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Abstract—This paper studies obstacle and collision avoid-
ance strategies for nonlinear second-order multi-agent sys-
tems (MAS) formation control. Due to the uncertainties and
complexities in nonlinear systems, including external distur-
bances and communication delays, radial basis function (RBF)
neural network control is employed to address the control
requirements of nonlinear terms in the system. In addition,
as traditional artificial potential fields (APF) based obstacle
avoidance algorithms have limitations, this paper applies an
improved APF algorithm for collision avoidance and obstacle
avoidance in multi-agent systems formation control. The stabil-
ity and feasibility of the proposed approach are proved based on
the Lyapunov stability theory. Simulation experiments further
validate the effectiveness of the formation control strategy.

Index Terms—multi-agent systems, formation control, obsta-
cle avoidance, collision avoidance, neural network, artificial
potential field.

I. INTRODUCTION

IN recent years, multi-agent systems (MAS) have garnered
substantial attention within the academic community.

Researchers have conducted comprehensive investigations
into various facets of MAS, encompassing consensus control
[1, 2], flocking control [3], and formation control [4, 5].
Formation control, in particular, has found extensive applica-
tions in both industrial and military contexts, including sce-
narios like underwater swarm exploration and aerial swarm
reconnaissance. Consequently, formation control has become
an indispensable component of MAS research. We utilize
several methodologies employed for formation control, such
as the leader-follower method [6, 7], virtual structure method
[8, 9], and behavior-based method [10]. Typically, the leader-
follower method is applied in engineering practice, owing
to its innate capacity to effectively synchronize information
among individual agents, coupled with graph theory. As tech-
nology advances, formation control systems’ demands and
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performance expectations have gradually escalated. Scholars
have embarked on research encompassing various system
types, spanning linear [11] and nonlinear [12], high-order
[13], heterogeneous [14], and non-affine [15] systems. In
terms of performance requirements, researchers have con-
ducted studies on event-triggered control [16], observer-
based control [17], predictive performance control [18].

In practical applications, Nonlinear dynamic systems often
model MASs. For instance, Y. Guo et al. [19] investigated
nonlinear second-order systems in the presence of external
disturbances. They addressed high-order nonlinear system
tracking control using the back-stepping method [20]. The
system equations can also be complex and unknown. G.
WEN et al. [21] proposed an adaptive neural network control
approach to address this challenge. This approach utilizes
neural networks to approximate the unknown system dynam-
ics, enabling adaptive control with automatic adjustments of
control parameters to accommodate system changes.

Moreover, it is essential to consider real-world conditions
where external disturbances and time delays are prevalent.
Literature [22] accounts for external disturbances that MAS
may encounter during formation control. It applies neu-
ral networks and adaptive dynamic sliding mode control
techniques to estimate and compensate for these external
disturbances, thus enhancing system robustness. The study in
[16] looks at the impact of input time delays on system per-
formance and introduces a delay-dependent strategy to ensure
control stability and performance. This method is validated
through theoretical analysis and numerical simulations for its
effectiveness and robustness. This research actively addresses
practical challenges in MAS, like delays and communication
overhead, offering theoretical insights and practical solutions.

Research on obstacle avoidance is a fundamental aspect of
MAS formation control. Scholars have introduced a variety
of techniques for path planning, such as online optimal
control techniques [23, 24], model predictive control methods
[25, 26], reinforcement learning [27, 28], and intelligent
algorithms [29]. Among these methods, the APF method has
been widely adopted in the MAS literature [30–33] due to its
simplicity and underlying principles. Q. Shi et al. [32] pro-
posed an adaptive leader-follower formation control method.
In this approach, follower agents maintain formation and
avoid collisions with other agents, primarily employing the
APF method. Similarly, the APF method was used to achieve
formation control while simultaneously avoiding collisions
with both agents and obstacles [33]. However, the traditional
APF method has certain algorithmic shortcomings that can
result in the system getting trapped in local minima under
specific circumstances. Although the methods to address this
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local minimum problem were introduced in [30, 31], these
primarily focused on enhancing the gravitational field. It is
crucial to note that many of these methods originate from a
single-agent context, and most of the existing MAS literature
does not address this issue. Furthermore, in most literature,
obstacles and agents are treated as point-like entities. Nev-
ertheless, in practical, real-world applications, each obstacle
and agent represent a rigid body with a distinct shape. This
paper introduces an enhanced APF formula based on S.
Yang et al. [33], improved real-world application obstacle
avoidance and collision avoidance capabilities. It is worth
noting that the concept of normal force has been introduced
to address the issue of getting stuck in local minima.

Built upon the aforementioned discussion, this paper’s
contributions can be summarized as follows:

1) Different from linear systems [11], the system adopted
in this paper is a second-order nonlinear system with
unknown nonlinear terms and external disturbances
with time delays, which better describes real-world
engineering MAS.

2) The adaptive control used in this paper is based on
RBFNN, which has different adaptability than tra-
ditional adaptive control. It can better approximate
unknown nonlinear terms and adapt to more system
scenarios. In addition, it requires fewer parameters and
reduces computational complexity compared to C. L.
P. Chen et al. [20].

3) This study employs an improved APF method, which
differs from traditional approaches in that the obstacle
and agent are not seen as a point, different distances
are set in this paper, it can address the issue of local
minimum traps in specific situations, thereby enhanc-
ing the robustness of the overall obstacle avoidance
requirements.

This paper is structured as follows. Preliminary work and
modeling are in Section II, controller design and stability
analysis of the system are in Section III, Section IV is
devoted to the demonstration of the results of the experi-
mental approach using simulation examples, and Section V
is devoted to the conclusions obtained and the outlook for
future work.

II. PRELIMINARIES AND MODELING

A. System modelling

A system model consisting of nonlinear equations was
chosen to describe the overall state of the actual system,
and a disturbance equation and a communication time delay
were added to the nonlinear equations. In a MAS, the
generalized second-order nonlinear equation for each agent
i is as follows:

ṗi = vi

v̇i = fi(pi, vi, t− τ) + δi(t) + gi(pi, vi, t− τ)ui

(1)

where pi = [pi1, pi2, · · · , pim]⊤ ∈ Rm, vi =
[vi1, vi2, · · · , vim]⊤ ∈ Rm denote the vectors of position
and velocity of agents, respectively. fi(pi, vi, t − τ) =
[fi(pi1, vi1, t − τ), · · · , f1m(p1m, v1m, t − τ)]⊤ ∈ Rm →
Rm×m is a smooth unknown nonlinear equation with com-
munication time delay, gi(pi, vi, t − τ) = [gi1(pi1, vi1, t −
τ), · · · , gim(pim, vim, t − τ)]⊤ ∈ Rm → Rm×m is an

nonlinear gain matrix, where τ is time delay. δi(t) =
[δi1(t), · · · , δim(t)]⊤ denotes the external disturbances from
the external environment. ui(t) = [ui1(t), · · · , uim(t)]⊤ is
an input to the follower agent of each.

In addition, the leader is the agent that leads the movement
of the follower, and its dynamics equation is as follows:

ṗl = vl

v̇l = fl(pl, vl) + ul

(2)

where pl = [pl1, pl2, · · · , plm]⊤ ∈ Rm, vl =
[vl1, vl2, · · · , vlm]⊤ ∈ Rm are the leader’s position and
velocity vectors, respectively, ul = [ul1, · · · , ulm]⊤ ∈ Rm

is the controller input to the leader. in which fl(pl, vl) =
[fl1(pl1, vl1), · · · , flm(plm, vlm)]⊤ ∈ Rm is a known func-
tion.

Define the position and velocity tracking error variables
of agent i as follows [34]:

epi = pi − pl − Ξi

evi = vi − vl
(3)

where epi , e
v
i is a vector representing the desired relative

position between agent i and leader, i.e., the shape of the
formation.

Definition 1 ([35]). In a multi-agent system, the formation
goal is completed when epi and evi equal to zero as time tends
to infinity, i.e. limt→∞ ∥epi ∥ = 0, limt→∞ ∥evi ∥ = 0.

The control objective: In the MAS, each agent follows a
leader agent in a particular formation for trajectory tracking,
as the system is nonlinear and has external disturbances and
time delays. In addition, each agent cannot collide with each
other, and the agent cannot collide with fixed obstacles in
the environment, so in summary, the controller is required to
have the following requirements:

1) Each agent can move consistently according to a
certain formation.

2) Agents can adaptively complete control to cope with
unknown factors in the environment.

3) Agents can complete obstacle avoidance and collision
avoidance.

Assumption 1 ([36]). The nonlinear function gi(·) ∈ Rm is
either a negative or positive definite symmetric matrix. Its
eigenvalues λ1(gi(·)), · · · , λm(gi(·)) satisfy that 0 < gi ≤
∥λ1(gi(·))∥, · · · , ∥λm(gi(·))∥ < ∞, i = 1, · · · , n, where gi
are a constant. Without loss of generality, we further assume
λ1(gi(·)), · · · , λm(gi(·)) > gi > 0, i = 1, · · · , n .

Assumption 2 ([37]). The function fl(·) ∈ Rm is bounded,
and there exist a positive constant α which satisfy ∥fl(·)∥ <
α, ∀t ∈ R+,

Assumption 3 ([33]). The velocity states of agents vl and
vi are not equal to zero and are also bounded.

Remark 1. According to the leader-follower theory, the
leader and follower are two different types of agents. The
leader is responsible for leading the follower for the overall
movement, so in reality, the dynamics equations of the leader
need not be too complicated.
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(a) One obstacle (b) Multiple obstacles

Fig. 1: Two cases of falling into local minima

B. Algebraic graph theory

In MAS, it is common to use graph theory to describe the
communication relationships between agents. In this paper,
a weighted directed graph G = (V,E,A) is used to denote
a MAS, where V = {v1, v2, ...vn} is the node-set, E =
{e1, e2, ..., em} is the edge between agents and A = [aij ] is
the weighted adjacency matrix. The set of neighbor Ni =
{vj | vj ∈ V, eij ∈ E} denotes the set of all agents that have
information exchange with agent vi.The Laplacian matrix of
digraph G is defined as:

L = D −A (4)

where D = diag(
∑n

j=1 aij , i = 1, ..., n).
We define the leader adjacency weight matrix B =

diag(b1, b2, ..., bn), of which bi denotes the connection be-
tween the leader and agents. Typically, we assume that
at least one agent is connected to the leader. Therefore,
b1 + b2 + ...+ bn > 0.

C. Radial basis neural networks and approximation of non-
linear functions

Radial basis neural network control (RBFNNC) is com-
monly used to approximate nonlinear terms in a controller.
This paper uses RBFNN to approximate unknown nonlinear
equations with external disturbance and communication time
delays to achieve adaptive control. RBFNN approximates the
continuous equation ϕ(z) : Rn → Rm in the following form:

ϕ(z) = W⊤Hi(zi) (5)

where W ∈ Rη×m is the weight of the kernel function,
Hi(zi) = [h1(z), · · · , hη(z)]

⊤ is the artificially chosen
kernel function, where η denotes the number of neurons, and
the kernel function we normally use is a Gaussian function,
which takes the following form:

hj(z) = exp(
∥z − µj∥
2K2

N

), j = 1, · · · , η (6)

where µj is the central vector of the Gaussian function,
which is contained in each hidden layer node.
The normal form of the function after approximation by the
neural network is as follows:

Φ = W ∗⊤Hi(zi) + ϵi(zi) (7)

where W ∗ is the adaptive law ˙̂
W obtained by Lyapunov

stability analysis, after constantly updating the weights to
the optimal weights, ϵi(zi) ∈ Rm is an approximate error,
the mathematical form of W ∗ is as follows:

W ∗ = arg min
W∈Ω

[sup|ϕ̂− Φ|] (8)

D. Improved artificial potential field

Like much of the literature, the traditional APF method is
used to accomplish obstacle avoidance for MAS in papers
[32] and [33]. They both ignore the fact that the traditional
APF method has the algorithmic disadvantage of being prone
to fall into local minima, as shown in Figure 1(a) and 1(b).
When the agent is in the same line as the obstacle and the
forward direction, the agent will stop moving or moving in
the opposite direction, i.e., fall into a local minima trap. We
need to design a solution to cope with this problem.

For the local minima problem, this paper adopts the
method that the normal force escapes from the local minima.
First, the definition of falling into a local minima trap is given
as follows:

Definition 2. If the directional angle θ of the repulsive force
and the driving force satisfy the condition θ ∈ (π− ζ, π+ ζ)
when the distance between the agent and the obstacles is
in a specific range, where ζ is the angle threshold of the
repulsive force and the driving force, and the agent stops or
moves in the opposite direction, then we can judge that the
agent is falling into a local minima trap.

The following is the equation of the normal force:

|Fc| =

kc(1−
∥duo∥
ρs

), ρs + ρo < ∥duo∥ ≤ ρs

0, ∥duo∥ > ρs

(9)

where |·| represents the absolute value, kc is the normal force
coefficient, ∥duo∥ is the Euclidean distance between agent
and obstacle, ρo, ρw, ρs are positive constants. The magni-
tude of the normal force increases as the agent approaches
the obstacle to prevent falling into local minima. When the
angle between the repulsive force and the driving force is
not in the angle threshold, it is judged to escape from the
local minima.
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(a) Distances of obstacle avoidance (b) Distances of collision avoidance

Fig. 2: Different distances of obstacle avoidance and collision avoidance

Remark 2. It should be noted that the leader, as the agent
guiding the follower tracking trajectory, must introduce the
normal force, while the follower introduces an external
disturbance in the dynamics equation, which does not fall
into local minima. Also, for the leader, the direction of the
normal force is the vertical direction of the leader’s direction
of motion.

In addition, in the actual situation, each agent and each
obstacle are entities and are not a point. So, danger, alert, and
safety distances should be proposed, as shown in Figure 2(a)
and 2(b). Both agents and obstacles have various distances
mentioned above, so in this paper, based on the improved
APF method for four different cases of obstacle avoidance
and collision avoidance, namely, the problem of obstacle
avoidance includes the obstacle avoidance of leader and
follower, and the problem of collision avoidance includes
the collision avoidance between the leader and each follower,
and between followers.

Combined with the schematic, the potential field function
for obstacle avoidance is as follows [33]:

ϕoa(∥doa∥) =


Θ1, ∥doa∥ ∈ (0, ρo + ρw)

Θ2, ∥doa∥ ∈ (ρo + ρw, ρs)

0, ∥doa∥ ∈ (ρs,+∞)

(10)

where ∥doa∥ represents the Euclidean distance between ob-
stacle and agents, the first interval (0, ρo + ρw) represents
the danger distance, and the second interval (ρo + ρw, ρs)
represents the alarm distance, and the third interval (ρs,+∞)
represents the safety distance. Θ1 is a positive constant, and
Θ2 is as follows:

Θ2 = exp
ρs − ∥doa∥

∥doa∥ − ρo − ρw
− 1 (11)

Finally, the non-negative improved potential field functions
Uoa and repulsive functions Foa are as follows:

Uoa =

∫ ∥doa∥

ρs

ϕoa(∥doa∥)d(∥doa∥) (12)

Foa = −ωoa∇Uoa = ωoaϕoa(∥doa∥)
doa
∥doa∥

(13)

where Foa are the obstacle avoidance forces of leader and
follower, respectively, ωoa is a positive gain parameter. doa =
pobstacle − pagent is the relative distance between agent and
obstacle.

Likewise, the formula for collision avoidance is as follows:

ϕca(dca) =


σ1, ∥dca∥ ∈ (0, ro + rw)

σ2, ∥dca∥ ∈ (ro + rw, rs)

0, ∥dca∥ ∈ (rs,+∞)

(14)

where ∥dca∥ represents the Euclidean distance between
agents, and the first interval (0, ro+rw) represents the danger
distance, the second interval (ro+rw, rs) represents the alarm
distance. The third interval (rs,+∞) represents the safety
distance, σ1 is a positive constant and σ2 is as follows:

σ2 = K tan
π

2
(
∥dca∥ − ro − rw
rs − ro − rw

− 1) (15)

where K is a positive constant.
The non-negative improved potential field functions Uca

and repulsive functions Fca are as follows:

Uca =

∫ ∥dca∥

rs

ϕca(∥dca∥)d(∥dca∥) (16)

Fca = −ωca

∑
j∈Nc

i

∇Uca = ωca

∑
j∈Nc

i

ϕca(∥dca∥)
dca
∥dca∥

(17)
where Fca are the collision avoidance forces of leader and
follower, including collision avoidance force between leader
and follower or followers, N c

i denotes the set of collision
avoidance neighbors of the object.

The following lemma is introduced to better complete the
proof of the latter theorem:

Lemma 1 ([38]). The directed graph G is strongly connected
if its Laplacian matrix is irreducible.

Lemma 2 ([5]). S(t) > 0 is a continuous function for any
time, and the initial state of S(0) is bounded. If the inequality
holds ˙S(t) > qS(t) for t− t0 ≥ 0 and q > 0, then we have
the following inequality:

S(t) > eq(t−t0)S(t0)
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III. CONTROLLER DESIGN AND STABILITY ANALYSIS

This section includes the design of the formation controller
and the design of the controller for collision avoidance and
obstacle avoidance, where both designs are also mathemati-
cally proven to meet the system requirements, respectively.

A. Formation controller

In complex MAS, there exist many tracking trajectory
problems, and graph theory is used to connect these problems
in series to accomplish the control objectives. Therefore,
in the complex MAS, the formation position and velocity
tracking errors ϵpi , ϵ

v
i and the formation controller input uf

i of
the system are as follows [34]:

ϵpi =
∑
j∈Ni

aij(e
p
i − epj ) + bi(e

p
i )

ϵvi =
∑
j∈Ni

aij(e
v
i − evj ) + bi(e

v
i )

(18)

uf
i = −Ŵ⊤

i Hi(zi)− ki(ϵ
p
i + ϵvi ) (19)

where ϵpi = [ϵpi1, ϵ
p
i2, · · · , ϵ

p
im]⊤ ∈ Rm, ϵvi =

[ϵvi1, ϵ
v
i2, · · · , ϵvim]

⊤ ∈ Rm, ki are positive constants,
˙̂
W is given in the following form:

˙̂
Wi(t) = Γ(ϵpi + ϵvi )Hi(zi)− σiŴi(t) (20)

where Γ and σi are positive constants.

B. Obstacle avoidance and collision avoidance controller

According to the above improved APF method, six kinds
of control signals are added respectively for formation con-
trol uf

i , and local minima control ulm
i , leader and obstacle

avoidance control ulo
i , follower and obstacle avoidance con-

trol ufo
i , collision avoidance control ulf

i between follower
and leader, collision avoidance control uff

i between follower,
and their controller formulas are as follows:

ul = ulo
i + ulf

i + ulm
i

ui =
1

gi(·)
(uf

i + ufo
i + ulf

i + uff
i )

(21)

where ulo
i , u

fo
i = Foa, u

lf
i , uff

i = Fca, u
lm
i = |Fc|.

Theorem 1. Consider the MAS with time delay and external
disturbance under the formation controller (19) and obstacle
avoidance controller and collision avoidance controller (21),
and choose the correct parameters. The MAS will complete
the formation control and obstacle and collision avoidance
at the same time.

Proof: The purpose of obstacle avoidance and collision
avoidance is to make the distance between agents or the
distance between agents and obstacles will not fall below
the threshold, so according to this analysis, this proof will
revolve around the relative distance between agents dca and
the relative distance between agents and obstacles doa.

Define the energy function S1(t), S2(t) as follows:

S1(t) =
1
2d

⊤
ca(t)dca(t) +

1
2v

⊤
i (t)vi(t) (22)

S2(t) =
1
2d

⊤
oa(t)doa(t) +

1
2v

⊤
l (t)vl(t) (23)

The time derivative of (22):

Ṡ1(t) =d⊤ca(t)
˙dca(t) + v⊤i (t)v̇i(t)

=d⊤ca(t)(ṗi(t)− ṗj(t)) + v⊤i (t)(fi(·)
+ δ(t) + gi(·)ui(t))

=d⊤ca(t)(vi(t)− vj(t))− v⊤i W̃i
⊤
(t)Hi(zi)

− kiv
⊤
i (t)(ϵ

p
i (t) + ϵvi (t))

+ v⊤i (t)fl(·) + ωcav
⊤
i (t)∇ϕca(∥dca∥)

(24)

Ṡ2(t) = d⊤oa(t)
˙doa(t) + v⊤l (t)v̇l(t)

= d⊤oa(t)ṗl(t) + v⊤l (t)(fl(·) + ul)

= d⊤oa(t)vl(t) + v⊤l (t)fl(·) + v⊤l ωoa∇ϕoa(∥doa∥)
(25)

According to assumptions1, 2, and 3, we know that
fl, ϵ

p
i , ϵ

v
i , vi(t), vl(t), W̃i(t)Hi(zi) are bounded and the re-

pulsive function ∇ϕ(∥dca∥) tend to infinity under the con-
dition that the parameters are designed to be large enough.
In summary, there are the following inequalities

v⊤i (t)∇ϕca(∥dca∥) >
1

2
d⊤cadca(t) +

1

2
v⊤i (t)vi(t)

− 1

ωca
d⊤ca(t)(vi(t)− vj(t)) +

1

ωca
v⊤i (t)W̃i

⊤
(t)Hi(zi)

+
ki
ωca

v⊤i (t)(ϵ
p
i (t) + ϵvi (t))−

1

ωca
v⊤i (t)fl(·)

(26)

v⊤l (t)∇ϕoa(∥doa∥) >
1

2
d⊤oa(t)doa(t) +

1

2
v⊤l (t)vl(t)

− 1

ωoa
v⊤l (t)fl(·)−

1

ωoa
d⊤oa(t)vl(t)

(27)
Substituting the inequality 26 into 24 and 25, respectively:

Ṡ1(t) > ωcaS1(t) (28)

Ṡ2(t) > ωoaS2(t) (29)

According to 2, the inequality can be obtained

d⊤ca(t)dca(t) > 2eωca(t−t0)S1(t)− v⊤i (t)vi(t) (30)

d⊤oa(t)doa(t) > 2eωoa(t−t0)S2(t)− v⊤l (t)vl(t) (31)

Because vl(t), vi(t) is continuous and bounded, combined
with inequalities (30, 31), we can design the appropriate ωca

and ωoa so that d2ca > (ro + rw)
2, d2oa > (ρo + ρw)

2 is sat-
isfied, which collision avoidance and obstacle avoidance can
be guaranteed, the proofs of the other two types avoidance
are in the same way.

Fig. 3: Communication topology graph
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IV. SIMULATION EXAMPLE

Comparative experiments in the form of simulation will
be conducted to verify the robustness of the improved APF
algorithm.

First, the topology diagram 3 of leader and follower is
given, its B-matrix is diag[1, 0, 0, 0] and its Laplacian matrix
is as follows:

L =


2 −1 −1 0
−1 2 0 −1
−1 0 1 0
0 −1 0 1



-5 0 5 10 15 20 25
-5

0

5

10

15

20

Y

X

Follower4

Follower1

Follower2

Leader
Follower3

Fig. 4: Trajectory diagram of formation control

Since the simulated system is a MAS based on two-
dimensional planar motion, dimension m = 2, and the
number of agents n = 4, the dynamic equation for the
follower agent is as follows:

ṗi =vi

v̇i =

[
αi1 cos

2 pi1vi2
αi2 sin

2 pi2vi2

]
+

[
sin(t) cos(t)
sin(t) cos(t)

]
+

[
1 + βi1 cos

2 pi1pi2 0
0 2 + βi2 sin

2 vi1vi2

]
ui

where α, β is given as table I,
[

sin(t) cos(t)
sin(t) cos(t)

]
is the

TABLE I: Value of α and β

i 1 2 3 4
αi1 0.3 -0.6 0.5 -0.3
αi2 0.4 0.2 -0.8 -0.9
βi1 0. 3 0.7 0.6 1.3
βi2 0.5 -0.2 -0.8 -1.0

external disturbance vector, the time delay τ = 40ms.
The dynamic equation of the leader agent is designed as

follows:
ṗl = vl

v̇l =

[
0.07
0.05

]
+ ul

The initial position of the two agents and the formation
position is given as p1 = [−4,−2]⊤, p2 = [0,−2]⊤, p3 =
[0, 2]⊤, p4 = [−4, 2]⊤, pl = [6, 2]⊤, Ξ1 = [0, 3χ]⊤, Ξ2 =
[−

√
3χ, 0]⊤,Ξ3 = [

√
3χ, 0]⊤, Ξ4 = [0, χ]⊤, χ = 2

3 .
The parameters of RBFNN are as follows: the kernel

function is chosen as a Gaussian function, the width of the
function KN = 2, the number of nodes j = 36, and the range
of the composition of numerous nodes is [−3, 3] × [−3, 3],
for the formula of the update of the neural network weights,
Γ = 20, σi = 0.0001.

For the control of collision avoidance and obstacle avoid-
ance, the warning distance ro = 0.2, rw = 0.2 and the safety
distance rs = 2 for obstacles, and the warning distance
po = 0.5, pw = 0.5 and the safety distance ps = 2.5 be-
tween agents. The repulsion coefficients of the four repulsion
functions are as follows: ωca = 1, ωoa = 0.5,K = 0.1. In
addition, ki = 5, the normal force coefficient kc = 20, the
threshold of the angle between drive and repulsion ζ = 30.

In the absence of environmental obstacles, the overall
formation, as illustrated in Figure 4, transforms over time,
transitioning from its initial rectangular shape to that of a
triangle. Moreover, Lyapunov-based Radial Basis Function
(RBF) neural network control enables the accurate adaptation
of the uncertain nonlinear dynamical equation, as depicted
in Figure 5.

For the consensus of the MAS, we give Figure 6, from
which it can be seen that the position and velocity have
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Fig. 5: Approximation of neural network control
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Fig. 7: Comparison of traditional APF and improved APF

Engineering Letters

Volume 32, Issue 3, March 2024, Pages 493-502

 
______________________________________________________________________________________ 



0 5 10 15 20

0

2

4

6

8

10

12
 Distance
 Threshold

Di
st

an
ce

 b
et

w
ee

n 
le

ad
er

 a
nd

 fo
llo

w
er

s

time s

(a) Distance between leader and followers

0 5 10 15 20

0

1

2

3

4

5

6

Di
st

an
ce

 b
et

w
ee

n 
fo

llo
w

er
s

time s

 Distance
 Threshold

(b) Distance between followers

0 5 10 15 20
0

2

4

6

8

10

12

14

Di
st

an
ce

 b
et

w
ee

n 
le

ad
er

 a
nd

 o
bs

tru
ct

io
ns

time s

 Distance
 Threshold

(c) Distance between leader and obstacles

0 5 10 15 20
0

5

10

15

20

25

Di
st

an
ce

 b
et

w
ee

n 
fo

llo
w

er
s 

an
d 

ob
st

ru
ct

io
ns

time s

 Distance
 Threshold

(d) Distance between followers and obstacles

Fig. 8: The distances of four cases

achieved the consensus.
In Figure 7(a), the coordinate of the obstacle is [13, 7]⊤,

and what can be seen is that the leader agent traps in the
local minima similar to Figure 1(a) when using the traditional
APF method. However, when we use the improved APF
method, as shown in Figure 7(b), the leader agent bypasses
the obstacle and keeps moving until the time runs out.

In another case, when there is more than one obstacle, the
agent will also fall into local minima, so let the coordinates
of the obstacle be [15, 9.45]⊤, [16, 8]⊤. In Figure 7(c), it can
be seen that the agent is similar to 1(b) when using the
traditional APF method. The agent is caught in the local
minima when using the improved APF method, and the
leader agent will escape from the local minima trap based
on the traction of the normal force.

The comparative tests show that the improved APF method
is effective compared to the traditional APF method when
used in MAS.

To show the superiority of the algorithm’s collision
avoidance and obstacle avoidance performance, we will give
a harsh environment that includes multiple obstacles and
changes of initial conditions, and the results can confirm
the robustness of the algorithm and the coordinates of the
obstacles in the simulation are as follows:
[8, 6]⊤, [9, 6]⊤, [10, 6]⊤, [12,−1]⊤, [12, 0]⊤, [12, 1]⊤, [17, 6]⊤

[18, 5]⊤, [19, 4]⊤. The distances in the four cases are shown
in Figure 8, the obstacle avoidance and collision avoidance
experiments under four cases are indicated respectively, and
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Fig. 9: Formation trajectory diagram of multiple obstacles

the horizontal line in the figure represents the minimum
distance of the upcoming collision, i.e., ρo+ρw and ro+rw,
if it is lower than this value, a collision will occur, so it
can be seen that the improved algorithm can realize the
collision avoidance and obstacle avoidance requirements
under the real sense, and to see the effect of formation
obstacle avoidance and collision avoidance more intuitively,
the trajectory diagram as shown in Figure 9 is given.
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V. CONCLUSIONS

In this paper, the formation control with external distur-
bance and time delay for second-order nonlinear MAS were
completed by improved APF method and RBFNN adaptive
control under the leader-follower framework. External distur-
bances and time delay conditions often encountered in real-
istic environments are incorporated into the MAS. Adaptive
approximating of unknown complex nonlinear functions in
systems using RBFNN. Based on the improved APF method,
the problem of trapping in the local minima, which still needs
to be solved in most of the papers about MAS formation
control, is solved, and four situations of collision avoidance
and obstacle avoidance control are also added. At the same
time, we give the mathematical proof which can verify the
idea above. At last, The simulations were given to confirm
the superiority and generality of the algorithm and control
design.

Our future work will focus on the problem of high-
order MAS formation control and the problem of obstacle
avoidance based on dynamic obstacles.
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