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Abstract—In response to the imperative challenges associated
with global path planning and dynamic obstacle avoidance for
mobile robots navigating dynamic environments, we introduce a
hybrid path planning methodology that synergistically combines
an enhanced A* algorithm with an optimized dynamic window
method. In the refined A* algorithm, an adaptive weight heuristic
search function that comprehensively considers Manhattan
distance and Euclidean distance is designed to improve the search
efficiency; secondly, a redundant point elimination method is
proposed to delete redundant paths node and perform path
pruning, and then use Minimum Snap to smooth and optimize the
pruned path. To address challenges associated with both random
obstacle avoidance and dynamic obstacle avoidance, the fusion
algorithm delineated in this study incorporates the global path
nodes, derived through enhancements to the A* algorithm, as
local target points while also employing the optimized dynamic
window method for local path planning. The experimental results
indicate that, on average, the improved A* algorithm can decrease
the path length by 17.2% and reduce the number of search nodes
by 62.3% compared to the conventional A* algorithm. After
integrating and optimizing the dynamic window method, it can
realize random obstacle avoidance and dynamic Avoidance.

Index Terms—Dynamic obstacle avoidance, Heuristic function,
Dynamic window method, Hybrid path planning

I. INTRODUCTION

Path planning stands as a pivotal technology in the research
of autonomous robots, exerting a vital influence in the
domain of mobile robot navigation. Path planning is
categorized according to the robot's knowledge of map
information, distinguishing between global path planning,
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contingent upon pre-existing global data [1-2], and local path
planning, predicated on dynamic local information [3-4].

The A* algorithm [5-7] stands as a widely employed graph
search method for addressing global optimal pathfinding in
static environments. Integrating heuristic search with the
Dijkstra algorithm, it boasts advantages such as concise path
planning and computational simplicity. Nevertheless,
traditional A* algorithms exhibit limitations, including
elevated time complexity, suboptimal path smoothness, the
presence of redundant nodes, and a tendency to closely
approach obstacles. In light of these deficiencies, SisLak et al.
introduced the Accelerated A* algorithm [8], aiming to
enhance search efficiency while preserving optimality. This
algorithm employs a heuristic distance estimation method to
mitigate the computational complexity of each node,
expediting the path planning process. However, it lacks
consideration for safe distances from obstacles. Liu et al. [9]
explored into the impact of the parent node of the current node
on the search path, integrating information from the parent
node into the heuristic function, and adjusting its weight to
minimize the number of search nodes. Min Haitao proposed an
enhanced A* algorithm [10], which circumvents collisions by
delineating redundant safety spaces and introduces path
curvature cost into heuristic function design to improve path
smoothness. Cao P et al. introduced an Any-Angle A*
algorithm grounded in visibility graphs [11], enabling path
searches from any angle, thereby reducing path length and
search space. Cheng Chuangqi et al. [12] proposed a strategy for
key point selection, aiming to eliminate redundant nodes and
unnecessary turning points. In dynamic environments,
Likachev et al. introduced the real-time A* search algorithm,
known as the D* algorithm [13-14], effectively addressing
dynamic alterations. Toll and Geraerts further contributed to
this domain by devising a dynamic pruning A* algorithm
tailored for replanning in navigation grids [15]. Dakulovi et al.
introduced a bidirectional D* algorithm utilizing weighted cost
maps for path planning and replanning [16]. However, the D*
algorithm and reprogramming methods exhibit limitations in
large dynamic environments, with path search times escalating
with increasing map size [17].

The Dynamic Window Approach (DWA) algorithm
integrates sensor information for real-time local path planning
of robots and exhibits excellent dynamic obstacle avoidance
capabilities. Missura M proposed an enhanced version of the
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DWA algorithm [18], which incorporates the movement of
other objects in the environment. It predicts future collisions by
establishing a dynamic collision model, leading to a notable
decrease in collision occurrences compared to conventional
DWA algorithms. Additionally, Mai Xiquan et al. [19]
introduced an evaluation subfunction related to obstacle
distribution density in the DWA evaluation function. This
enhancement enables the robot to proactively accelerate and
avoid entering densely populated obstacle areas. EDUARDO et
al. [20] proposed the DW4DO and the DW4DOT
methodologies to effectively address dynamic obstacles within
the framework of conventional dynamic window algorithms.
This modification contributes to an enhancement in the
algorithm's safety and stability.

Characterized by an incapacity to discern dynamic obstacles
within the environment, the global path planning algorithm is
deficient in its ability to dynamically avoid them. Conversely,
the local path planning algorithm is vulnerable to converging
towards local optima, and its capacity to ensure the realization
of a viable solution remains uncertain. Consequently, path
planning algorithms tailored for dynamic environments must
possess the capability to perform global path planning and
dynamic obstacle avoidance simultaneously. In this paper, the
improved A* algorithm is initially employed for global path
planning. Subsequently, the optimized dynamic window
algorithm is utilized to undertake local path planning, taking
into account both the global path information and dynamic
changes in the environment. This approach aims to enhance the
practicability and flexibility of the algorithm.

II. IMPROVED A* ALGORITHM

The A* algorithm is a graph search algorithm based on
heuristic search principles, representing an enhancement of
Dijkstra's algorithm. Its foundational principle entails
designating the initial parent node as the starting reference
point. The algorithm progresses through the exploration of the
child nodes in the vicinity of the parent node, systematically
calculating the expense value for each child node. The
subsequent selection of the next parent node is contingent upon
identifying the node with the smallest cost value among the
children. This process iterates until the search node
encompasses the target point. The ultimate formation of the
global path entails connecting from the starting point, the target
point, and all parent nodes. The search for child nodes is
primarily conducted in four or eight directions, and node
management is facilitated through two lists: Openlist and
Closelist. Openlist stores the extended child nodes, while
Closelist houses obstacle nodes and previously expanded
parent nodes. The cost function associated with the node is

f) =g+ h(n) (1

7 is the present node, g () denotes the actual cost incurred
from the origin to node n, h(n) is the heuristic estimated cost
from node n to the final destination. Evaluation function f(n)
is used to determine the direction of the search, each time the
next node is selected, the subsequent node in the search process

is determined by selecting the one with the minimum value of
the variable f(n) .

The global path produced by the conventional A* algorithm
often exhibits numerous redundant nodes, fragmented paths,
and substantial turning angles at key nodes, which may not
conform to the kinematic principles of mobile robots. In
response to these challenges, this paper introduces an enhanced
A* algorithm. Initially, a heuristic function is formulated,
integrating both Manhattan distance and Euclidean distance, to
more accurately approximate the actual cost, thereby enhancing
search efficiency. Subsequently, the triangular pruning method
is applied to systematically eliminate redundant points in the
path, resulting in a reduction in its overall length. Finally, to
mitigate the adverse effects of excessive turning angles on the
operational stability of mobile robots, the Minimum Snap
technique is employed to smooth and optimize the path.

A. Heuristic Function Optimization

The selection of the heuristic function i(n) significantly
influences the efficiency and correctness of the A* algorithm.
For the assurance of discovering the optimal path, s(n) should
not exceed the actual expense from node n to the goal
node. h(n) = d(n, goal) , d(n,goal) represents the actual
expense of node n to the goal node. The smaller the value of
h(n), the more nodes the algorithm will traverse, which in turn
will cause the algorithm to run slower. The algorithm's
performance improves as the value of h(n) approaches the
actual cost.

hy(n) = Ixn _xgoaI] + ]yn _ygoaI] )
he(m) = ((xn — xgaai)z + On _ygoal)z) (3)
X, and y, 1is the abscissa and ordinate of the present

node, Xgoq;and Ygoq; are the abscissa and ordinate of the target
node, h,(n) is a heuristic function using the Manhattan
distance, /i, (1) is a heuristic function using Euclidean distance.
In this study, a heuristic function is formulated by integrating
both Manhattan distance and Euclidean distance to closely
approximate the actual cost. As the current node moves
significantly away from the target node, the Euclidean distance
becomes noticeably smaller compared to the actual distance.
This discrepancy results in an increased number of search
nodes within the algorithm, consequently impeding operational
speed. At this time, the weight of &, (n) should be reduced and
the weight of &1, (n) should be increased; when the present node
is closer to the goal node, the Euclidean distance is close to the
actual distance. At this time, the weight of h.(n) should be
reduced and the weight of h,,(n) should be increased. The
improved cost function is shown below.

fm) =g + w¥2p(m)h, () + (1 — p(M)hn () (4)

lxn —xstartltyn —Vstart| (5)

p(n) =

|xgoa!' ~Xstart |+ |ygoa!' ~Ystart|

p(n)denotes the fraction representing the proportion of the
Manhattan distance from the present node to the goal node in
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relation to the total distance, Xgtqpr and Vqre are the abscissa
and ordinate of the target node, w is the weight of the heuristic
function.

In order to substantiate the effectiveness of the enhanced
heuristic function, a rigorous experimental evaluation was
performed on a 50x50 grid map. With the parameter value
configured at 2, the optimized A* algorithm meticulously
traversed 451 nodes, whereas its traditional counterpart,
employing Euclidean distance, systematically explored 1197
nodes. Notably, in contrast to the extensive node exploration
undertaken by the traditional A* algorithm, the optimized
variant showcased a marked reduction of 62.3% in the total
number of nodes surveyed. The graphical representation of
these findings is visually depicted in Figure 1(a) and (b).

B. Redundant Point Elimination Method

The trajectory produced by the A* algorithm typically
encompasses redundant nodes, implying that certain nodes
along the trajectory can be bypassed without altering the
ultimate path outcome. Failure to eliminate these redundant
nodes may lead to an increase in the length and complexity of
the trajectory, thereby diminishing the path's reliability. The
schematic representation of the redundant point elimination
process is delineated in Figure 2.

1) Using the path nodes produced by the A* algorithm as
input, create and initialize the node set AstarNset. Create a key
node set KeyNset to store optimized path nodes. The initial
value is {n,,n,,}, where n, signifies the path's inception, n,,
represents the designated target, and m is the number of nodes
in the path generated by A*.

2) Connect 73,74,-:+,1; sequentially from n; to assess
whether the straight line n;n;
passes through obstacles, then n;_; is a key node, and it is
added to the KeyNset set; Otherwise, it is judged that n,,:+, n;
is a redundant node, and the nodes in AsatrNset are connected
backwards from n; until it is connected to the target node. At
this time, the KeyNset collection contains all key nodes, and the
value is {ny, -, g, =+, Nyt

3) Connect all the key nodes in KeyNset in sequence, so far
the optimization is completed.

To validate the effectiveness of the redundant node removal
method, a comparative analysis was conducted between the
conventional A* algorithm and the A* algorithm enhanced by
the redundant point removal method and path pruning. The
evaluation was performed on grid maps of dimensions 20 x 20
(Fig 2(a)) and 50 x 50 (Fig 2(b)). The optimized A* algorithm
exhibited a noteworthy reduction in turning points, with
decreases of 37.5% and 26% for the 20 x 20 and 50 x 50 grid
maps, respectively. Additionally, the optimized A* algorithm
demonstrated a decrease in path length of 19.3% and 15.1% for
the corresponding grid configurations when compared to the
traditional A* algorithm.

intersects with obstacles. If it

C. Minimum Snap Smoothing Optimization

Despite the optimization achieved through the redundant
point elimination strategy, the resulting path still lacks the
desired smoothness. During the execution of this path by the

mobile robot, it may encounter numerous sharp turns and
require frequent acceleration and deceleration operations.
These factors contribute to heightened energy consumption,
increased difficulty in robot control, and diminished driving
efficiency. In response to this, the Minimum Snap algorithm, a
trajectory smoothing technique based on polynomial
optimization, is introduced. This algorithm generates a
seamlessly smooth trajectory by imposing penalty terms on the
derivatives of polynomials. Typically, the trajectory can be
effectively represented by an nth-order polynomial.

p(0) =po + pit +p2t? . APttt =Xl opitt (6)

Po, P1, P2, - -+, Dp 18 a trajectory parameter. Given the inherent
simplicity of a polynomial curve, accurately capturing the
complexities of a trajectory presents challenges. To address this,
a segmentation approach based on time is employed. Each
segment is depicted by a polynomial curve to enhance the
description of the trajectory.

Lt,t*,..,t"] t<t<t
D 0 1
() = (Lt,0%,...t" ] p, t<t<t,
Lt,t,....t"] t <t<t
Dr k-1 k

(7

k represents the quantity of trajectory segments, and
Pi = [Pio» Pi1, Piz,---» Pin] 15 the parameter vector of the i-th
segment trajectory. Each trajectory is represented by an nth
order polynomial with the same time interval. Construct the
Minimum Snap optimization function.

k k
minY. [ (p (1)) dt =min}. p'Q.p ®)
=1 i-1
04><4 04x(n73)
0= ) r! c! 1 ( (reeT) _ yrve=7)
UG ) (= (=4 + (c—4)+1 o ©9)

The matrix is indexed by the row and column values
represented by r and ¢ respectively. Solving the entire trajectory
to minimize the Snap problem can be converted to solving each
curve, minp” Q p can see that this is a quadratic programming
problem. Construct equality constraints for position, first
derivative, and second derivative.

[1to,t3, .., t5, 0...0 Ip=po (10)
(k-1)(n+1)
[0,1,2¢,,...,ntl" L, 0.0 Tp=w (11)
(k—1)(n+1)
[0,0,2,...,n(n— 1)tF 2, 0...0 Ip =ag (12)
(k—1)(n+1)

Construct equality constraints for the positions, first
derivatives, and second derivatives between adjacent segments.
The equality constraints between segment i and segment i-1 are
shown below.

[0..0 ,Lt,t,..t! =1, ~t,~t7,...~t", 0..0 [p=0 (3)
(i=D)(n+1) (k=1)(n+1)
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To assess the efficacy of Minimum Snap smoothing
optimization, simulation verification is carried out on two
different 10 X 10 grid maps, and the results are shown in Figure

4(a) and (b).

III. IMPROVED DWA ALGORITHM

The fundamental principle underpinning the dynamic
window method revolves around the meticulous definition of
the spatial realm wherein a robot can feasibly traverse during
the trajectory planning process. This space comprises all points
that the robot can reach within a specified time frame.
Subsequently, a dynamic window is identified within this
feasible space, expressing the spectrum of feasible linear and
angular velocities accessible to the robot within the designated
time interval, while incorporating safety buffers to account for
distances in potential collisions. Utilizing the dynamic window,
the motion model is employed for path planning, ultimately
resulting in the selection of an optimal trajectory.In this study,
we enhance the evaluative mechanism of the established
Dynamic Window Approach (DWA) algorithm by integrating
supplementary  sub-functions, thereby enriching its
computational capabilities for trajectory planning. These
include an evaluation sub-function related to the distance of
dynamic obstacles and another sub-function that specifically
characterizes and quantifies the extent of deviation from the
predefined global path, thereby contributing to a more refined
and comprehensive evaluation within the algorithmic
framework. Addressing the single-motion state limitation of the
traditional DWA algorithm, we introduce two new motion
states, brake waiting and follow-up, to better adapt to dynamic
environmental conditions.

A. Robot Motion Model

Forecasting the motion state of the robot is imperative in the
dynamic window algorithm, followed by the generation of the
motion trajectory according to the sampling speed (v, @) and
the motion model. Under the assumption that the robot is
constrained to move solely in the forward direction or undergo
rotation, the robot's motion within an extremely brief time
interval is approximated as uniform linear motion, and the
motion model is shown in formula (14).

x(t+A0)Y)  (x()+v(t)*cos(6(1)) * At

y(+AL) |=| y(&)+v(t)*sin(8(2)) * At
O(t+Ar) O(t)+ a(t) * At

(14)

B. Velocity Sampling

In accordance with the limitations imposed by the robot's
performance characteristics and environmental obstacles, the
velocity space is constrained to obtain a dynamic window of
velocity. The mobility of the robot is constrained by both its
maximum and minimum achievable speeds, and the
corresponding constraints are shown in formula (15).

(15)

I/s = {(V, a)) | ve [vmin s Vmax] AW E [a)min > a)max ]}

V% is the set of speeds that the robot can achieve. Affected by
the performance of the motor, the mobility of the mobile robot
is constrained by the upper limits of acceleration and
deceleration, and the corresponding constraints are shown in
formula (16).

v, ={ma)| vely, -y, +7 M Aoelg-gN, g +oA)(16)

The velocity parameter V; is governed by limitations
imposed by both the upper bounds of acceleration and
deceleration, ©;, denotes the upper limit for linear velocity
acceleration, whereas @) indicates the maximum acceleration
achievable for angular velocity in this context. To prevent
collisions with obstacles, the speed is subject to constraints as
shown in equation (17).

V= {(v, )| v <\ 2dist(v, 0)v, A <\2dist(v, )0, } (17)

The velocity space {(v,w)|(v, w) € V; N Vy N V,} satisfying
the three constraints constitutes the dynamic window of
velocity.

C. Improved Evaluation Function

The speed is sampled in the dynamic window, estimating the
motion trajectory involves applying the motion model,
introducing an evaluation function, scoring the trajectory, and
ultimately selecting the optimal trajectory. Because the
traditional dynamic window method is prone to converging
towards local optima, the integration of global path information
is performed in this paper to establish the sub-function for
evaluating the global path. The improved evaluation function is
shown in formula (18).

G(v,w) = o(a * heading (v, w) +  * dist(v, ®)
+ udist, (v, ®) + yvel(v, @) (18)

+w Path(v, ))

heading(v,®) serves as the azimuth evaluation function,
assessing the angular disparity between the final orientation of
the currently predicted trajectory and the target point.
dist(v,w) and dist, (v,w) are obstacle distance evaluation
functions, dist(v,®) measures the spatial separation between
the terminal point of the currently projected trajectory and
stationary obstacles, and dist, (v, ) assesses the proximity of
the current predicted trajectory's end to dynamic obstacles.
vel(v,w) as the speed evaluation metric, scrutinizing the
robot's current linear speed to facilitate an expeditious approach
towards the target point. Path(v,w) as the evaluation metric for

global path offset, determining the distance between the
endpoint of the current predicted trajectory and the global path.

D. Optimized motion state

In the conventional dynamic window method, the motion
process usually revolves around a singular state, wherein the
robot navigates towards the target point while consistently
evading obstacles. The robot maintains its trajectory until the
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attainment of the target point. To overcome this limitation, this
paper introduces the notion of behavior states, integrating two
supplementary motion states: braking waiting and maintaining
following. Through the utilization of information derived from
behavior states, the optimized dynamic window method can
adeptly strategize obstacle avoidance paths, thereby
diminishing turning angles and augmenting the overall
performance of obstacle avoidance.

In situations involving a dynamic L-shaped trap, the
conventional dynamic window method may give rise to
suboptimal trajectories characterized by pronounced turning
angles or close alignment with the obstacle's direction of
motion. To mitigate this challenge, the present study proposes
the incorporation of a motion state denoted as "brake waiting."
This state is activated contingent upon the satisfaction of the
following conditions: (1) The moving obstacle is positioned in
the forward trajectory of the robot; (2) The proximity of the
robot to the obstacle is less than a specified threshold, denoted
as dl; (3) The speed of the obstacle surpasses a defined
threshold, denoted as v1; (4) The angle deviation between the
obstacle's motion direction and the robot's planned trajectory
surpasses 45°, as depicted in Figure 5. Under these prescribed
conditions, the robot undergoes a temporary cessation of
movement, affording the moving obstacle the opportunity to
vacate the planned path before recommencing its trajectory.
The parameters d1 and vl can be subject to customization to
align with the specific operational exigencies of the robotic
system.

d

/_/H

d<d,

Vobstacle < Vl

moving
obstacles

0= 45°

\ »
i ~A
!

Figure.5. the motion state of brake waiting

When a moving obstacle is positioned ahead of the robot,
and its trajectory closely aligns with or mirrors that of the robot,
the traditional dynamic window method typically resorts to
circumventing the obstacle to the left or right. However, in
practical movement scenarios, it is often more optimal for the
robot to follow the path of the obstacle. To address this, our
paper introduces an additional follow-up motion state under the
following conditions: (1) The moving obstacle is situated along
the global path ahead of the robot; (2) The proximity to the
robot is within a distance less than d2; (3) The velocity of the
obstacle exceeds 2/3 of the robot’s maximum speed constraint;
(4) The angular disparity between the obstacle's trajectory and
the present orientation planned by the robot is less than 25°, as
depicted in Figure 6. During such circumstances, the robot
maintains its original route and sets the maximum speed
constraint to match the moving velocity of the obstacle. The

value of parameter d2 is subject to adjustment based on the
unique circumstances of the robot.

d=d,
Vobstacle 2 Vmax
| |

moving
obstacles

< 25°
Figure.6. the follow-up motion state

To confirm the improved performance of the refined DWA
algorithm in dynamic obstacle avoidance, an experimental
simulation is carried out. Let i be 0, temporarily disregarding

the deviation of the planning path from the global trajectory.
The red square denotes a moving obstacle, and the red dotted
line is its trajectory. In Figure 7(a), the angle formed by the
robot and the dynamic obstacle exceeds 45° , prompting the
robot to enter a braking waiting state, anticipating the obstacle's
clearance from the path. Within the transition from Figure 7(a)
to Figure 7(b), the angular difference between the robot and the
dynamic obstacle is below 25 ° , and the robot maintains a
slightly adjusted original route. Ultimately reaching the
designated target point, as depicted in Figure 7(d).

IV. FUSION ALGORITHM

Within a dynamic environmental context, it is imperative for
robots to promptly perceive alterations within their
surroundings and make corresponding decisions in real-time.
The A* algorithm utilizes a guiding function to assess the
expense associated with the proximity of each node to the target.
Subsequently, it selects the subsequent node by considering
both the cost and the path taken to arrive there. While the A*
algorithm guarantees the discovery of the shortest path, its
practical application for real-time navigation may be
constrained by map complexity and computational resources.

Conversely, the Dynamic Window Approach (DWA)
algorithm empowers robots to dynamically adjust their speed
and angular velocity within the dynamic environment in
response to perceived dynamic obstacles. If the perception
system detects an obstacle approaching the robot's path, the
DWA algorithm can opt to modify the robot's speed or angular
velocity to avert potential collisions.

The fusion of an enhanced A* algorithm with the Dynamic
Window Algorithm allows the robot to simultaneously consider
the global optimal path and engage in dynamic obstacle
avoidance throughout the path planning process. Initially, The
global optimal path is determined through the utilization of the
improved A* algorithm. Subsequently, select key nodes within
the global path node sequence as local target points guiding the
Dynamic Window Approach in the formulation of the local
path. The workflow of the integrated algorithm is illustrated in
Figure 8.
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Figure.8. Fusion algorithm flowchart

V. SIMULATION AND ANALYSIS

To validate the efficacy of the enhanced A* algorithm
integrated with the Dynamic Window Algorithm (DWA), the
fusion algorithm is simulated and verified within the Matlab
2022b environment. Two sets of simulation experiments are
configured—one under static environmental conditions and the
other under dynamic environmental conditions.

A. Simulation Analysis of Fusion Algorithm in Static
Environment

The path planning process is conducted on 20x20 and 30x30
grid maps, utilizing the traditional A* algorithm, the enhanced
A* algorithm, the conventional DWA algorithm, and the novel
fusion algorithm introduced in this study. On the 20x20 grid
map, coordinates (1m,1m) mark the initial position, and

coordinates (20m,20m) represent the destination, with an

obstacle coverage rate of 17.1%. On the 30x30 grid map,
coordinates (30m,30m) represent the designated target location,

with an obstacle coverage rate of 17.6%. The motion
parameters for the robot in the conventional Dynamic Window
Algorithm are: the highest linear velocity is 2m /s, the highest
angular velocity is 0.35rad /s , the acceleration is 0.2m/s” ,
and the rotation acceleration is 0.87ad /s> . The motion
parameters in the fusion algorithm are consistent with those of
the conventional DWA algorithm. The outcomes of path
planning are illustrated in Figure 9, accompanied by a
performance comparison of the four algorithms presented in
Table 1.

After analyzing the data presented in Table 1,Demonstrating
a noteworthy reduction in path length by 12.02% and 8%,

respectively, the enhanced A* algorithm stands out in
comparison to the conventional A* algorithm. And resulting in
a substantial reduction in search nodes by 61% and 58.88%,
respectively. However, The induction of collision scenarios is
observed in both the upgraded A* algorithm and the
conventional A* algorithm, posing a potential risk to the safety
of the robotic system.

On the contrary, while the traditional DWA algorithm
prioritizes path safety and dependability, it demonstrates path
lengths on the two grid maps that are 1.46 times and 1.68 times
greater than those achieved by the enhanced A* algorithm. In
this paper, we propose a fusion algorithm that utilizes the
enhanced A* algorithm for initial path planning, followed by
the seamless integration of the improved DWA algorithm to
manage obstacle avoidance in the immediate vicinity.
Consequently, it preserves the advantageous characteristics of
the improved A* algorithm regarding search node count and
path length, all the while facilitating efficient maneuvering
around local obstacles.

B. Simulation Analysis of Fusion Algorithm in Dynamic
Environment

To gauge the effectiveness of the fusion algorithm in random
obstacle avoidance, two distinct series of simulation
experiments were executed on a 30x30 grid map. One set
pertained to a solitary undisclosed obstacle, whereas the other
encompassed multiple unidentified obstacles. The simulation
results are illustrated in Figure 10, and comprehensive
simulation data can be found in Table 2. Notably, the yellow
squares in the figures represent random obstacles introduced
subsequent to the preliminary phase of path planning in the
enhanced A* algorithm.

In Figure 10(a), a solitary random obstacle is positioned
along the path pre-determined by the enhanced A* algorithm.
Employing the global path node as the local target point for
path planning, the robot temporarily diverges from the globally
optimal trajectory due to the imperative of avoiding random
obstacles. In Figure 10(b), two random obstacles are introduced
based on the configuration in Figure 10(a), with one of them
positioned at a certain distance from the globally optimal
trajectory and not impacting the path planning of the fusion
algorithm. Another random obstacle is in proximity to the
optimal global trajectory, and the fusion algorithm needs to
temporarily stay away from the global path to avoid this
obstacle. According to Table 2, in order to avoid the third
random obstacle within the fusion algorithm, the length of the
path is 0.83m longer, and the deviation from the path arc is
0.2rad. In conclusion, the presented fusion algorithm in this
paper effectively achieves avoidance of random obstacles, and
the planned path closely approximates the globally optimal
trajectory.

To assess the fusion algorithm's capability in avoiding
dynamic obstacles, dynamic elements are introduced onto the
30x30 grid map. The improved DWA algorithm, the potental
field ant colony method [21] and the proposed fusion algorithm
in this study are simulated and subjected to comparison. The
red square is a dynamic obstacle, and the red dotted line is its
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trajectory. The outcomes of the simulations are illustrated in
Figure 11, with corresponding data detailed in Table 3.

Figure 11 illustrates the efficacy of the enhanced DWA
algorithm, the Potential Field Ant Colony (PFAC) algorithm,
and the algorithm presented in this investigation for dynamic
obstacle avoidance. The PFAC algorithm's obstacle-avoidance
path is minimally impacted by dynamic obstacles; however, it
exhibits non-smooth trajectories with numerous abrupt changes
in direction. The improved DWA algorithm, on the other hand,
skillfully navigates around dense obstacle regions, but it results
in the longest path length. The data presented in Table 3 clearly
indicates that the fusion algorithm introduced in this study not
only achieves a path with smooth obstacle avoidance but also
boasts the shortest path length among the assessed algorithms.
In contrast to the improved DWA algorithm and the PFAC
algorithm, it results in a reduction of path length by 25.8% and
12.97%, respectively.

VI. CONCLUSION

This paper introduces a innovative method for dynamic
obstacle avoidance in robotics, which integrates an enhanced
A* algorithm with an optimized Dynamic Window Approach
(DWA). This integration effectively addresses several
challenges prevalent in this domain, including issues related to
search efficiency, path smoothness, superfluous nodes, and
adaptability to navigating arbitrary obstacles within complex
environments.The algorithm manifests an autonomous
adjustment mechanism for the weighting of the heuristic
function contingent upon the robot's spatial relationship with
the goal, thereby substantiating the heightened efficacy of the
search process. It introduces a technique for eliminating
redundant path points, resulting in reduced path length, and
incorporates Minimum Snap optimization to enhance path
trajectory smoothness. Moreover, The A* algorithm is
improved to discern crucial nodes within the generated path
node sequence, serving as local destination points within the
optimized DWA algorithm. Endowing the robot with the
capability to navigate both random and dynamic obstacles, this
feature enhances its adaptability in diverse environments.

In static environments, the conventional A* and DWA
algorithms, along with their improved counterparts and the
fusion algorithm introduced in this investigation, are subjected
to simulation. The results suggest that the fusion algorithm not
only preserves the benefits of the improved A* algorithm
concerning search node count and path length but also
surpasses in local obstacle avoidance. Furthermore, the
algorithm demonstrates improved path security and real-time
performance.

In dynamic settings, extensive simulations and meticulous
testing were carried out to systematically assess the
effectiveness of the improved DWA algorithm, the PFAC
algorithm, and the fusion algorithm introduced in this study.
The results underscore the outstanding efficacy of the fusion
algorithm in he realm of dynamic obstacle evasion.
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Figure.10. Random obstacle avoidance simulation
TABLE II
RANDOM OBSTACLE AVOIDANCE SIMULATION DATA
Number of unknown Whether to successfully Length(m)  Cumulative turning arc (rad)
obstacles avoid obstacles
1 N 43.95 1.6
3 v 44.78 1.8
? %
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Figure.11. Dynamic obstacle avoidance simulation
TABLE III
SIMULATION DATA OF DYNAMIC OBSTACLE AVOIDANCE
Algorithm Length(m) Whether to successfully Smooth
avoid obstacles Path

Improved DWA 59.16 N N
ACO-APF 50.42 v X
Fusion Algorithm 43.88 \ V
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TABLE 1
SIMULATION DATA IN STATIC ENVIRONMENT
Map Algorithm Expanded Smooth Safety Length
Nodes Path

Traditional A* 192 X X 28.63

20x20 Improved A* 75 \ X 25.19
Traditional DWA ol v 36.69

Fusion Algorithm 75 \ \ 27.06
Traditional A* 428 X X 42.77

30x30 Improved A* 176 \ X 39.35
Traditional DWA ol ol 65.63

Fusion Algorithm 176 \ \ 4321
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