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Abstract—Accurate topology identification (TI) is essential
for various applications, including fault location, load flow anal-
ysis, state estimation and system planning in the distribution
networks. However, TI is vulnerable to missing measurements
that may arise due to meter malfunctions and communication
failure due to denial of service (DoS) attacks. Thus, a robust and
novel methodology for accurate TI is proposed in this study. The
proposed methodology is divided into two steps: 1) generating
the recompensed measurement data by attention mechanism-
based transformer model and 2) topology identification from the
recompensed measurement data. For evaluating the efficacy of
the proposed methodology, a comprehensive study is conducted
to assess the influence of renewable energy sources (RES) on the
prediction performance. This investigation aims to quantify the
degree to which the integration of RES influenced the proposed
approach’s efficacy and robustness. The proposed approach has
been tested and evaluated with varying percentages of missing
data such as 10%, 30% and 50%, for the modified IEEE 37 and
69 node system. In addition, a comparative study with various
reference models for the missing measurements forecasting
is also conducted. The case study results indicate that the
proposed approach outperforms other approaches in missing
measurement forecasting and TI, while also demonstrating
resilience in the context of missing measurements. The proposed
approach improved the performance of the system by more than
35% for the 10%, 30%, and 50% missing percentages in the
test systems.

Index Terms—topology, deep learning, missing, measure-
ments, forecasting

I. INTRODUCTION

CONTROL and monitoring were not important in con-
ventional distribution system because of the radial con-

nections, unidirectional power flow, and regular load patterns.
The distribution system is becoming more market-ready due
to the rapid growth of RES, mainly solar and wind energy.
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Due to frequent switching and control, distributed energy
resources can frequently affect the network topology [1].
The objective of identifying distribution network topology
is to determine the current operational topology based on
the provided distribution system model by utilising measure-
ments obtained in real-time. Hence, the accurate real-time
distribution network topology identification is challenging
task.

The majority of traditional TI methods are dependent
on the state of switches and circuit breakers across the
feeders to obtain the adjacent matrix. The utilisation of
switch statuses as a priori topology information by the
authors has been employed in the estimator to evaluate and
rectify the topology [2]. In a similar manner, the authors
in [3] employed a method of detecting changes in topol-
ogy through the assumption of an initial known topology.
However, the timely availability or completeness of updated
topology information may be compromised. In metropolitan
areas and industrial zones, feeders often comprise substantial
underground networks, making the supervision of switches
and breakers a formidable task. At the same time, the tech-
nology in the distribution system is advancing and generating
more measuring data for analysis. Control operators have
more measurement data because of advanced technology
including phasor measuring units (PMUs), improved meters,
line current sensors, and SCADA. Different parameters such
as standard deviation of voltage drop [4], voltage covari-
ance matrix [5], and the voltage phasors [6] are used to
determine whether two nodes of the system are connected.
The advancements in AI methodologies and measurement
technologies have facilitated the processing of larger datasets
for the purpose of training AI models to achieve optimal
performance in the TI. In [7], the authors developed a
TI model by formulating it as a multi-label classification
problem. And in [8], the authors proposed a deep network
model for the online TI. These models increase TI perfor-
mance but are not resilient to missing data. DoS attacks
interrupt the measuring infrastructure with malicious requests
or disrupt communication channels, making them unavailable
or unreliable. Topology identification fails due to inaccurate
and missing measurements, affecting control centres severely.

Missing measurement compensation approaches range
from the zero-order hold approach [9] to deep learning
algorithms. The power system’s non-linearity makes stan-
dard imputation methods ineffective. Deep neural network
models are well-suited for power system non-linearity. It is
noteworthy that the estimation of missing measurements can
be considered a time series prediction problem in wider terms
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[10]. Hence, from the literature on time series prediction
models, they are divided into two broad categories such as
statistical models [11], and AI-based models. The working of
statistical models involves the analysis of past data patterns
and attributes to generate forecasts on future values. The sta-
tistical models include autoregressive integrated moving av-
erage (ARIMA) [12], [13], seasonal ARIMA (SARIMA), ex-
ponential smoothing methods, vector autoregression (VAR),
and Bayesian structural time series (BSTS) [14]. However,
these models only work with stationary data, small-scale,
univariate systems and need extensive pre-processing. AI-
based forecasting models include machine learning [12],
[15] and deep learning models [16]. Support vector machine
(SVM) is the popular ML model. However, ML models may
not work for non-linear and large datasets of the power
system. Deep learning models can interpret and generalise
non-linear data, making them effective time series prediction
models. Recurrent neural networks (RNNs) are designed for
sequential data applications [17]. Long short-term memory
(LSTM) [18], elman neural network (ENN) [17], gated
recurrent unit (GRU) [19], and bidirectional LSTM (Bi-
LSTM) [20] models are RNN architecture variants. For
example, in [17], the authors proposed a ENN based model
for the wind speed forecasting application showcasing its
improved performance in comparison with other models.
RNNs can capture sequential dependencies and handle input
sequences of different lengths, making them suitable for
time series applications. 1-dimensional convolutional neural
network model (CNN) is also employed for time series
applications because of its spatial feature extraction property
[21], [22]. The authors used the hybrid version of the CNN
and LSTM in [23], [24].

A. Demerits of the forecasting models

Most of the authors use LSTM and the variant versions
of the LSTM model for the forecasting application. How-
ever, these forecasting models fail to forecast the missing
measurement effectively because of the complex and huge
size of the distribution system. These RNN models such
as LSTM particularly possess certain limitations, including:
a) computationally heavy b) require a larger dataset for
training c) restricted receptive field d) more memory and time
complexity. Thereby limiting the LSTM’s ability to deliver
optimal performance when processing lengthy sequential
measurement data to forecast efficiently. The presence of
missing samples highly impacts the performance of the TI
models. The accurate identification of topology is crucial,
thus efficient imputation of missing data is necessary.

B. Contributions

This study introduces a novel methodology based on
the transformer architecture aimed at resolving the above-
mentioned problems, pertaining to the forecasting and com-
pensation of missing measurements and the accurate TI.
The primary contributions of this study are as follows: To
solve the shortcomings of the LSTM model, the transformer
model is proposed for forecasting the missing measurement
data. The proposed transformer model not only exhibits
superior precision in missing measurements forecasting but
also possesses parallel processing capability, a self-attention

mechanism that enables a larger receptive field, the ability to
interpret more asynchronous relationships between dynamic
and complex measurement data and efficient memory usage.
This study involves a comparison of the performance of the
proposed transformer model with other reference models in
the context of generating the recompensed measurement data
for varying percentages of missing data, specifically 10%,
30%, and 50%. In evaluating the efficacy of the proposed
methodology, a comprehensive study is conducted to assess
the influence of RES on performance. The proposed approach
resulted in the dominating performance in both the modified
IEEE 37 node system with and without RES integration.
The scalability test of the proposed approach is conducted
using the modified IEEE 69 node system. And the results
indicate more than 35% improvements over the second-
best measurement forecasting approach when applied to the
modified IEEE 37 and 69 node system for all three levels of
missing in both cases.

C. Organization

The subsequent sections of the manuscript are structured
in the following manner: In Section II, the TI formulation is
provided. Section III outlines the methodology employed in
the proposed approach. Experimental results are present in
Section IV and the manuscript is concluded in Section V.

II. PROBLEM FORMULATION

The topology of the distribution network changes more
frequently than the mesh-connected transmission network.
The dynamic nature of topology in comparison to the trans-
mission system poses significant difficulties for conventional
techniques in identifying real-time topology in distribution
networks. The use of tie-switches, capacitor banks, and
sectionalizing switches further guarantees the reliability, se-
curity, and simplicity of the distribution network. In the radial
networks, it is postulated that the loads are subject to uniform
scaling and that significant occurrences such as capacitor
bank switching or topological modifications are infrequent.
In this particular instance, the statistical properties of the
voltages can be categorised into three primary characteristics:
the uniformity of voltage reduction, the uniformity of voltage
magnitude, and the point at which voltage measurement
changes. The utilisation of voltage vectors can be employed
for determining the connectivity or topology of the sys-
tem’s nodes. The efficacy of conventional models may be
inadequate in addressing this issue. Despite the potential
benefits of smart meters in collecting vast amounts of data,
data-driven methodologies face challenges in the field of TI
due to issues related to data quality, particularly accuracy.
The determination of the system’s topology is facilitated by
the examination of the connectivity status of the switches
between the nodes. The binary status of the nodes indicates
their connectivity, with a value of either 0 or 1. Robust
architectures should be developed for addressing non-linear
problems due to the intricate relationship between node
voltages and network structure. The occurrence of measure-
ment loss results in topological misidentification. Thus, it is
essential to achieve accurate topology even with the missing
data.
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III. METHODOLOGY

The proposed methodology consists of two steps. The first
step involves the utilisation of a transformer to forecast the
missing measurements, thereby producing the recompensed
measurement data. In the second step of the study, the
recompensed measurement data is provided to the topology
identifier to accurately classify the topology of the system.
Before the implementation of the two-step process, the
proposed transformer model undergoes training to forecast
measurements using historical measurements as the input
training data. The efficacy of the proposed transformer model
is exhibited through an assessment of its performance across
different levels of missing data during this offline phase. The
received network measurements are analysed in real-time for
any missing data. If there is any missing data, the trans-
former model is used to forecast the missing measurements
and then generate the recompensed measurement data. This
recompensed data is sent into the topology classifier for the
TI.

A. Transformer model for the generation of recompensed
measurement data

The proposed approach forecast missing measurements
and the missing positions in the input measurement data are
replaced with forecasted values, resulting in the generation
of recompensed measurement data. The transformer model
receives historical measurement data as input and produces
recompensed measurement data as output. The transformer
model is a type of recurrent neural network model variation.
The transformer model is comprised of various mechanisms,
including self-attention and mutual attention mechanisms
[25]. The neural network utilising an attention mechanism
exhibits similarities to human retrieval processes. The utilisa-
tion of attention mechanisms enables the retrieval of relevant
information from distant tokens. This is achieved through the
assignment of attention weights based on the relevance of the
information, which is determined by the previous state and
simultaneously process all the tokens and calculate the corre-
sponding attention weights. The proposed transformer model
architecture is shown in Fig. 1. Transformer networks provide
parallel processing, sequence segment linkages, novel em-
beddings, and long-term dependency minimization [26]. The
transformer network has an encoder-decoder structure. Each
input layer determines the importance of input measurement
data, which is used for subsequent encoding levels. An
extended sequence’s relevance to newly created tokens is
measured using a self-attention score. Highly relevant input
data has a high self-attention score, whereas less relevant
material has a lower score. Positional inputs help the trans-
former network handle temporal dependencies, aiding the
self-attention process. The transformer network relies on
multiheaded attention as its central mechanism. Specifically,
the decoder block’s multihead attention takes the encoding
block’s output as input. The decoder and encoder blocks are
iterated multiple times across several layers.

To make the transformer model aware of the order posi-
tions, the utilisation of position embedding has been identi-
fied as a viable solution for managing the sequential order
of measurement data points concerning time. The complete
series is transmitted concurrently to the network, thereby

eliminating the issues of gradient vanishing or exploding. To
effectively handle large quantities of measurement data, it is
necessary to assign varying weights to the most significant
characteristics of the input. Self-attention mechanisms have
been observed to facilitate the selective filtering of non-
relevant input while prioritising the more important input
components. The utilisation of self-attention is a means of
addressing the difficulty posed by the parallel processing of
all hidden state time stamps. This results in a current token
encoding that is significantly influenced by the relevance of
past tokens. Three parameters that hold significant impor-
tance for the transformer model in the missing measurement
forecasting are Query (P), Key (Q), and Value (R). During
the training process, three weight matrices are acquired for
each token. These matrices are responsible for generating the
query, key, and value vectors for the token.

B. Mathematical analysis and modelling of the proposed
transformer network

The input embedding of the transformer is computed as
follows:

iM = EEM + PEM (1)

Adding and normalizing the vectors: The equation for the
addition:

ψ = I + O (2)

Normalization,

η =
1

lM

l∑
a=1

M∑
b=1

ψab (3)

σ2 =
1

lM

l∑
a=1

M∑
b=1

(ψab − η)2 (4)

Zab =
ψab − η√
σ2 + ε

(5)

I = [i1, i2, . . . , iM ]

O = [o1, o2, . . . , oM ]

P = [p1, p2, . . . , pM ]

Q = [q1, q2, . . . , qM ]

R = [r1, r2, . . . , rM ]

(6)

The processing of self-attention mechanism:

[P = SWP I,Q = SWQI,R = SWRI] (7)

B =
QTP√

l
(8)

The equation for creating the new embedding using
weighted average: O = QSW The result of the multi-head
attention: the concatenated output vector is represented as

O = [o1, o2, . . . , oH ]O = SW 0Õ (9)

The computation of the masked self-attention is as follows:

P = SWP I

Q = SWQI

R = SWRI

Y =
KTP√

l

(10)
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Fig. 1. Architecture of the transformer model

The computation of weighted average new embedding O =
RSW

The computational details of the encoder and decoder self-
attention mechanism are represented below:

Id =
[
id1, i

d
2, . . . , i

d
Md

]
Ie = [ie1, i

e
2, . . . , i

e
Me]

P = SWP Id

Q = SWQIe

R = SWRIe

Weights, Z =
QTP√
L

SW = softmax (Z)

(11)

Weighted average based new embedding O = RSW
The following provides the details of the symbols used

in the above mathematical model, sm - SoftMax function, I-
input of encoder, O- output of the decoder, Ie encoder output;
Id- decoder’s input; M-total inputs, H- heads, l- length of
embedding,QT - Q’s transpose, EEu- encoder embedding,
PEu- positional embedding, η-mean, σ2 − variance, Yab
normalized output, SW 0 - reduced dimensional matrix, ε-
numerical stability constant, SW - Synaptic weight.
The utilisation of transformer normalisation has been ob-
served to facilitate expedited training processes and mitigate
the occurrence of covariate shifts. The inclusion of aid serves
to enhance the maintenance of positional data and reinforce
the strength of gradients. The current observations provide
a resemblance to prior instances in which missing measure-
ment forecasting has relied on a multi-layered approach to
achieve accurate predictions. The attention mechanism is
utilised to connect an encoder through which a portion of the
sequence that is relevant to the present forecasting is iden-
tified. The proposed approach involved the implementation
of transformer-based fusion, which effectively reduced the
training time due to the parallelization technique employed.
The encoding process involves the utilisation of the sine and
cosine functions. The utilisation of position offset and mask-

ing techniques can ensure accurate forecasting by enabling
the analysis of future data samples.

C. Proposed Transformer model for forecasting missing
measurements and generation of recompensed measurement
data

The workflow of the proposed approach for the generation
of the recompensed measurement data from the forecasted
result of the transformer model and the TI is shown in the
Fig. 2 and also provided below:
Workflow of the Proposed approach:

1) Define the original measurement data (X) collected from
the nodes of the network

2) Split the X into Xtrain and Xtest and train the
transformer model with Xtrain data.

3) Now define the missing percentage and the attack
matrix which is a random matrix of the same size of M
with the elements 0 and 1. The measurement is present
if the value is 1, and the measurement is absent if the
value is 0. Thus, first define and generate the attack
matrix as:
M=random (X, β) Where β is the missing percentage.

4) Using the below equation, generate the attack matrix
Xm. Xm = M. ∗ X

5) Use the transformer model with the attack matrix Xm

to produce the Xpred.

6) Generate the recompensed measurement data Xrec from
the Xpred by substituting the missing in the missing
positions together with the non-missing measurements.
Xrec = Xm +Xpred. ∗ (1−M)

7) Use the recompensed measurement matrix Xrec for the
topology identification.
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Fig. 2. The complete flowchart of the proposed methodology

8) Topology identification is completed, and the system
topology and compensated measurement data are then
provided for further analysis.

D. Topology classification using the recompensed measure-
ment data

The missing measurements are filled with the proposed
transformer forecasted measurements generating the rec-
ompensed measurement data from the previous step. The
compensated measurement data is utilised in this stage to
execute the TI. In this step, the output of the transformer is
utilised to build a neural network model for classification.
The proposed methodology involves a classifier where the
input layer comprises the recompensed measurement data
obtained from the transformer, and the output layer represents
the topology of the system. During the online phase, the
network operator will generate recompensed measurement
data from the transformer in the event of any missing mea-
surements. This recompensed data will be utilised as input
for the topology classifier and hence the accurate topology
can be identified.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The experimental results of the proposed methodology
for generating the recompensed measurement data and the
topology classification are presented in this section.

A. IEEE 37 node system

The experimentation in this study focuses on the IEEE
37-node distribution system. However, certain modifications
have been implemented, such as the treatment of distributed
loads as lumped loads and the exclusion of transformers and
regulators from consideration. The switching lines used in
this study are 729-736, 708-733, 731-740, 725-731, and 713-
704 as shown in Fig. 3. The formation of different topolog-
ical structures is achieved by defining switching lines that
adhere to specific conditions. These conditions include the
preservation of radial network characteristics while avoiding
the formation of loops, as well as ensuring that no node
in the network is isolated. This study examines a total of
25 distinct topological configurations for the modified IEEE
37-node distribution system.

B. Dataset description

In this study, the hourly load data of 60 days from the
National Renewable Energy Laboratory (NREL) database is
acquired [27]. Rescaling the gathered load data to align with
the IEEE 37 node system is necessary, given the different
ranges present in the two datasets. This load data is passed
to the distribution system power flow algorithm, resulting
in the generation of voltage measurement data for a total
of 1440 hours. This study considers 25 different possible
topological structures and the total measurements are 108
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in the modified IEEE 37 node system. Consequently, the
dataset for voltage measurement is established, with a size of
(36000x108). Hence, to further evaluate the proposed model,
the investigation of the impact of RES on the topology classi-
fication is performed in this study. For this, the photovoltaic
(PV) are considered at nodes 724, 725, 738, and 729 and
wind turbine (WT) systems are considered to be present at
nodes 703 and 728. For the topology classification, each
topological structure is represented in the equivalent binary
form. This results in the identification of five distinct binary
classes, which in turn facilitates the classification process as
a multi-label classification.

C. Evaluation indices

To evaluate the proposed approach and the comparative
approaches for the missing measurement forecasting, root
mean square error (RMSE) is employed in this study. It
helps in evaluating the forecasting model’s effectiveness in
capturing the variability of the data. It is a metric that applies
a greater penalty to larger forecast errors compared to other
error metrics.

The mathematical formula is provided below:

RMSE =

√√√√ 1

M

M∑
n=1

(t(n)− f(n))2 (12)

Where, n denotes the sample, M denotes the total no. of
samples, t(n) and f(n) denote the nth sample of the true values
and the forecasted values.

Similarly, in the TI, the accuracy metric is considered as
shown in the following equation:

Accuracy in % =
(TP + TN)

(TP + FP + TN + FN)
∗ 100 (13)

TP: true positive; TN: true negative; FP: false positive;
FN: false negative;

Two-Norm error =

√√√√ M∑
n=1

3∑
k=1

∣∣∣vestimated
n,k − vactualn,k

∣∣∣2 (14)

Where,
M: no. of nodes; vestimated

n,k : nthnode kth phase estimated
voltage magnitude; vactn,k: nth node kth phase true voltage.

D. Evaluating the performance of the proposed approach for
forecasting missing measurements

1) Performance of proposed approach for the modified
IEEE 37 node system without considering RES integration:
This study assesses the efficiency of the proposed approach
in forecasting missing measurements, utilising the modified
IEEE 37 node system. Different percentages of the miss-
ing data that include 10%, 30%, and 50% are considered
for the evaluation of the proposed approach. Various deep
learning models, including Bi-LSTM, TCN, LSTM, CNN,
and KNN are utilised as comparative models to evaluate
the effectiveness of the proposed approach. To ensure ho-
mogeneity, the deep learning models are trained to utilise
the same parameters, including the number of hidden layers,
optimizer, learning rate and loss function. To mitigate the

effects of randomness in the training of the deep learning
model, a series of experiments are conducted and repeated
10 times. The results are then averaged and presented in
Table I. From Table I, it is very clear that the proposed
approach performance is dominating over the comparative
models for the different missing percentages. Considering the
10% missing percentage, the best RMSE is achieved by the
proposed approach and the large RMSE is achieved by the
KNN model. With this RMSE of more than 4, it becomes
evident that KNN faces limitations in accurately imputing
missing measurements. This is consistent with the inher-
ent characteristics of KNN: its reliance on proximity-based
imputation which can falter when confronted with complex
patterns or substantial data gaps. At the same time, the RMSE
of the proposed approach is 1.3143 and this dominance of
the proposed approach is mainly due to its self-attention
mechanism that enables a larger receptive field, and the
ability to interpret more asynchronous relationships between
dynamic and complex measurement data. Whereas from the
comparative models, the second best is achieved by the TCN
model because of its spatial as well as temporal feature
extraction capability. However, even with this advantageous
characteristic, the TCN model still encountered challenges in
effectively adapting to the dataset’s altered dynamics. As a
result, while its performance is good, it couldn’t outperform
the proposed approach in terms of RMSE.

Fig. 4. Forecasting error of the proposed approach and the comparative
models for 10%, 30% and 50% missing data in the modified IEEE 37 node
system with and without RES integration

The third best is achieved by the Bi-LSTM model with
its ability to leverage both forward and backward sequences
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Fig. 3. Modified IEEE 37 node system single line diagram

Fig. 5. Improvement of proposed approach over the comparative models for 10%, 30% and 50% missing data modified IEEE 37 node system with and
without RES integration

TABLE I
RESULTS OF THE PROPOSED AND COMPARATIVE MODELS FOR THE MISSING MEASUREMENT IMPUTATION FOR THE MODIFIED IEEE 37 NODE SYSTEM

RMSE for different missing percentages

Model Without RES With RES
10% 30% 50% 10% 30% 50%

KNN 4.1242 5.2912 7.1982 5.9312 8.2721 12.1349
LSTM 3.2702 4.7377 5.8495 4.3523 5.8723 8.6924
CNN 2.3508 4.3488 5.2569 3.1233 5.9521 7.6521
BiLSTM 2.1672 4.2804 5.1229 2.8521 5.8683 7.3652
TCN 2.0629 2.9948 3.7817 2.5679 3.9459 5.3247
Proposed Approach 1.3143 1.7235 2.1245 1.3576 1.8654 2.2211
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holds the potential for capturing intricate relationships within
the data. Considering the proposed and the TCN model, the
proposed approach achieved an improvement of 36% over the
second-best model and 39% over the third-best model for the
10% missing data. Similarly considering the 30% missing
data, the proposed approach achieved an improvement of
49% over the TCN model and 62% over the Bi-LSTM model.
In both the 10% and 30% missing rates, the CNN and LSTM
models occupied the fourth and fifth positions, respectively.
The graphical representation of the error metrics is presented
through a bar diagram in Fig. 4. For instance, the proposed
approach forecasted measurements vs the true measurements
of the three phases of node 6 for the random 150 hours
from the test data is shown in Fig. 6. The improvement of
the proposed approach over the other models is presented in
Table II and through the bar chart representation in Fig. 5.
The results indicate that the proposed approach outperformed
the other models in the presence of missing rates of 10%,
30%, and 50%. One notable observation is that the proposed
approach exhibits a significant increase in improvement
percentage over the second-best model, ranging from 10%
to 50% in the presence of missing data. This indicates that
the proposed approach is well-suited for larger systems. The
missing positions in the measurement data are compensated
by utilising highly accurate forecasted measurements. The
data is utilised by the topology classifier to make predictions
regarding the system’s topology.

2) Performance of proposed approach for the modified
IEEE 37 node system considering RES integration: With
the penetration of RES, the voltage amplitudes change more
which impacts the performance of the predictive models.
This RES penetration has led to alterations in the three
statistical attributes of voltage amplitudes, notably impacting
the coherence of voltage drops. Thus, the forecasting of the
measurements accurately becomes more intricate. Hence, to
evaluate the proposed approach’s effectiveness, RES like WT,
and PV are integrated at some random nodes in the modified
IEEE 37 node system. Comparing forecasting metrics in
Table I, it is evident that the proposed approach consistently
outperformed other methods even with RES integration.
The superior performance of the proposed transformer-based
approach can be attributed to its inherent capabilities in effec-
tively handling the challenges introduced by the integration
of RES in the modified IEEE 37 node system. The RMSE
values of reference models significantly increased when RES
are integrated. By integrating RES into the modified IEEE
37 node system, the dynamics of voltage data distribution
change and could lead to variations in the relationships
between different variables, potentially impacting the efficacy
of model’s performance. For example, when missing rates
of 10%, 30%, and 50% are introduced, the KNN model’s
imputation becomes less accurate due to the evolving data
landscape shaped by the integration of RES. This results
in higher RMSE values. The substantial RMSE increases
of 44%, 56%, and 69% for the respective missing rates
underscore the intricate interplay between KNN’s imputation
approach and the changing dynamics introduced by RES.
Similarly, the second-best model, TCN, saw RMSE increases
of 24%, 32% and 41% for the three missing rates. The reason
for the drop in performance is due to the introduction of
additional complexity and potential irregularities in the data

by the RES, which can impact the model’s ability to learn
consistent patterns. Without a mechanism to address this,
the TCN model failed to effectively adapt to the fluctuations
introduced by RES, leading to less accurate forecasts. These
performance drops are attributed to voltage characteristic
changes, especially in voltage drop consistency due to RES
integration. In contrast, the proposed approach remained ro-
bust and displayed consistent performance across all missing
rates. Specifically, considering the proposed approach, the
RMSE values registered only marginal increases: 3%, 8%,
and 9% for the respective missing rates. Comparing the
improvement indices, the proposed approach achieved a high
improvement of 77%, 78% and 80% over the KNN model,
and an improvement of 47%, 53% and 56% over the second-
best TCN model, for the three missing rates respectively.
The comparison of the predicted and the actual measurement
values at node 724 with the PV integration is shown in
Fig. 7, and at node 703 with the WT integration is shown
in Fig. 8. The pivotal strength of the proposed approach
lies in the incorporation of a self-attention mechanism that
endows the proposed model with the ability to dynamically
interpret temporal relationships. This mechanism facilitates
the adaptive concentration on evolving voltage patterns,
profoundly influenced by the integration of RES. By effec-
tively capturing these intricate relationships, the proposed
approach surpasses traditional models like KNN and even
advanced counterparts like TCN in effectively forecasting the
missing values. This imputed data is utilized by the topology
classification algorithm for estimating the topology of the
system.

E. Topology classification from the recompensed measure-
ment data

1) Evaluation for the modified IEEE 37 node system with-
out RES integration for TI: The recompensed measurement
data obtained from the previous step is utilised as input for
the topology classifier, which is responsible for identifying
the network topology. The classifier is trained to utilise k-fold
validation methodology to mitigate potential biassing issues.
Table III represents the topology classification results derived
from the recompensed measurement data of the proposed
approach and comparative approaches for system with RES
integration and without RES integration.

The accuracy of the ideal scenario, where no data is
missing, is also included in the Table III. Based on the
data presented in Table III for the absence of RES case, it
is apparent the recompensed measurement data obtained by
the proposed approach has resulted in the highest accuracy
in the TI. The performance of the classifier using KNN-
imputed data consistently falls below 85% across all missing
rates. This decline in accuracy can be attributed to the
inherent limitations of KNN when generating forecasts. The
imprecision in KNN’s forecasting results in deviations in the
imputed data, adversely affecting the overall TI performance.
TCN imputed measurement data yields improved accuracy
compared to other models. Notably, the accuracy percentages
for the three missing rates are significant: 94.05%, 92.40%,
and 90.77%. This enhanced accuracy can be attributed to
TCN’s proficiency in capturing temporal dependencies and
patterns present in the data. This, in turn, augments the
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TABLE II
IMPROVEMENT OF THE PROPOSED APPROACH OVER THE COMPARATIVE MODELS FOR 10, 30, AND 50% MISSING RATES FOR THE MODIFIED IEEE 37

NODE SYSTEM

Without RES With RES
Missing rates 10% 30% 50% 10% 30% 50%
Improvement over KNN (%) 68.13 67.43 70.49 77.11 77.45 81.70
Improvement over LSTM (%) 59.81 63.62 63.68 68.81 68.23 74.45
Improvement over CNN (%) 44.09 60.37 59.59 56.53 68.66 70.97
Improvement over Bi-LSTM (%) 39.35 59.74 58.53 52.40 68.21 69.84
Improvement over TCN (%) 36.29 42.45 43.82 47.13 52.73 58.29

Fig. 6. Comparison of true measurements vs the forecasted measurements by the proposed approach for the three phases of node 6 of modified IEEE
37 node system

Fig. 7. Comparison of true measurements vs the forecasted measurements by the proposed approach at the node 724 with PV integration in the modified
IEEE 37 node system
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Fig. 8. Comparison of true measurements vs the forecasted measurements by the proposed approach at the node 703 with WT integration in the modified
IEEE 37 node system

Fig. 9. Variation of the accuracy of the TI with the proposed approach and the other models recompensed measurement data for the modified IEEE 37
node system
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TABLE III
COMPARISON OF ACCURACY OF THE TI WITH THE RECOMPENSED MEASUREMENT DATA FROM THE PROPOSED APPROACH AND THE OTHER MODELS

FOR THE MODIFIED IEEE 37 NODE SYSTEM

Without RES With RES
Models 10% 30% 50% 10% 30% 50%
Original 99.25 99.25 99.25 98.89 98.89 98.89
Proposed approach 98.87 97.14 95.92 97.98 96.02 95.11
TCN 94.05 92.40 90.77 91.52 89.87 88.24
Bi-LSTM 91.86 89.41 87.81 89.33 86.88 85.28
CNN 91.12 88.00 86.90 88.59 85.47 84.37
LSTM 87.89 86.85 84.23 85.36 84.32 81.70
KNN 85.13 80.67 78.12 82.60 78.14 75.59
With missing 82.12 72.98 67.36 79.60 70.46 64.83

quality of imputed data, leading to a more accurate classifier.
However, with the recompensed measurement data from
the proposed approach, the accuracy is higher than the
other comparative models. For instance, the accuracies are
98.87%, 97.14%, and 95.02% for three missing rates. There
is not much variation in the original accuracy without any
missing samples. This remarkable performance of the pro-
posed approach can be attributed to the effective imputation
of measurement data, which stems from the inherent self-
attention mechanism embedded within the proposed model.

2) Evaluation for the modified IEEE 37 node system
with RES integration for TI: From Table III, the accuracies
decreased significantly for the modified IEEE 37 node system
because of the RES integration. In comparison to KNN-
imputed measurement data, the accuracy is notably lower
across all missing rates. This drop in accuracy is particu-
larly striking when considering the difference between the
modified IEEE 37-node system without RES and with RES.
This decrease is considerably more significant than what’s
observed in other models. Imputed measurement data from
various comparative models, like LSTM, CNN, Bi-LSTM,
and TCN, exhibit relatively better accuracy compared to
the KNN model. Among these models, TCN’s imputed data
yields the best accuracy for the TI. Importantly, the accu-
racy reduction between the modified IEEE 37 node system
without RES and with RES remains comparatively modest
for the TCN model. This indicates that TCN effectively han-
dles RES-related variations, leading to consistent accuracy.
Yet, the promising performance comes from the proposed
approach’s imputed measurement data. Here, the accuracy
decline is minimal, outperforming other comparative models.
This showcases the robustness of the proposed approach.
Despite the influence of RES and missing rates, the imputed
data from the proposed approach consistently resulted in
higher accuracy levels.

Fig. 9 illustrates the accuracy variation across the three
missing rates for both cases. Notably, the accuracy level
with the proposed approach imputed data closely approaches
the original accuracy when no measurements are missing,
underscoring the precision of the proposed methodology.
Comparatively, the accuracy of the comparative models
decreases when evaluated with imputed measurement data.
This decline is particularly notable for missing rates of 30%
and 50%, signifying the challenges these models face in
accurately compensating for missing data. In contrast, the
proposed model achieved the best performance with its ro-
bust capability consistently outperforming the other models.
In summary, the proposed model demonstrates exceptional

TABLE IV
RESULTS OF THE PROPOSED AND COMPARATIVE MODELS FOR THE
MISSING MEASUREMENT IMPUTATION FOR IEEE 69 NODE SYSTEM

Models 10% 30% 50%
KNN 5.5530 9.7251 11.9756
LSTM 4.9426 8.8086 7.7223
CNN 6.7460 7.5671 8.6087
BiLSTM 5.6507 6.7302 8.1099
TCN 5.1551 7.9678 7.9617
Proposed approach 3.2768 4.1356 5.1829

resilience, showcasing its superior performance across mod-
ified IEEE 37 node systems, both with or without RES.

Fig. 10. Forecasting error of the proposed approach and the comparative
models for 10%, 30% and 50% missing data for the IEEE 69 node system

F. Impact of the incorrect TI on the state estimation

To underscore the significance of accurate TI, a com-
prehensive investigation using state estimation is conducted
to illustrate the consequences of topology misidentification.
This examination involved inducing a fault in branch 702-
713, leading to the isolation of certain nodes within the sys-
tem. Consequently, line 725-731 is switched on to establish
connections among all nodes, thereby altering the system’s
topology. This transformation underscores the criticality of
precisely predicting topology changes, a task effectively

Fig. 11. Improvement of proposed approach over the comparative models
for 10%, 30% and 50% missing data for the IEEE 69 node system
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Fig. 12. Variation of the accuracy of the TI with the proposed approach and the other models recompensed measurement data for the IEEE 69 node
system

TABLE V
IMPROVEMENT OF THE PROPOSED APPROACH OVER THE COMPARATIVE

MODELS FOR 10, 30, AND 50% MISSING RATES FOR IEEE 69 NODE
SYSTEM

Missing Percentages 10% 30% 50%
Improvement over KNN 40.99 57.47 56.72
Improvement over LSTM 33.70 53.05 32.88
Improvement over CNN 51.43 45.35 39.79
Improvement over Bi-LSTM 42.01 38.55 36.09
Improvement over TCN 36.44 48.10 34.90

TABLE VI
COMPARISON OF ACCURACY OF THE TI WITH THE RECOMPENSED

MEASUREMENT DATA FROM THE PROPOSED APPROACH AND THE OTHER
MODELS FOR IEEE 69 NODE SYSTEM

Models 10% 30% 50%
Original 98.12 98.12 98.12
Proposed approach 96.89 95.99 94.81
TCN 88.12 87.77 86.12
Bi-LSTM 88.04 85.12 83.98
CNN 87.78 85.00 81.58
LSTM 83.76 82.87 79.11
KNN 77.13 75.89 72.21
With missing 75.87 67.11 62.77

addressed by the proposed TI model. With this new topol-
ogy, the state estimator should get the correct topology
information in real-time scenarios, ensuring effective state
estimation. The results of the state estimation in terms of two-
norm error (Eq. 14), considering both the incorrect topology
and the accurate topology obtained from the preceding step,
are presented in Table IV.

TABLE VII
ERROR COMPARISON BETWEEN CORRECT AND INCORRECT TI FOR THE

MODIFIED IEEE 37 NODE SYSTEM

Type Magnitude Phase

With correct TI 6.1 × 10−2 0.52 × 10−2

With incorrect TI 20.3 × 10−2 4.23 × 10−2

Based on the data presented in Table IV, a notable
observation emerges: when the topology is accurately pre-
dicted using the proposed TI, the corresponding error is
substantially lower compared to the error associated with an
incorrect topology assumption. This results underscores the
critical importance of accurate TI in achieving accurate state
estimation results.

G. Scalability test of the proposed approach for the larger
scale system

The modified IEEE 69 node system is considered in
this study to demonstrate the performance of the proposed
approach for larger scale power system. The results of the
experiments are presented through three key tables: Firstly,
Table IV delineates the metrics employed for missing value
imputation, accompanied by graphical representation in Fig.
10. Secondly, Table V vividly portrays the significant im-
provement percentages achieved by the proposed approach
when benchmarked against reference models, further eluci-
dated in Fig. 11. Lastly, Table VII offers valuable insights
into the accuracy of TI leveraging recompensed measurement
data from different models, with accompanying visualiza-
tions of accuracy variations in Fig. 12. This comprehensive
assessment sheds light on the efficacy of the approach in
the context of larger and more complex power systems.
According to Table IV, the proposed approach outperforms
all comparative models, demonstrating lower error metrics.
Notably, the RMSE values for various missing percentages
are 3.2768, 4.1356, and 5.1829. This represents a substantial
improvement, with an average improvement of 40% com-
pared to the second-best TCN model, as detailed in Table V.
Furthermore, the accuracy achieved with the recompensed
measurement data from the proposed approach consistently
exceeds 94.8% for all cases. From Figure 12, it is evident
that the accuracy variation closely approximates the accuracy
obtained with the original data. In contrast, the accuracy of
all other models deviates significantly from the original data,
showing a pronounced decrease. This robust performance
underscores the suitability of the proposed approach for
larger-scale power systems.

V. CONCLUSIONS

This study introduces a novel approach with the attention
mechanism-based transformer model to mitigate the impact
of DoS attacks on the accuracy of TI by forecasting missing
measurements. The first step of the proposed methodology
involves forecasting missing measurements and generating
the recompensed measurement data. The subsequent step
involves providing the topology identifier with the recom-
pensed data to get the accurate topology. The experimental
methodology involved assessing the efficiency of the pro-
posed approach under different conditions of missing data,
specifically at rates of 10%, 30%, and 50%, and utilizing
various reference models for the modified IEEE 37 node
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system with and without RES integration. The proposed
approach consistently exhibited dominant performance in
both scenarios. Furthermore, proposed approach’s effective-
ness is also evaluated on a higher-order modified IEEE 69
node system. The experiments yielded compelling results,
showcasing that the proposed approach led to a substantial
improvement of over 35% across all three missing rates in
the initial phase, for both with and without RES integration
and two distinct systems. Additionally, the recompensed
measurement data obtained from this approach resulted in
heightened accuracy for TI, closely approaching the ideal
scenario where no measurements are missing. These results
underscore the capability of the proposed approach to deliver
desirable TI accuracy while displaying resilience to missing
measurements, even in the context of higher-order power
systems.
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