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Abstract—Due to the prevalence of natural disasters, the
resilience of networks that provide essential services to the
population has been studied. A recent contribution is the prob-
ability of relative isolation, which measures the likelihood of a
demand node to be unreachable by supply nodes. The existing
procedure for calculation is an enumerative decision-diagram-
based approach that may be resource-intensive especially on
occasions when time and memory constraints are imposed.
In response, the study reverse-engineers the current method
towards increased efficiency. The proposed solution hinges
on the breadth-first search, producing connected components
based on the sources. The algorithm is then benchmarked on
foundational networks from literature, presenting a 99.77%
decrease in computation time on average.

Index Terms—breadth-first search, graph measure, Monte
Carlo method, probability of relative isolation.

I. INTRODUCTION

RESILIENCE refers to the ability of a network to
maintain an acceptable level of operation in the event of

damage. Since natural phenomena that pose risk to service-
providing infrastructure are inevitable, network resilience has
been the subject of research [1]. Accordingly, measures to
estimate the resilience of lifelines such as road networks,
water pipelines, power lines, and communication systems,
among others, have been crafted by studying the graphs in
which they may be represented [2], [3].

Recently, an original metric for resilience called the
probability of relative isolation was proposed [4]. In brief,
the relative isolation probability measures how likely it is
that a vertex would be unreachable by any source given
the failure of edges. It seeks to translate the edge-centric
failure probabilities into vertex-centric isolation probabilities
to shed light on the resilience of a graph structure. With
the new probability measure, the effect of weak supply links
to the over-all network operation may be gauged. Demand
nodes that may require emergency response after destructive
episodes may also be identified. Towards mitigation, the
metric may be used as basis for network improvements such
as component reinforcement and source addition.

While the utility of the relative isolation probability is
promising, its calculation may prove costly at times as the
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current approach is enumerative and relies on the construc-
tion of decision diagrams [4]. In cases where computational
resources are scarce, an alternative strategy is required to
generate the probabilities without the need for the enu-
meration of surviving supply routes. In the paper, the ex-
isting decision-diagram-based solution is reverse-engineered
to compose an efficient method based on the breadth-first
search. The proposed improvement procedure builds source-
rooted connected components, determining the relative isola-
tion of nonsource vertices depending on whether or not they
are part of the said components. Overall, the novel algorithm
decreases computation time by 99.74% on average.

The study is outlined as follows. A recapitulation of the
relative isolation probability as a novel resilience measure
for graphs is in the second section. The next section covers
the methodology, under which both the algorithm implemen-
tation and machine specifications fall. The fifth section lays
out the results. A conclusion of the work is contained in the
final section.

Notation used is as follows. This is based on [4].
V The set of vertices {v1, v2, . . . , v|V |}.
E The set of edges {e1, e2, . . . , e|E|}.
G The graph (V,E) defined by V and E.
S The set of source vertices {s1, s2, . . . , s|S|}.
f : A→ B A function mapping the set A to the set B.

II. PROBABILITY OF RELATIVE ISOLATION

The section introduces the probability of relative isolation
and some accompanying concepts [4].

Definition 1 (Path). A path is a sequence e1, e2, . . . , ep,
where ei = {vi−1, vi} is an edge of the graph for i =
1, 2, . . . , p with vertex vi 6= vj if i 6= j.

A path is therefore a sequence of edges that connects two
vertices v0 and vp. The definition of the relative isolation
probability of a vertex in a given graph is below. The
following is slightly modified for the purposes of the paper.

Definition 2 (Probability of Relative Isolation). Consider the
graph G = (V,E) and the set of source vertices S ⊂ V .
Let the probability of failure of an edge be π (ei) for i =
1, 2, . . . , |E|, with function π : E → [0, 1].

The number of iterations, which is essentially how many
times the Monte Carlo experiment is executed, is set to be
N . A random number ρk (ei) with function ρk : E → [0, 1]
is assigned to each edge ei on the kth iteration for k =
1, 2, . . . , N . For all ei ∈ E, an indicator function µk is
defined to be

µk (ei) =

{
1 if ρk (ei) > π (ei)

0 otherwise
,
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assigning either a 1 or a 0 to each edge indicating its survival
or failure, respectively, for iteration k.

A subgraph Gk = (Vk, Ek) is produced, with ei ∈ Ek if
and only if µk (ei) = 1 and vj ∈ Vk for j = 1, 2, . . . , |V |
if and only if there exists e ∈ Ek such that vj ∈ e or if
vj ∈ S. More precisely, Ek = {e ∈ E | µk (e) = 1} and
Vk = {v ∈ V | v ∈ e, e ∈ Ek} ∪ S. For all vj ∈ V \ S, a
second indicator function is then defined as

λk (vj) =

{
0 if vj is connected to some s ∈ S in Gk

1 otherwise
,

specifying whether or not each vertex is connected to a
source for iteration k. If vj ∈ S then λk (vj) = 0.

The relative isolation probability of a vertex vj within N
instances, denoted by ΠN

ι (vj), is

ΠN
ι (vj) =

∑N
l=1 λl (vj)

N
.

III. BREADTH-FIRST SEARCH

The breadth-first search is a fundamental algorithm for
graph traversal. As the name suggests, the algorithm explores
the vertices of the graph in a systematic manner starting
from a given vertex and subsequently visiting its neighbors in
order of increasing distance. A single connected component
containing the starting vertex is produced [5]. The algorithm
may thus be be used to calculate the probability of relative
isolation since λk (v) equivalently indicates whether vertex
v belongs to a connected component containing a source for
the kth iteration.

The search begins with a queue containing the starting
vertex v. Briefly, a queue is a data structure that follows
the first-in-first-out principle. Initially, vertex v is marked as
visited. Iteratively, the algorithm dequeues the first element
v′ and enqueues all unvisited neighbors of v′. Termination
happens when all vertices reachable from vertex v have been
visited or when the queue is empty.

The worst-case complexity of the algorithm is
O (|V |+ |E|), where |V | is the number of vertices
and |E| is the number of edges in the graph. This is
significantly less than the complexity of a decision-diagram-
based approach with a worst-case complexity of O (n (D)),
where n (D) is the number of nodes in the constructed
diagram [4]. The breadth-first search, however, does not
store information on all paths between two vertices as in a
method using decision diagrams.

IV. METHODS

Graphs from literature are used as benchmark and trans-
lated into edge lists. Every row represents an edge defined by
two vertices. The source vertices and failure probabilities of
the edges are kept in a separate file in order to conveniently
create multiple scenarios.

As outline, the relative isolation probability of a vertex is
computed by performing a number of randomized simula-
tions, checking for the connection of the vertex to a source
per iteration, and providing the percentage of simulations in
which the vertex is relatively isolated.

First, a Monte Carlo simulation is done as a preliminary
processing step. The survival or failure of each edge is
determined and Gk is produced for k = 1, 2, . . . , N . The

Algorithm 1 MCPREPRO

1: Assume G = (V,E)
2: Let EDGESTATE be an array whose indices are an edge

and an integer
3: for e ∈ E do
4: for k = 1, 2, . . . , N do
5: if UNIFORM(0, 1) ≥ e.p then
6: EDGESTATE[e][k]← 1
7: else
8: EDGESTATE[e][k]← 0

Note that e.p is the failure probability of edge e.

Algorithm 2 PICCC

1: Execute MCPREPRO
2: Let ISOLATIONS and FOUND be arrays whose index is

a vertex
3: ISOLATIONS[v]← 0 for v ∈ V
4: for k = 1, 2, . . . , N do
5: FOUND[v]← false for v ∈ V \ S
6: for s ∈ S do
7: Execute BFS(s, k)

8: for v ∈ V \ S do
9: if not FOUND[v] then

10: ISOLATIONS[v]← ISOLATIONS[v] + 1

11: for v ∈ V do
12: PRINT(v, ISOLATIONS[v]/N)

Note that BFS(s, k) is a search from vertex s in the kth simulation.

pseudocode is shown in Algorithm 1. Line 5 generates
random numbers uniformly over (0, 1). The random numbers
are then compared to the failure probabilities assigned to the
edges. The N instances of the original graph are the results
of the preparatory step.

The actual probability calculation is the second step, seen
in Algorithm 2. In each iteration, a breadth-first search is
executed from each source vertex s as in Line 7. The search
traverses edges that survive given the current scenario derived
from EDGESTATE[·][k] from Algorithm 1. This results in the
list of vertices that are reachable by any source vertex. For
a vertex v, the algorithm adds 1 to the isolation count of the
vertex and moves on to the next vertex if it is not reachable
by any source; otherwise, it simply moves on to the next.
In the end, the isolation count of each vertex is divided by
the number of simulations to get the probability of relative
isolation. It is worth noting that a source vertex is assigned
a probability of 0 since there always exists a path to itself.

The implementation is entirely done in the C++ pro-
gramming language and compiled with version 9.3.0 of the
g++. Refer to the PICCC (https://github.com/renzopereztan/
PICCC) repository for the complete code. The PIZDD (https:
//github.com/renzopereztan/PIZDD) program serves as basis.
Regarding the machine, the operating system used is the
Ubuntu 18.04.4 Long Term Support (Bionic Beaver). The
processor is the 1.80GHz Intel® CoreTM i7-8565U. The
experiments are done with a memory allocation of 16GB.
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V. RESULTS

The algorithm is tested on six benchmark and three real-
world networks. Shown in Figures 1 to 6 are the graphs of
different structures with 6 ≤ |V | ≤ 40 and 15 ≤ |E| ≤ 58
carefully selected from foundational research [6], [7]. These
include a complete graph, a Petersen graph, two distinctive
graphs, a square grid, and a rectangular mesh. Figures 7 to 9
show the water distribution networks from Bursa in Turkey,
Hanoi in Vietnam, and Kobe in Japan [4] with 12 ≤ |V | ≤ 32
and 15 ≤ |E| ≤ 34.

The number of simulations is set to 1000, 10000, and
100000 to gauge the scaling of computation costs with N . In
further examining performance, the edge failure probabilities
are initialized at 0.50, 0.05, and 0.95 for the benchmarks to
represent an acceptable breadth of cases. On one hand, sim-
ulating with 0.05 edge failure probabilities yields relatively
dense Gk; on the other, simulating with 0.95 edge failure
probabilities yields relatively sparse Gk. The 0.50 edge
failure probability experiments signify the middle ground.
The probabilities of failure for the real-world networks are
set based on previous studies.

Results are summarized in Tables I, II, III, IV, V, and
VI. In the tables, |E| is the number of edges and |V | is the
number of vertices. The time elapsed during calculation is
presented both per stage and in aggregate. As illustration,
tzp and tcp are the total computation time by the algorithm
in the decision-diagram-based approach and the connected-
components-based approach, respectively, when the edge
failure probability is p. The average across all three proba-
bilities is indicated as tz and tc. The column δ then indicates
the percent decrease of the proposed approach based on
connected components versus the existing approach based
on decision diagrams.

Seen in Tables VII and VIII is the capability of the new
method. It handles cases in which N = 1000000 with ease,
whereas the decision-diagram-based algorithm is not able to
finish the calculation within reasonable time. As a remark
on convergence, at the core of the computation is dividing
the number of simulations yielding relative isolation by the
total number of simulations. On the one-hundredth iteration,
for example, changes larger than a percent that succeeding
iterations may make is unlikely. Moreover, the entire set of
experiments is executed multiple times to ensure accuracy. It
is found that the variability between runs is not significant.

VI. CONCLUSION

A novel approach for the calculation of the probability of
relative isolation is proposed. The Monte Carlo experiment is
maintained as the first step, simulating for the success or fail-
ure of edges and producing the surviving subgraphs. In the
second step, a breadth-first search is executed on the resulting
subgraphs to create connected components stemming from
each source vertex and to determine the relative isolation of
the nonsource vertices. The proposed algorithm consumes
significantly less time, ideal for situations that necessitate
low-resource and swift computations.
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Fig. 1: Graph 1.

Fig. 2: Graph 2.

Fig. 3: Graph 3.

Fig. 4: Graph 4.

Fig. 5: Graph 5.
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Fig. 6: Graph 6.

Fig. 7: Bursa network.

Fig. 8: Hanoi network.

Fig. 9: Kobe network.
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TABLE I: Experiment statistics on benchmark networks for N = 1000.

G |E| |V | tz0.50 tz0.05 tz0.95 tz tc0.50 tc0.05 tc0.95 tc δ

1 15 6 1.8001 1.2530 2.1570 1.7367 0.0250 0.0278 0.0383 0.0304 98.25%

2 30 20 9.9405 5.8383 17.5536 11.1108 0.0366 0.0385 0.0248 0.0333 99.70%

3 23 14 11.0817 7.9262 12.3811 10.4630 0.0455 0.0331 0.0229 0.0338 99.68%

4 30 20 16.5617 12.7112 22.5423 17.2718 0.0380 0.0348 0.1007 0.0578 99.67%

5 40 25 32.8349 24.4346 45.9892 34.4196 0.0538 0.0465 0.0376 0.0459 99.87%

6 58 40 18.2273 12.0706 68.3635 32.8871 0.0452 0.0421 0.0380 0.0418 99.87%

TABLE II: Experiment statistics on benchmark networks for N = 10000.

G |E| |V | tz0.50 tz0.05 tz0.95 tz tc0.50 tc0.05 tc0.95 tc δ

1 15 6 17.3706 12.4311 20.4240 16.7419 0.0768 0.1277 0.1289 0.1111 99.34%

2 30 20 107.7092 55.7579 193.2862 118.9178 0.1475 0.1158 0.1173 0.1269 99.89%

3 23 14 122.3553 84.5313 151.3217 119.4028 0.1068 0.1862 0.1066 0.1332 99.89%

4 30 20 184.9917 140.6444 237.3762 187.6708 0.1320 0.1228 0.2081 0.1543 99.92%

5 40 25 361.2559 252.3969 435.7676 349.8068 0.3737 0.1676 0.1652 0.2355 99.93%

6 58 40 199.5222 116.2606 684.8887 333.5572 0.2131 0.1937 0.3307 0.2458 99.93%

TABLE III: Experiment statistics on benchmark networks for N = 100000.

G |E| |V | tz0.50 tz0.05 tz0.95 tz tc0.50 tc0.05 tc0.95 tc δ

1 15 6 172.4573 110.1030 208.0723 163.5442 0.5109 0.5072 0.4732 0.4971 99.70%

2 30 20 1023.6077 522.5294 1837.2693 1127.8021 0.9434 1.0219 0.9126 0.9593 99.91%

3 23 14 1125.0595 776.0387 1262.2774 1054.4586 0.7713 0.7057 0.7312 0.7361 99.93%

4 30 20 1675.6369 1265.0377 2215.9349 1718.8698 1.0006 1.0391 1.1066 1.0488 99.94%

5 40 25 3284.2540 2464.2823 4070.9923 3273.1762 1.3436 1.1935 1.2140 1.2503 99.96%

6 58 40 2238.2904 1121.5588 6781.3090 3380.3860 1.7538 1.7005 1.8659 1.7734 99.95%

TABLE IV: Experiment statistics on real-world networks for N = 1000.

G |E| |V | tz tc δ

Bursa 15 12 3.6773 0.0064 99.83%

Hanoi 34 32 12.7224 0.0370 99.71%

Kobe 20 15 5.6987 0.0230 99.60%

TABLE V: Experiment statistics on real-world networks for N = 10000.

G |E| |V | tz tc δ

Bursa 15 12 36.8083 0.0518 99.86%

Hanoi 34 32 114.6825 0.1827 99.84%

Kobe 20 15 57.2328 0.1149 99.80%

TABLE VI: Experiment statistics on real-world networks for N = 100000.

G |E| |V | tz tc δ

Bursa 15 12 406.5972 0.5000 99.88%

Hanoi 34 32 1080.5268 1.2970 99.88%

Kobe 20 15 544.2032 0.7791 99.86%
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TABLE VII: Experiment statistics on benchmark networks for N = 1000000.

G |E| |V | tc0.50 tc0.05 tc0.95 tc

1 15 6 5.0462 4.7480 4.7828 4.8590

2 30 20 9.4655 9.1059 8.9982 9.1899

3 23 14 7.4822 7.1319 6.9573 7.1905

4 30 20 9.5298 9.2382 9.4393 9.4025

5 40 25 12.0434 11.6596 11.6597 11.7876

6 58 40 17.4662 17.3065 17.3124 17.3617

TABLE VIII: Experiment statistics on real-world networks for N = 1000000.

G |E| |V | tc

Bursa 15 12 5.1248

Hanoi 34 32 12.1588

Kobe 20 15 7.3236
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