent, GRU is also an optimization
of the structural complexity of LSTM. LSTM can solve
the gradient disappearance and gradient explosion problems
caused by long-term dependence of recurrent neural net-
works. However, LSTM has three different gates and many
parameters, making it difficult to train. GRU only contains
two gating structures, and when all hyperparameters are
tuned, the performance of the two is equivalent, but the GRU
structure is simpler, has fewer training samples, and is easy

to implement. Fig. 7 shows the basic structure of the GRU
model.

Fig. 7. The architecture of GRU

Zt = σ(Wz[ht−1, xt]) (7)

h̃ = tanh(W [rt ⊙ ht−1, xt]) (8)

Rt = σ(Wr[ht−1, xt]) (9)

Ht = Ot ⊙ tanh(Ct) (10)

CNNs typically excel when dealing with data featuring
spatial relationships. While traditionally configured for two-
dimensional input like a matrix, they can be adapted to
a one-dimensional format, enabling them to capture the
internal structure of sequences. This versatility allows CNNs
to extend their effectiveness to various data types with spa-
tial interdependencies. For instance, the ordered relationship
between words in textual documents or the sequential nature
of time steps in time series data.

In contrast, RNNs, initially designed for sequence predic-
tion tasks, historically posed training challenges. The Long
Short-Term Memory (LSTM) network has proven remark-
ably successful in addressing these issues, making it a widely
applied solution across diverse applications. Notably, RNNs
and LSTMs demonstrate significant efficacy when handling
word and paragraph sequences, commonly associated with
natural language processing.

V. EXPERIMENTS

A. Sentiment Classification

Tweets are collected and filtered using epidemic-related
keywords. As a result, the number of tweets expressing pos-
itive sentiment is less than that expressing negative sentiment.
About half of all texts express neutral sentiment, while one-
third express negative sentiment. It shows that people in the
United States have a negative attitude towards the epidemic.
Fig. 8 shows the average proportions of emotions in these
tweets.
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Fig. 8. Sentiment distribution of tweets (United States)

B. Long-term Forecasts and Short-term Forecasts

1) Epidemic transmission timeline: In March 2020, the
epidemic broke out in the United States and spread rapidly.
The state governments began to ban the export of medical
supplies to maintain the medical system and declared a state
of emergency. In early April, the state governments issued an
immigration ban. After that, the epidemic in the United States
ushered in the first peak. The first wave of the epidemic
caused by the original virus has a high mortality rate. In
the middle of 2020, most states across the country dropped
COVID-related restrictions as cases dropped and gradually
reopened. The premature opening up accelerated the arrival
of the second wave of the epidemic. At the end of 2020, the
United States found the Alpha variant in confirmed cases.
According to the research, patients cough more frequently
after being infected with the Alpha variant, which led to
a higher infection rate of the Alpha variant compared with
the original virus. At the same time, the state governments
announced a vaccination program. At the beginning of 2021,
the U.S. government issued several policies to slow the
spread of the virus. In March 2021, the Delta variant ap-
peared, and its transmission rate was about twice that of the
original virus. However, as the population’s vaccination rate
gradually rose, the number of coronavirus infected people
declined. At the end of 2021, the United States discovered
the Omicron variant. Because of the reduction of its toxicity
and the promotion of the booster dose, the mortality rate
is lower than that of the Delta variant. Fig. 9 shows the
epidemic timeline.

2) Predictions for different variants: For the same type of
variant, they have the same characteristics. When the model
is trained using the time series data of the current phase, it
will better fit the recent variant growth rate. The study divides
the timeline into three periods. The dominant variant in the
first wave of the epidemic was the original virus. This phase
started in March 2020 and continued until the end of 2020.
The dominant variant in the second wave of the epidemic
was the Delta virus. The Omicron variant caused the third
wave of the epidemic. This phase started at the end of 2021
and continues to date. The models are trained using three
different types of data. The experiment in this study predicts
the short-term and long-term trend prediction of the COVID-
19 pandemic. The experiment sets the window size to 7 data
points. To make the experiment results more interpretable,
the experiment scales the error results of the models to the

range of [0, 1].

TABLE II
COMPARISON OF ERROR RESULTS FOR SHORT-TERM AND LONG-TERM

FORECASTS

Long-term prediction of original virus
LSTM CNN BiLSTM GRU

mse 0.424 0.065 0.04 0.18
mae 0.484 0.227 0.185 0.388

mape 0.192 0.099 0.081 0.167
Short-term prediction of original virus
LSTM CNN BiLSTM GRU

mse 1.142 0.089 0.073 0.598
mae 1.055 0.289 0.267 0.769

mape 0.391 0.107 0.1 0.286

For the original virus, the model performs better in long-
term trend prediction. In long-term forecasting, the BiLSTM
model performs the best with the MSE result of 0.04. In
short-term forecasting, the BiLSTM model also performs the
best with the MSE result of 0.073. The error data of these
models are shown in Table II, and the prediction results are
displayed in Fig. 10 and Fig. 11.

TABLE III
COMPARISON OF ERROR RESULTS FOR SHORT-TERM AND LONG-TERM

FORECASTS

Short-term prediction of the Delta variant
LSTM CNN BiLSTM GRU

mse 0.201 0.065 0.181 0.24
mae 0.447 0.252 0.423 0.49
mape 0.229 0.129 0.217 0.251

Long-term prediction of the Delta variant
LSTM CNN BiLSTM GRU

mse 0.095 0.029 0.073 0.164
mae 0.233 0.162 0.249 0.403
mape 0.125 0.091 0.14 0.224

For the Delta variant, the performance of the models on
long-term prediction is better than that on short-term predic-
tion. In long-term forecasting, the CNN model performs the
best with the MSE result of 0.029. In short-term forecasting,
the CNN model also performs the best with the MSE result
of 0.065. The error data of these models are shown in Table
III, and the prediction results are displayed in Fig. 12 and
Fig. 13.

TABLE IV
COMPARISON OF ERROR RESULTS FOR SHORT-TERM AND LONG-TERM

FORECASTS

Short-term prediction of the Omicron variant
LSTM CNN BiLSTM GRU

mse 0.042 0.02 0.092 0.044
mae 0.204 0.141 0.303 0.211

mape 0.165 0.114 0.245 0.17
Long-term prediction of the Omicron variant
LSTM CNN BiLSTM GRU

mse 0.012 0.157 0.024 0.024
mae 0.084 0.375 0.128 0.128

mape 0.069 0.313 0.106 0.106

For the Omicron variant, the performance of the models on
long-term prediction is better than that on short-term predic-
tion. In short-term forecasting, the CNN model performs the
best with the MSE result of 0.02. In long-term forecasting,
the LSTM model performs the best with the MSE result of
0.012. The error data of these models are shown in Table IV,
and the prediction results are displayed in Fig. 14 and Fig.
15.
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Fig. 9. Timeline of COVID-19 in the United States

Fig. 10. Short-term prediction of the original virus

In this part of the study, the experiment does not add
sentiment score to the model input. In these models, the
accuracy of long-term forecasting is generally higher than
that of short-term forecasting. Next, the study is going to
verify that adding the results of emotion analysis to the model
input could actually improve the performance of models.

3) Correction of forecasts by sentiment data: In the exper-
iment described in section 5.2.1, we train the models using a
dataset that does not include sentiment data. We then demon-
strate the performance of models in predicting epidemics
caused by different variants. The results indicate that the
deep learning model can increase its accuracy after adding
more data samples from different periods to the training data.
However, predictive accuracy needs further improvement. It
is found that adding more explanatory variables to the model
input could help it correct the results.

Conversely, suppose the input of the models is variables

Fig. 11. Long-term prediction of the original virus

with little or no correlation. In that case, it may reduce the
predictive accuracy. After introducing a new mathematical
model, Nanning et al. [1] also joined the LSTM model to
correct the prediction results. The NLP module was also
added to the model, indirectly improving predictive accuracy.
The input of the NLP model contains a large amount of text
information strongly related to the epidemic.

We collected approximately 500,000 tweets related to the
pandemic to validate our idea. After completing the text
preprocessing, we utilized the pre-trained model released by
HuggingFace [4] to score sentiment on the text data. The
model is trained on a dataset containing 54 million English
tweets. It can classify the emotions of English tweets, as
shown in Table V. We then use the classification results as
input to the Granger causality test, which helps us verify
whether the current variable is related to the variables we
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Fig. 12. Short-term prediction of the Delta variant

Fig. 13. Long-term prediction of the Delta variant

want to forecast. Finally, strongly correlated variables are
used as additional explanatory variables. We will combine
these variables with the transmission features of the COVID-
19 epidemic to improve the predictive accuracy of the time
series models.

From the experiment in section 5.2.1, it is evident that
these four models perform better in long-term forecasting
than in short-term forecasting. The following experiment will
focus on verifying the improvement in accuracy for long-
term forecasting with the inclusion of sentiment data. In the
context of coronavirus disease, long-term forecasting is more
meaningful than short-term forecasting.

After training these four models, we observe that the
inclusion of sentiment data improves the predictive accuracy
of the models. The results are shown in Fig. 16 to 18 and the
error results of the models are shown in Table VI to Table
VIII.

For the original virus, the predictive accuracy of long-
term prediction is generally improved after incorporating
sentiment data. Regarding short-term forecasting, the CNN
model performs the best with an MSE result of 0.022. The
CNN model also achieves the best long-term forecasting with
an MSE result of 0.003.

In short-term forecasting, the BiLSTM model performs the
best for the Delta variant with an MSE result of 0.002. The
LSTM model performs the best in long-term forecasting with

Fig. 14. Short-term prediction of the Omicron variant

Fig. 15. Long-term prediction of the Omicron variant

an MSE result of 0.01.
For the Omicron variant, when the sentiment data is

added to the model input, LSTM and BiLSTM perform
better in long-term forecasting. At the same time, CNN and
GRU excelled in short-term forecasting. Regarding long-
term forecasting, the LSTM model performs the best with
an MSE result of 0.003. In short-term prediction, the CNN
model performed the best with an MSE result of 0.006.
Overall, incorporating more strongly correlated variables into
the model’s input variables led to improved prediction perfor-
mance. The sentiment classification results were instrumental
in enhancing the accuracy of the predictions made by the
models.

C. Evolution of Strain Properties

In the experiment conducted in section 5.2, we demon-
strated the predictive accuracy of models on different variants
under short-term and long-term forecasting. Also, adding
classification results to the model input could improve the
predictions. In the upcoming experiments, we will use these
enhanced models to forecast the COVID-19 epidemiological
trends during different periods.

We trained the models using data from three periods
to predict epidemiological trends during the current stage
and different stages. Sometimes, we could not obtain all
the variables listed in Table I, which requires us to adjust
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the input of the models promptly. We will compare the
experimental results in this chapter with the results from
Chapter 5. The results indicate that when the model was
trained with data from December 2021 to October 2022
and then used these models to predict the epidemiological
trends from March 2021 to November 2021 and from March
2020 to November 2020, the performance was poor, and
vice versa. The models were only effective in predicting
infection trends for the same stage. For example, when we
used a model trained with 2020 pandemic data to predict
the infection trends in 2021, we found that the model’s
prediction performance significantly deteriorated. It suggests
a change in the characteristics of the virus in 2021, indicating
the emergence of a new variant. According to the findings
of detection agencies, the Delta variant emerged in 2021.
Therefore, time series prediction is sensitive to time. When
there is a significant deviation in forecasting, it implies a
change in the characteristics of the virus. The models trained
on previous data are no longer applicable for predicting the
epidemiological trends of new variants. The error results of
the models in this experiment are presented in Table IX.

VI. EXPERIMENT SUMMARY

The experiment includes two parts: The first part is the
experiment in section 5.2. In this part, we used four deep
learning models to predict the epidemiological trends of dif-
ferent variants in long-term and short-term forecasting. It was
found that the performance of the models improved when the
model input was augmented with sentiment data. The other
part of the experiment is in section 5.3. Since the time series
data used in our experiment does not exhibit periodicity, the
models cannot be reused for long-term forecasting. When
the predictive accuracy of the models declines, it indicates a
change in the characteristics of the virus.

VII. CONCLUSION

This study employed four deep learning models. We
incorporated sentiment data into the model input and used
the improved models to predict epidemiological trends. From
the error data of the models, sentiment data helps refine
the predictions. Furthermore, the time series models exhibit
time sensitivity. In addition to studying the characteristics
of variants using biotechnology in epidemic prevention and
control, we could also reflect the changes in viral properties
through forecasting. The experimental results of this study
provide feasible approaches for studying the characteristics
of coronavirus. They can assist relevant institutions in for-
mulating more rational policies.
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Fig. 16. Long-term prediction of the original virus
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Fig. 17. Long-term prediction of the Delta variant
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Fig. 18. Long-term prediction of the Omicron variant
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Fig. 19. Period of Delta variant transmission
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Fig. 20. Period of Omicron variant transmission
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Fig. 21. Period of original virus transmission
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Fig. 22. Period of Omicron variant transmission
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Fig. 23. Period of Delta variant transmission
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Fig. 24. Period of original virus transmission
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TABLE V
ANALYSIS OF TEXT SENTIMENT BY THE ROBERTA MODEL

Text Negative Neutral Positive Classification Results
We went searching world for Omicron, 0.029 0.693 0.279 neutral
but it was right here in our California all along.

pay attention to the news. the US finna go 0.862 0.13 0.008 negative
into a whole shut down again with this new omicron shit

We’re excited to continue to work towards 0.001 0.019 0.98 positive
creating inclusive communities in a post covid era.

TABLE VI
PERFORMANCE METRICS OF THE MODEL (ORIGINAL VIRUS)

ModelsStrain Type Experiment Classification Index LSTM CNN BiLSTM GRU
mse 1.142 0.089 0.073 0.598
mae 1.055 0.289 0.267 0.769Short-term forecasting (no sentiment data)

mape 0.391 0.107 0.1 0.286
mse 0.113 0.022 0.042 0.25
mae 0.285 0.103 0.172 0.483Short-term forecasting (Added sentiment data)

mape 0.108 0.038 0.065 0.179
mse 0.424 0.065 0.04 0.18
mae 0.484 0.227 0.185 0.388Long-term forecasting (no sentiment data)

mape 0.192 0.099 0.081 0.167
mse 0.352 0.003 0.014 0.147
mae 0.356 0.046 0.092 0.349

Original virus

Long-term forecasting (Added sentiment data)
mape 0.141 0.021 0.043 0.151

TABLE VII
PERFORMANCE METRICS OF THE MODEL (DELTA VARIANT)

ModelsStrain Type Experiment Classification Index LSTM CNN BiLSTM GRU
mse 0.201 0.065 0.181 0.24
mae 0.447 0.252 0.423 0.49Short-term forecasting (no sentiment data)
mape 0.229 0.129 0.217 0.251
mse 0.018 0.065 0.002 0.134
mae 0.114 0.233 0.041 0.363Short-term forecasting (Added sentiment data)
mape 0.058 0.119 0.021 0.186
mse 0.095 0.029 0.073 0.164
mae 0.233 0.162 0.249 0.403Long-term forecasting (no sentiment data)
mape 0.125 0.091 0.14 0.224
mse 0.01 0.02 0.022 0.085
mae 0.08 0.127 0.107 0.283

Delta variant

Long-term forecasting (Added sentiment data)
mape 0.045 0.07 0.057 0.156

TABLE VIII
PERFORMANCE METRICS OF THE MODEL (OMICRON VARIANT)

ModelsStrain Type Experiment Classification Index LSTM CNN BiLSTM GRU
mse 0.042 0.02 0.092 0.044
mae 0.204 0.141 0.303 0.211Short-term forecasting (no sentiment data)
mape 0.165 0.114 0.245 0.17
mse 0.032 0.006 0.036 0.007
mae 0.176 0.061 0.168 0.083Short-term forecasting (Added sentiment data)
mape 0.142 0.049 0.135 0.067
mse 0.012 0.157 0.024 0.024
mae 0.084 0.375 0.128 0.128Long-term forecasting (no sentiment data)
mape 0.069 0.313 0.106 0.106
mse 0.003 0.011 0.007 0.012
mae 0.047 0.095 0.082 0.095

Omicron variant

Long-term forecasting (Added sentiment data)
mape 0.04 0.079 0.069 0.079
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TABLE IX
SUMMARY OF MODEL ERROR RESULTS

Experiments

Experimental group Grouping of experiments Index Models
LSTM CNN BiLSTM GRU

Models trained using data from original virus wave periods -> MSE 58.133 3.055 187.745 15.585
Epidemiological trends caused by Delta variant MAE 7.612 1.748 13.67 3.946

MAPE 0.945 0.217 1.694 0.489

Fig. 19

Models trained using data from Delta variant wave periods -> MSE 0.127 0.144 0.271 0.473
Epidemiological trends caused by Delta variant MAE 0.297 0.291 0.467 0.669
(Adjustment for the number of variables) MAPE 0.037 0.036 0.058 0.083

Models trained using data from original virus wave periods -> MSE 544.123 6.558 650.556 180.673
Epidemiological trends caused by Omicron variant MAE 23.32 2.56 25.439 13.441

MAPE 1.342 0.147 1.463 0.773

Fig. 20

Models trained using data from Omicron variant wave periods -> MSE 0.023 0.586 0.107 1.715
Epidemiological trends caused by Omicron variant MAE 0.122 0.729 0.283 1.306
(Adjustment for the number of variables) MAPE 0.007 0.042 0.016 0.075

Models trained using data from Delta variant wave periods -> MSE 0.808 0.911 0.422 0.926
Epidemiological trends caused by original virus MAE 0.595 0.926 0.553 0.949

MAPE 0.185 0.305 0.174 0.31

Fig. 21

Models trained using data from original virus wave periods -> MSE 1.376 0.332 0.151 0.158
Epidemiological trends caused by original virus MAE 1.046 0.401 0.285 0.364
(Adjustment for the number of variables) MAPE 0.357 0.14 0.099 0.124

Models trained using data from Delta variant wave periods -> MSE 3.433 5.371 13.601 46.677
Epidemiological trends caused by Omicron variant MAE 1.61 2.307 3.676 6.831

MAPE 0.169 0.242 0.386 0.717

Fig. 22

Models trained using data from Omicron variant wave periods -> MSE 0.003 0.011 0.007 0.012
Epidemiological trends caused by Omicron variant MAE 0.047 0.095 0.082 0.095
(No adjustment to the number of variables is required.) MAPE 0.04 0.079 0.069 0.079

Models trained using data from Omicron variant wave periods -> MSE 0.12 1.271 0.968 0.158
Epidemiological trends caused by Delta variant MAE 0.293 0.986 0.975 0.364

MAPE 0.116 0.383 0.383 0.124

Fig. 23

Models trained using data from Delta variant wave periods -> MSE 0.01 0.02 0.022 0.085
Epidemiological trends caused by Delta variant MAE 0.08 0.127 0.107 0.283
(No adjustment to the number of variables is required.) MAPE 0.045 0.07 0.057 0.156

Models trained using data from Omicron variant wave periods -> MSE 2.046 1.15 0.32 55.141
Epidemiological trends caused by original virus MAE 1.379 1.071 0.509 7.422

MAPE 0.284 0.219 0.25 3.431

Fig. 24

Models trained using data from original virus wave periods -> MSE 0.352 0.003 0.014 0.147
Epidemiological trends caused by original virus MAE 0.356 0.046 0.092 0.349
(No adjustment to the number of variables is required.) MAPE 0.141 0.021 0.043 0.151
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