
 

 
Abstract—In the winter seasons, road icing is amongst the 

most significant threats towards road safety, which is considered 
as a super dangerous weather condition. This study aims to 
optimize road deicing predictions using machine learning (ML) 
techniques. By collecting data from sensors including pavement 
temperature (PT), pavement friction coefficient (PFC), 
pavement condition (PC), thickness of water film (TWF), 
freezing temperature, ice content (IC) and ice warning value 
(IWV), we analyzed crucial parameters affecting road deicing – 
road surface temperature. Predicting pavement icing (PI) is 
critical in the transportation field. To achieve this, we utilized 
the Long Short-Term Memory (LSTM) ML model to estimate 
icing conditions on the 2nd Ring South Road in Jinan, China. By 
considering relevant parameters of the road surface within a 
specific timeframe, we attempted to forecast road temperature, 
providing a novel approach for predicting road icing. 
Experimental results demonstrated the model's ability to 
accurately predict icing conditions. Furthermore, by utilizing 
observed data from the current road condition, we were able to 
precisely predict road temperature and thereby forecast road 
icing occurrences. 
 

Index Terms—Road Icing Predicting, Machine Learning 
(ML), Road Surface Temperature, Long Short-Term Memory 
(LSTM) 

I. INTRODUCTION 

N the modern society, transportation functions essentially 
to promote the social economies [1]. Modern transportation 

mainly includes railway transportation, highway 
transportation, waterway transportation, air transportation 
and Pipeline transport. In China, road transportation accounts 
for approximately three-quarters of all transportation methods. 
However, statistics show that road traffic accidents result in 
greater economic losses and casualties compared to other 
disasters like floods and fires [2]. One major contributing 
factor to these accidents is road icing, which significantly 
reduces frictions between road surfaces and tires, making it 
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difficult for automobiles to brake and increasing the risk of 
slipping. Pedestrians are also vulnerable to slipping and 
falling on icy roads. In fact, road icing is responsible for 10 
times more accidents than non-icy road conditions[3]. T 
Therefore, accurately predicting the occurrence of road icing 
and implementing an ice road safety warning system (RSWS) 
has significant social impact as well as practical value. 

Our icing warning system (IWS) mainly considers 
parameters such as road surface temperature and icing 
temperature, and then constructs an icing RSWS based on 
machine learning (ML) methods. 

Organization of present article is following: Section II 
reviews former related results in the area; Section III 
introduces WS constructions; Section 4 presents data 
regarding our real-world dataset to compare the predicted 
result with the actual value; Finally, conclusions and possible 
developments for further work are discussed. 

II. RELATED WORK 

S.Saha analyzed Death Analysis Reporting System (FARS) 
dataset prepared by NHTSA from 1994 to 2012, which 
contains weather report information for each fatal accident [4]. 
They found that fatalities relating to adverse weather (AW) 
conditions were ~16% on average. The magnitude with regard 
to fatal crashes relating to AW was a bit higher in the winter 
seasons. Higher risk upon injury crashes correlated to wintry 
and snowy conditions because of road surface condition 
changes. Therefore, predicting when the road surface will 
freeze may decrease accident occurrence in some extent. 

Early WS could monitor and forecast road icing conditions. 
The systems analyze correlations between road surfaces and 
the environment. 

In 1972, a WS to monitor and deliver warning information 
upon snow and ice is set up in Sweden[5]. National Weather 
Service (NWS) in US has established a data-driven pavement 
information monitoring system. Based on collected 
meteorological data, a highway ice thickness estimation 
model has been constructed, and research on estimating ice 
thickness under different meteorological conditions has 
been completed[6]. 

Salvatore Martorina and Nicola Loglisci monitored road 
surface temperature through thermal mapping of major roads 
in the Piedmont region of Italy, thereby predicting road icing 
[7]. Alexander predicts and evaluates the icing conditions of 
road networks based upon observation data of road weather in 
Denmark Highway Station from 2003 to 2007, and conducts 
thermal mapping to improve the accuracy of the prediction[8]. 
Liu Mei calculated the local minimum surface temperature, 
air temperature, 850hPa temperature, and 700hPa 
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temperature during precipitation in Nanjing, and concluded 
that there are differences in temperature requirements for 
icing conditions due to different precipitation properties. He 
proposed the concept of using temperature for ice prediction, 
which indirectly predicts whether the road surface will 
freeze[9]. Lei Jianjun proposed a support vector machine 
(SVM) integrated road icing prediction system. According to 
the meteorological data of Wuhan and Shiyan from 1980 to 
2006, 12 meteorological factors related to road icing were 
selected to establish a model. The feasibility of the model was 
verified by comparing the case data of 2007 and 2008 [10]. 
For predicting bridge pavement temperature (PT), linear 
regression and five layer hidden layer classical BP neural 
network (NN) regression models were validated [11]. To 
address the high cost and poor real-time performance of 
existing ice monitoring methods, a fusion detection method 
based on images is proposed [12]. To prevent traffic 
congestion caused by road freezing, a system was developed 
to forecast road freezing based upon freezing generation 
modules utilizing weather forecast data [13]. 

Despite the fact that these approaches possess some ice 
alerting and surveillance abilities, they are incapable of 
foreseeing forthcoming ice circumstances. To prevent severe 
vehicular incidents resulting from road icing, it is imperative 
to devise a precise and dependable system for detecting and 
prophesying road icing and surface temperature, employed 
for deicing in crucial areas. Deicing has gradually gained 
acceptance and implementation among North American 
highway authorities as a proactive strategy for ensuring winter 
driver safety[14].  

In our system, we predict approximately when the road will 
freeze and spray snow melting agents in advance. 

III. CONSTRUCTION OF ICING FORECASTING SYSTEM 

In this section, a brief introduction of the ML techniques 
used is given. At the same time, acquiring relevant data is 
introduced. 

A. ML Techniques 

The system will employ ML techniques known as Long 
Short-Term Memory (LSTM), which belongs to Recurrent 
NN (RNN) method. It has many applications [15-18]. 

Fig.1 illustrates the basic architecture of an LSTM model 
with a hidden LSTM layer unfolded in time. By incorporating 
information in prior into the learning procedures regarding 
the current hidden layer, LSTM could learn efficiently from 
time series data. This optimization enables efficient learning 
from the given data. 

Fundamental LSTM network consists of LSTM memory 
blocks that include a memory cell ( tc ) and 3 gates: input ( ti ), 

forget ( tf ) and output gates ( to ). This structure can be 

visualized in Fig.2. 
 

In short, LSTM greatly enhances the ability to capture and 
retain important information for the desired function. It 
outperforms basic RNN in terms of convergence performance. 
Unlike RNN which has only one function, LSTM has multiple 
functions to accomplish its task. 

Fig.3 demonstrates correlation between LSTM functions. 
Outputs in each step are computed following equations 
(1)-(6): 
 1( )t f t f t ff g W x U h b      

 1( )t i t i t ii g W x U h b      

 1tanh( )t k t k t kk W x U h b      

 1 )t t t t tc f c i k     

 1( )t o t o t oo g W x U h b      

 tanh( )t t th o c   

Here tx  is input vector at t . g  is activation function 

employing ReLU or Sigmoid.  U and W are weight matrices 

and b  is bias vector. tc  and th are cell state and output 

vectors at t .   denotes element-wise vector multiplication. 

Sum of tf  serves to learn from known information to get new 

information. 

Equations (1)-(6) consist of formulas to compute tf , ti   

and to  gates at t . The 3 gates receive inputs tx  and 1th  , 

which multiplied weight matrices. Resulting products are 
summed up with bias term and passed through sigmoid 
function. The gate outputs lie within the range of 0 to 1, where 
an output close to 0 informs a closed gate that rejects 
information. Conversely, an output close to 1 signifies fully 
accepting the information. Therefore, the flow of information 
is regulated by these gates, In other words, they function 

essentially to determine th and tc  values, which serve as the 

primary computational components within LSTM memory 
blocks. 

B. Data Acquisition 

Pavement icing (PI) results from a complex interplay of 
various factors. The process of ice formation and melting is 
dynamic and closely linked to time. Hence, it is crucial to 
gather meteorological information in real-time, including 
atmospheric temperature, humidity, road surface temperature, 

 
Fig. 1.  LSTM system 
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Fig. 2.  Basic LSTM having 1 hidden layer unfolded in time 

 
Fig. 3.  Basic LSTM having 1 hidden layer unfolded in time 
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and road conditions. 
In the system, collecting data such as PT, freezing 

temperature, PFC, TWF, IC, PC and IWV are captured. We 
extracted data from some locations on 2nd ring south elevated 
road in Ji’nan, China (‘the Road’ in the following main text). 
Sensor installation is shown in Fig.4. In this system, sensors 
are installed on the road surface at critical locations. 

Fig.5 is the data of second ring south elevated road of 
Ji’nan, China. The date time of the data is from 12/5/2016 to 
12/26/2016.  

C. Icing Forecasting System 

Fig.6 shows the optimized icing forecasting system 
utilizing LSTM. The observation data is first normalized, and 
then inputted into the LSTM. Subsequently, a dense layer 
follows LSTM hidden layer. The dense output layer is 
responsible to generate the predictions. 

Inputs of the system are sensor observations, i.e.,  

1 2{ , ,..., ,..., }t NS s s s s , which denote all sensor 

observations. Every observation ts  produces data at each slot 

t . In the problem, every observation ts  has 7 data points at t , 

represented by ( ), 1,2,...,7ix t i  . 1 2 7( ) [ ( ), ,..., ( )]s t x t x x t  

contains outcome observation regarding all sensors at t . 

Likewise, ˆ ( 1)ix t   represents observation i  prediction at 

1t  . 1 2 7ˆ ˆ ˆ ˆ( 1) [ ( 1), ( 1),..., ( 1)]s t x t x t x t     (same size as 

( )s t ) contains all observation predictions . 

The problem is: all sensor observations before t  are 
utilized to predict observations at 1t  . The system has a 
multiple input with single step output, which is illustrated in 
Fig.7. 

 

 
Fig. 4.  Data sensor installation of the road 

 
Fig.5. Data of the road 

 
Fig.6.  PI forecasting system 
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Here input ( )s t  are the PT, freezing temperature, PFC, 

TWF, IC, PC and IW value, expressed by 1 2 7( ), ,..., ( )x t x x t  

respectively. Output are ˆ( 1)s t  , which are observations at 

1t  . 
Data can be previewed quickly using the pandas profiling 

tool, which provides an efficient way to identify highly 
correlated variables. Various correlation matrices, such as 
Spearman, Pearson, and Kendall, are available for analysis. 
Fig.8 displays the Spearman matrix. 

The training process for PI forecasting consists of 
following stages: data preprocessing, data separation, model 
training, and model verification. 

D. Data Processing 

Normalization is a process that adjusts the data range to be 

between 0 and 1. To achieve this, it is necessary to accurately 
determine or estimate maximal and minimal observable 
values. Fig.9 displays the normalized inputs of the PI 
forecasting system. The data preprocessing step involves data 
normalization. This step uses following equation to achieve 
normalization process: 

 

 
Fig.7.  Multiple input and single step output 

 
Fig.9. Normalized data of Second Ring South Elevated Road 

 
Fig.8. Matrix of Spearman 
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 * 1 1min
1

1max 1min

( )
( )

x t x
x t

x x





 

The minimal and maximal 1( )x t  values can be denoted as 

1minx  and 1maxx , respectively. To gain normalized dataset 
* * *
1 2{ , ,..., }ns s s , we use the formula (7). Here 

* * * *
1 2 7[ ( ), ( ),..., ( )]ts x t x t x t  represents an individual 

observation in the data series. 

E. Data Separation and Model Training 

Data separation involves dividing dataset to training and 
testing data. We designate data from the first 10 days as the 
training set, while the data from the next 10 days serve as the 
testing data. 

To ensure proper functioning of our network, the first 
hidden layer needs to specify the expected number of inputs, 
which determines the input layer shape. The input data are 
three-fold, organized in the following order: samples, time 
steps, and features. In this context, samples refer to the data 
rows, time steps represent past observations for a particular 
feature, and features correspond to data columns. 

We have set the following parameters for the dimensions: 
samples=50, time step=1, and number of features=7. Once the 
network is defined, it needs to be compiled. Compilation 
involves transforming the sequential layers into a series of 
matrix transforms that can be executed efficiently. During 
compilation, certain parameters must be specified based on 
the training network. This includes selecting optimization 
algorithm and loss function to be used. In our model, we have 
chosen the adaptive moment estimation (ADAM) algorithm 
and mean absolute error (MAE) loss function. 

When the network is compiled, it could be fitted y adjusting 
the weights based on training data. For successful fitting, 
training data needs to be provided in the form of an input 
pattern matrix X and a corresponding output array y. The 
network is trained utilizing back propagation through time 
algorithm, which is optimized as the optimization algorithm 
and loss function that specified during compilation. Example 
of a fitting network could be demonstrated by: model.fit(X, y, 
batch_size=70, epochs=25). 

Once model has been trained, it is capable of estimating 
additional sequences. Model validation is established using 
testing dataset. PI forecast and real values of testing data are 
the same, while the forecast temperature and real values are 
provided in Fig.10. 

 

IV. EXPERIMENTS 

We collected two sets of forecast data The first set covers 
the period from 12/29/2016 to 12/30/2016 at a specific 
location. The second set covers the period from 12/5/2016 to 
12/26/2016 at a different location. 

The forecast and real values of PI warning on the same 
position are the same. Meanwhile, Figure 11 displays the 
forecasted temperature values at the same position. It is worth 
noting that both figures highlight the comparison between the 
forecasted values and the corresponding actual values. 

The forecast and real value of PI warning are the same, and 
temperature on other various positions are illustrated in 
Fig.12. 

The criteria to measure experiment performance are Root 
Mean Square Errors (RMSEs) between real and forecast PT 
values: 

 2

1

1
ˆ( )

m

RMSE i i
i

y y y
m 

   

Where iy  and ˆiy  are real and forecast PT values, 

respectively. 
RMSE results are in Table 1. The RMSE of data on 

different position is 0.433℃. 

 
Fig.10. Forecast and actual value of pavement temperature 

TABLE 1  RMSE BETWEEN REAL AND FORECAST PT VALUES  

Date 12/17-12/26 12/29-12/30 12/17 - 12/30 

Data testing data on 
same position 

data on same 
position 

data on different 
position 

RMSE 0.706 0.587 0.433 

 

 
Fig.11. Forecast and real PT on same position 

 

 

Fig.12. Forecast and real PT on different position 

Forecast Value 

 

Actual Value 

Forecast Value 

Actual Value 

Forecast Value 

Actual Value 

Forecast Value 

 

Actual Value 
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The PI warning is very precise. And from Fig.10, forecast 
PT is concordant to real values. To verify the model 
parameter accuracies, forecast and real PI warning and PT 
values are compared. PI warning of the forecast and real 
values are the same. The results show that the model could be 
applied to the Road. 

Fig.13 shows the contrast in road conditions when utilizing 
an early WS and automatic antifreeze spraying. The top image 
represents the absence of early warnings and subsequent 
antifreeze spraying, while the bottom image highlights the 
effectiveness of early warnings combined with automatic 
antifreeze spraying. This figure convincingly illustrates that 
the use of antifreeze during early warnings significantly 
reduces the occurrence of traffic accidents. 

V. CONCLUSIONS 

In current article, we employed LSTM to anticipate PI 
warning. Findings demonstrate that the model is capable of 
accurately foretelling PI warning. Building upon our 
investigation and approach, it has the potential to forecast the 
temperature of the pavement. Consequently, it can diminish 
the frequency of traffic mishaps and enhance traffic control 
within our nation. 
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Fig.13. Comparison of road conditions before and after using an early WS 

and automatically spraying antifreeze 

Engineering Letters

Volume 32, Issue 4, April 2024, Pages 806-811

 
______________________________________________________________________________________ 




