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Abstract—An event-triggered prescribed performance control
(PPC) method is presented for switched uncertain nonlinear
systems. Firstly, in order to ensure the comprehensive perfor-
mance of the system, an effective error transformation function
was introduced in the design process of the controller. Then,
considering the mismatch behavior caused by the interaction
between system switching and event-triggered sampling, a new
switching event-triggered mechanism and adaptive control law
were designed. Without strict assumptions about the event-
triggered control of switching system, the mismatch problem be-
tween subsystems and corresponding controllers was effectively
solved, and Zeno behavior was avoided. Finally, the effectiveness
of this method is verified by the tracking control simulation of
a single connecting-rod mechanical arm.

Index Terms—switched nonlinear systems, prescribed perfor-
mance control (PPC), event-triggered control (ETC), mismatch
behavior, adaptive control, mechanical arm

I. INTRODUCTION

IN recent years, adaptive control combining backstepping
technology is one of the commonly used methods in

nonlinear system control. However, for switching nonlinear
systems, the combination of adaptive control and backstep-
ping control is not easy due to the fact that coordinate trans-
formations of different subsystems often lead to different
state spaces. The existing solutions, such as the common
Lyapunov function method used in [1][2][3], all require the
presence of stable control, losing the flexibility of switching
control. Therefore, multiple Lyapunov function methods can
be used to control switched nonlinear systems [4][5].

In addition, the PPC can ensure both the transient per-
formance and steady-state performance of the system, so
it has been extensively studied and applied [6][7][8]. With
the deepening of research, the application of ETC for
switched systems has attracted people’s attention. However,
the interaction between switched system and triggers may
cause mismatch problems between subsystems and corre-
sponding controllers, most existing results make strict as-
sumptions to avoid this issue. For example, in [9][10][11],
switching is only allowed at the triggering moment. In
[12][13][14][15][16][17], the switching of controller/filter
parameters always matches the subsystem models. These
assumptions greatly simplify the design process, but in
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reality, it’s difficult to satisfy them. Therefore, it is necessary
to design a controller suitable for general situations to
solve the mismatch problem caused by switched systems. In
[14][18][19][20], time-triggered control scheme [21][22][27]
has been used to solve it. However, this method requires a
known maximum sampling interval to ensure the maximum
mismatch period. In fact, it is difficult to know the maximum
sampling interval in advance. So additional processing or
some conservative estimates are needed to be carried out in
the event-triggered mechanism, For example, incorporating
the time term into the trigger condition to generate the
maximum sampling interval [14][20]. In [19], the maximum
mismatch period is directly assumed. Due to hardware limi-
tations, Zeno behavior may occur in event-triggered control.
For periodic ETC systems [9][10][12][14][18] or discrete
time systems [13][14][15], Zeno behavior can be avoided by
using the sampling period as the minimum triggering event.
For systems with continuous event-triggered control, existing
methods include adding a small constant to the threshold
function [23][24], or allowing a small steady-state error
[16][25], or using dynamic threshold functions [19][26]. But
when using the switching event-triggered mechanism, they
are not applicable due to the possible coupling information
between the switching and the triggers.

Based on the previous discussion, a new switching event-
triggered controller is designed to solve the tracking problem
of switched nonlinear systems. The event-triggered controller
includes switching event-triggered mechanism and adaptive
control laws related to the mode, which effectively solves
the incompatible problem in the system. The comprehensive
performance of the system is guaranteed by adopting PPC.
The method was finally validated to be effective through
simulation.

II. PROBLEM DESCRIPTION

A. System descriptions and assumptions

Consider the expression for a class of stochastic nonlinear
systems as follows

ẋi = xi+1 + fi (x1, . . . , xi) , i = 1, . . . , n− 1

ẋn = mσu+ ϑT
σφσ(x) + fσ,n(x)

y = x1

(1)

where x = [x1, . . . , xn]
T ∈ Rn with initial value x (t0) =

x0, u ∈ R and y ∈ R are the states, input and output of the
system, respectively. m denotes the number of subsystems,
σ : R+ → M = {1, 2, . . . ,m} represents the function of
switching signal, σ (t) = p ∈ M , t ∈ [πs, πs+1] represents
the p-th subsystem. The known functions φp : Rn → Rl,
fi : R

i → R and fp,n : Rn → R are smooth, the vector ϑp :
Rn → Rl is unknown, and mp ̸= 0. Assuming that there is
no state jump at the switching moment, the interval between
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any two switches should be πd > 0, that is, πs+1−πs ≥ πd,
it indicates that there are no cumulative switching points. For
subsequent analysis, several assumptions [1][4][23] need to
be made as follows.

Assumption 1. The sign of mp is known and there exist
positive constants m0 and m̄ such that m0 ≤ |mp| ≤ m̄.

Assumption 2. There exists ϑ0 > 0 such that ||ϑp|| ≤ ϑ0

with ∀p ∈ M .
Assumption 3. The expected trajectory yd (t) and its

(n+ 1) order derivative are known continuous bounded
functions.

To facilitate the design of control schemes, all states and
switching signals can be measured. The control signal asso-
ciated with the switch is transmitted through event-triggered.
The zero-order synchronization refresh in the actuator. That
is to say, for ∀t ∈ [tk, tk+1), the actual input is as follows

u (t) = wσ(tk) (tk) (2)

Here wσ(t) (t) denotes the control law, {tk}k∈Z+
is the

sampling time series. At this point, system switching and
event triggering may result in a mismatch between the
controlled object and its corresponding controller. Because
the controlling signal is transmitted at the triggered time,
and the system can be switched at any time.

Remark 1. Avoiding Zeno behavior means that it can
only be triggered a limited number of times within any
limited time [28][29]. Therefore, as long as the minimum
triggering time is positive, i.e., fk∈Z+

{tk+1 − tk} > 0,
Zeno behavior can be avoided. However when triggering
condition is related to the switch, this goal is difficult to
achieve due to the discontinuity caused by switches. The
switches may trigger additional events. It may result in an
infinitesimal distance between two triggers. Therefore, a new
event-triggered mechanism must be designed to settle the
Zeno behavior.

III. CONTROLLER DESIGN

A. PPC

In the design of the controller below, the backstepping
method will be adopted. First, let’s define the virtual control
signals as follows

α1 = −f1 +
z1θ̇1
θ1

− k1
ϕ1

η1 (3)

αi =− kizi − fi − zi−1

+
i−1∑
j=1

[
∂αi−1

∂xj
(xj+1 + fj) +

∂αi−1

∂y
(j−1)
d

y
(j)
d

]

+
i−1∑
j=0

∂αi−1

θ
(j)
1

θ(j+1)

αn =− knzn − fn − zn−1

+
n−1∑
j=1

[
∂αn−1

∂xj
(xj+1 + fj) +

∂αn−1

∂y
(j−1)
d

y
(j)
d

]

+
n−1∑
j=0

∂αn−1

θ
(j)
1

θ(j+1)

(4)

The expressions for the state errors are given as follows

z1 =x1 − yd

zi =xi − yi−1
d − αi−1, i = 2, . . . n

(5)

Define the performance function of PPC as follows

θ1 = (θ0 − θ∞)e−lt + θ∞ (6)

Where θ0, θ∞ and l are predefined positive constants, θ∞
represents the upper limit of steady-state error. Define error
transformation as follows

η1 = ln(
θ1 + z1
θ1 − z1

) (7)

Its derivative over time is as follows

η̇1 = ϕ1

(
x2 + f1 − ẏd −

z1θ̇1
θ1

)
(8)

where ϕ1 = 2θ1/(θ
2
1 − z21).

Remark 2. The hyperbolic tangent function tanh−1(x) =
1
2 ln

1+x
1−x will be used to construct η1. If η21(t) is bounded,

then |z1(t)| < θ1 holds.

B. Event-triggered controller design

1) Virtual control design:
step 1: Select the Lyapunov function as follows

V1 =
1

2
η21 (9)

By combining equations (1) and (5), V̇1 can be get

V̇1 = η1ϕ1(α1 + f1 −
z1θ̇1
θ1

) + η1ϕ1z (10)

Substituting α1 = −f1 +
z1θ̇1
θ1

− k1

ϕ1
η1 yields

V̇1 = −k1η
2
1 + η1ϕ1z2 (11)

step 2: Similarly, according to z2 = x2 − α1 − ẏd, select
the Lyapunov function as follows

V2 = V1 +
1

2
z22 (12)

Combining equations (1), (5) and (10), the time-derivative of
V2(t) can be obtained

V̇2 = −k1η
2
1 + z2(η1ϕ1 + z3 + α2 + f2 − α̇1) (13)

Substituting α2 = −k2z2 − f2 − η1ϕ1 + ∂α1

∂x1
(x2 + f1) +

∂α1

∂yd
ẏd +

∂α1

∂θ1
θ̇1 +

∂α1

∂θ̇1
θ̈1 yields

V̇2 = −k1η
2
1 − k2z

2
2 + z2z3 (14)

where α̇1 = ∂α1

∂x1
(x2 + f1) +

∂α1

∂yd
ẏd +

∂α1

∂θ1
θ̇1 +

∂α1

∂θ̇1
θ̈1.

step i: Similar to step 2, for each step i, 3 ≤ i ≤ n − 1,
consider the i-th subsystem in equation (1) and coordinate
transformation (5), it has

żi = xi+1 + fi − α̇i−1 − ẏd (15)

where α̇i−1 =
∑i−1

j=1

[
∂αi−1

∂xj
(xj+1 + fj) +

∂αi−1

∂y
(j−1)
d

y
(j)
d

]
+∑i−1

j=1
∂αi−1

∂θ
(j)
1

θ
(j+1)
1 .

Construct a Lyapunov function as follows

Vi = Vi−1 +
1
2z

2
i
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mismatched interval

triggering 
time

switching 
time

Fig. 1. Example of switching and triggering time positions (in the case of
two subsystems)

Similar to the previous two steps, there has

V̇i =− k1η
2
1 −

i−1∑
j=2

kjz
2
j + zi(zi−1 + αi + fi − α̇i−1)

+ zizi−1

(16)
Substituting αi in equation (4), it can be obtained

V̇i ≤ −k1η
2
1 −

i∑
j=2

kjz
2
j + zizi−1 (17)

2) Event-triggered control design:
Next is the final recursive step, define λp = 1/mp, ∀p ∈

M . Define λ̂p and ϑ̂p as the estimated values of λp and ϑp.
Define their estimation errors as λ̃p = λp − λ̂p and ϑ̃p =
ϑp − ϑ̂p.

According to the explanation in Section 2, the relationship
between the switches and triggered time is shown in Figure
1, where πk

1 = πs and πk
2 = πs+1 denote the first and second

switching respectively, and so on. Next, the switching event-
triggered mechanism is designed as follows

tk+1 =inf
{
t ∈ R+ :

∣∣eσ(t)∣∣ ≥ Γw

}
Γw =ϵ+∆1

∣∣wσ(tk)tk
∣∣+∆2 |Bw|

Bw(t) =

{
wσ(πk

1 )
(
πk
1

)
− wσ(tk)

(
πk
1

)
, t ∈

[
πk
1 , T̄

k
J

)
0, otherwise

T̄ k
J =

{
πk
2 , Nk > 1

tk+1, Nk = 1
(18)

where ϵ > 0, 0 < ∆1 < 1, ∆2 ≥ 1, and eσ(t)(t)
denotes switching sampling error, and Nk denotes switching
frequency on the (tk, tk+1) interval, equation (18) represents
Bw ̸= 0 only holds on the first mismatched interval, such as[
πk
1 , π

k
2

)
or
[
πk+2
1 , tk+3

)
, and on the interval without switch,

Bw = 0, such as interval [tk+1, tk+2).
The designed adaptive control law (p ∈ M) is as follows

wp =− ∆̄sp

[
λ̂pϕp tanh

(
λ̂pznϕp/ξ

)
+
ϵ tanh (ϵzn/ξ) + ∆2Bw tanh (znBw/ξ)

1−∆1

]
˙̂
ϑp =Proj

{
r
(
znφp − δϑ̂p

)}
,
∥∥∥ϑ̂p (t0)

∥∥∥ ≤ ϑ0

˙̂
λp =Proj

{
hspznϕp − ρλ̂p

}
,
∣∣∣λ̂p (t0)

∣∣∣ ≤ 1/m0

(19)

where ϕp = zn−1 + knzn + fp,n + ϑ̄T
p − y

(n)
d − α̇n−1,

∆̄ = 1 + ∆1. ξ, r, δ and ρ are all greater than 0. Proj (·)
represents projection operator [29]. fi, fp,i, sp, φp and
y
(i)
d are all continuous and differentiable, and there will

be no state jumps or buildups during switches. Assuming
the maximum interval is [t0, Tmax), the projection operator
ensures

∣∣∣∣∣∣ϑ̂p

∣∣∣∣∣∣ ≤ ϑ0 + ε1 = ϑ̄,
∣∣∣λ̂p

∣∣∣ ≤ 1/m0 + ε2 = 1/m̃

in interval [t0, Tmax), where ε1, ε2 are two arbitrary normal
numbers.

step n: When the system is in the matching interval (with
no switch in the interval), it is known that Bw = 0. Assuming
that σ(t) = σ(tk) = p, it has

|ep(t)| = |wp(tk)− wp(t)| ≤ ϵ+∆1 |wp(tk)| (20)

For equation (20), there exist |ζ1(t)| ≤ 1, |ζ2(t)| ≤ 1, so that
ep(t) = ϵζ1(t) + ∆1wp(tk)ζ2(t), then

wp(tk) =
wp(t)

1− ζ2(t)∆1
+

ζ1(t)ϵ

1− ζ2(t)∆1
(21)

According to mpsp = mpsgn(mp) = |mp| > 0, it is
determined that znmpwp ≤ 0, so

znmpwp(tk) ≤
znmpwp(t)

1 + ∆1
+

|zn| |mp| ϵ
1−∆1

(22)

The system is in the matching range, and at this point Bw =
0, ∆̄ = 1 + ∆1. By combining equation (19), it can be
obtained that

znmpwp (tk) ≤
ϵ |zn| |mp|
1−∆1

− zn |mp| λ̂pϕp tanh

(
λ̂pznϕp

ξ

)

− zn |mp| ϵ tanh (ϵzn/ξ)
1−∆1

(23)
Structure the following Lyapunov function:

V p = Vn−1 +
1

2
z2n +

1

2r
ϑ̃T
p ϑ̃p +

|mp|
2c

λ̃2
p, ∀p ∈ M (24)

Taking its time-derivative yields

V̇ p = V̇n−1 + znżn − 1

r
ϑ̃T
p
˙̂
ϑp −

|mp|
c

λ̃p
˙̂
λp (25)

The function tanh(·) satisfies the following inequality [31]:

ρ ≤ |ρ| ≤ ρtanh (ρ/ζ) + 0.2785ζ, ζ > 0 (26)

Combinating equations (1), (5) and (26), there has

V̇ p =− k1η
2
1 −

n−1∑
j=2

kjzj + zn−1zn

+ zn(ϑ
T
p φp + fp,n − α̇n−1 − y

(n)
d )

− znmpλ̂pϕp

+
2−∆1

1−∆1
|mp|0.2785ξ −

1

r
ϑ̃T
p
˙̂
ϑp −

|mp|
c

λ̃p
˙̂
λp

(27)

The projection operator Proj (·) have the following proper-
ties [30]

−λ̃pProj
{
cspznϕp − ρλ̂p

}
≤− λ̃p

(
cspznϕp − ρλ̂p

)
(28a)

−ϑ̃T
p Proj

{
r(znφp − δϑ̂p)

}
≤− ϑ̃T

p r(znφp − δϑ̂p)

(28b)
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Based on the above properties and ϕp, λ̃p = λp − λ̂p and
ϑ̃p = ϑp − ϑ̂p, it can be obtained that

V̇ p ≤− k1η
2
1 −

n∑
j=2

kjz
2
j +

2−∆1

1−∆1
|mp|0.2785ξ

+
ρ|mp|
c

λ̃pλ̂p + δϑ̃T
p ϑ̂p

(29)

and λ̃pλ̂p ≤ 1/2λ2
p − 1/2λ̃2

p,ϑ̃T
p ϑ̂p ≤ 1/2ϑT

p ϑp − 1/2ϑ̃T
p ϑ̃p,

then it can be obtained that

V̇ p ≤− k1η
2
1 −

n∑
j=2

kjz
2
j − ρ

|mp|
2c

λ̃2
p − rδ

1

2r
ϑ̃T
p ϑp

+
ρ

2c|mp|
+

δ

2
ϑT
p ϑp +

2−∆1

1−∆1
|mp|0.2785ξ

(30)

so
V̇ p ≤ −γ0V p + γc (31)

where γ0 = mini∈{1,2,···n} {2ki, rδ, ρ}, γc = ρ
2c|mp| +

δ
2ϑ

T
p ϑp +

2−∆1

1−∆1
|mp|0.2785ξ.

When the system is in the type-I mismatch interval (there
is a switch in the system), and πk

1 is the first switch after tk,
assuming σ(tk) = p and σ(t) = q (q ̸= p), t ∈ (πk

1 , tk+1),
and at this time there has Bw = wq(π

k
1 )− wp(π

k
1 ).

Through the event-triggered mechanism, it can be inferred
that

|eq(t)| ≤ϵ+∆1 |wp (tk)|
+∆2Bw(t)

(32)

For equation (32), |ζ3(t)| ≤ 1, |ζ4(t)| ≤ 1, |ζ5(t)| ≤ 1 cause
eq(t) = ϵζ3(t) + ζ4(t)∆1wp(tk) + ζ5∆2Bw, there has

wp(tk) =
wq(t) + ϵζ3(t) + ∆2ζ5(t)Bw(t)

1−∆1ζ4(t)
(33)

then

znmqwp (tk) ≤
znmqwq(t)

1 + ∆1
+

ϵ |zn| |mq|
1−∆1

+
∆2 |mq| |znBw|

1−∆1

≤− znmqλ̂qϕq

+
2−∆1 +∆2

1−∆1
|mq| 0.2785ξ.

(34)

Similar to the matching interval, it can be obtained

V̇ q ≤ −γ0V q + γc (35)

where γ0 = mini∈{1,2,···n} {2ki, rδ, ρ}, γc = ρ
2c|mq| +

δ
2ϑ

T
q ϑq +

2−∆1+∆2

1−∆1
0.2785ξ.

When the system is in the type-II mismatch interval (there
are two switches in the system), due to Bw ̸= 0 only holds
on the first mismatched interval, and Bw = 0 on subsequent
mismatched intervals, so the derivation process is the same
as on type-I mismatched intervals.

When switch occurs in the system at the time of event-
triggered, only one switch moment πs needs to analyze the
relationship between V p and V q , and define

∣∣∣λ̂p

∣∣∣ ≤ 1/m̃ =

d, |λp| ≤ 1/m0 ≤ 1/m̃ < d. It can be obtained that

|mq|λ̃2
q ≤|mp|λ̃2

p + 4|mq|d2 (36a)

ϑ̃T
q ϑ̃q ≤4ϑ̄2 + ϑ̃T

p ϑ̃p (36b)

so

V q − V p =
1

2r
ϑ̃T
q ϑ̃q +

|mq|
2c

λ̃2
q −

1

2r
ϑ̃T
p ϑ̃p −

|mp|
2c

λ̃2
p

≤2ϑ̄2

r
+

2m̄

cm̃2

(37)

In summary, it can be concluded that

V̇ p ≤ γ0V p + γc, ∀p ∈ M (38)

V q − V p ≤ 2ϑ̄2

r
+

2m̄

cm̃2
= κ (39)

where γ0 = mini∈{1,2,···n} {2ki, rδ, ρ}, γc = ρ
2c|mp| +

δ
2ϑ

T
p ϑp +

2−∆1

1−∆1
|mp|0.2785ξ.

3) Stability analysis:
Theorem 1: Considering the switching system (1) that sat-

isfies Assumptions 1-3, by introducing event-triggered mech-
anism (18)-(19), and selecting appropriate design parameters
for (2) and switching signals with πd, the conclusions below
hold:

(1) All closed-loop signals are bounded, and the output
error can meet the preset requirement;

(2) The interval time between event-triggered satisfies
tk+1 − tk ≥ t∗, indicating no Zeno behavior.

Proof:
(1) From the previous derivation, it can be seen that the

time-derivatives of all selected Lyapunov functions have the
form V̇ (t) ≤ −γ0V (t) + γc. Take piecewise continuous
differentiable function V (t) and define it as

V (t) = V p, p ∈ M, ∀t ∈ [πs, πs+1) (40)

According to equations (38), (39), it has

V (t) ≤V (πs)e
−γ0(t−πs) +

γc
γ0

(1− e−γ0(t−πs))

V (πs) ≤V (π−
s ) + κ

(41)

So, for ∀t ∈ [t0, Tmax), there has

V (t) ≤V (t0)e
−γ0(t−t0) +

γc
γ0

(1− e−γ0(t−t0))

+

Nσ∑
j=1

e−γ0(t−πj)κ
(42)

Assuming that Nσ is switching frequency on (t, t0], accord-
ing to the dwell time πs+1 − πs ≥ πd, ∀s ∈ Z+, it has
t − πj ≥ (Nσ − j)πd and Nσ(t, t0) ≤ 1 + (t − t0)/πd, so
there has

Nσ∑
j=1

e−γ0(t−πj)κ ≤
Nσ∑
j=1

e−γ0(Nσ−j)πdκ =

Nσ−1∑
j=0

e−γ0πdjκ

=
1− e−γ0πdNσ

1− e−γ0πd
κ

≤ 1− e−γ0(t−t0+πd)

1− e−γ0πd
κ

(43)
Substituting equation (43) into equation (42) yields

V (t) ≤e−γ0(t−t0)V (t0) +
γc
γ0

(
1− e−γ0(t−t0)

)
+

1− e−γ0(t−t0+πd)

1− e−γ0πd
κ

(44)

Assumption 1 and the adaptive laws (19) based on projec-
tion operators have been proven to be bounded for all p ∈ M ,
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ϑp, ϑ̂p, ϑ̃p, λp, λ̂p, λ̃p. From the equation (41), it can be seen
that V (t) is bounded. For ∀t ∈ [t0, TMax), according to (24),
z1, ..., zn are bounded. Since yd is bounded, it ensures that
x1 and f1(x1) are also bounded. By selecting appropriate
parameters, the tracking error can converge to the preset
range. According to Assumption 3 and expression of αi,
xi, fi(x1, ..., xn), fp,n(x), φp(x) are bounded. According
to equation (19), the input u(t) is bounded. So all signals of
the system (1) are bounded.

(2) When the system is in the matching interval, for
any t ∈ [tk, tk+1), assuming σt = p, as can be seen
from equation (18), |ep (tk)| = |wp(tk)− wp(tk)| = 0,∣∣ep (t−k+1

)∣∣ =
∣∣wp(tk)− wp(t

−
k+1)

∣∣ ≤ ϵ + ∆1 |wp(tk)|, it
can be obtained that

d

dt
|ep(t)| =

ep(t)

|ep(t)|
ėp(t) ≤ |ėp(t)| = |ẇp(t)|

≤∆̄

∣∣∣∣ ddt [λ̂pϕp tanh
(
λ̂pznϕp/ξ

)]∣∣∣∣
+

∆̄ϵ

1−∆1

∣∣∣∣ ddt tanh (ϵZn/ξ)

∣∣∣∣
(45)

Since the signals of all closed-loop system are bounded, all
signals on the right side of equation (45) is also bounded, that
is to say, there exists a constant T ∗

1 that makes d
d(t) |ep(t)| ≤

T ∗
1 , applying the mid-value theorem yields∣∣ep(t−k+1)

∣∣− |ep(tk)| =ϵ+∆1 |wp(tk)| ≤ T ∗
1 (tk+1 − tk)

tk+1 − tk ≥ϵ+∆1 |wp(tk)|
T ∗
1

≥ ϵ

T ∗
1

(46)
When the system is in the type-I mismatch interval, the

proof process within t ∈ [tk, π
k
1 ) is the same as the matching

interval. For t ∈ [πk
1 , tk+1), assume σ(tk) = p, σ(t) = q

(q ̸= p), t ∈ (πk
1 , tk+1), and at this point there is Bw =

wq(π
k
1 )− wp(π

k
1 ), so it has∣∣eq(πk

1 )
∣∣ ≤|wp(tk)− wp(π

k
1 )|+ |wp(π

k
1 )− wq(π

k
1 )|

<ϵ+∆1|wp(tk)|+∆2|Bw(π
k
1 )|

(47)

It can be obtained from the same mismatched interval as
follows

|ėq(t)| ≤∆̄

∣∣∣∣ ddt [λ̂qϕq tanh
(
λ̂qznϕq/ξ

)]∣∣∣∣
+

ϵ∆̄

1−∆1

∣∣∣∣ ddt tanh (ϵzn/ξ)
∣∣∣∣

+
∆̄∆2|Bw|
1−∆1

∣∣∣∣ ddt tanh (tanh(znBw)/ξ)

∣∣∣∣
(48)

Due to all closed-loop signals and initial conditions are
bounded, there exists an independent constant T ∗

2 such that
d

d(t) |eq(t)| ≤ T ∗
2 . According to the equation (18), it can be

obtained |ep (tk)| = |wp(tk)− wp(tk)| = 0,
∣∣eq (t−k+1

)∣∣ =∣∣wp(tk)− wq(t
−
k+1)

∣∣ ≤ ϵ+∆1 |wp(tk)|+∆2 |Bw|, therefore
the total error increment is

∣∣eq (t−k+1

)∣∣−|ep (tk)|−∆2 |Bw| =
ϵ+∆1 |wp(tk)| = Inc(tk, π

k
1 )+Inc(πk

1 , tk+1). Inc(·) is the
corresponding interval error increment, and it can be obtained
through the mean value theorem that

πk
1 − tk ≥Inc(tk, π

k
1 )

T ∗
1

t−k+1 − πk
1 ≥Inc(πk

1 , tk+1)

T ∗
2

(49)
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Fig. 3. The switching signal

so it has

tk+1 − tk ≥ ϵ+∆1|wp(tk)|
max {T ∗

1 , T
∗
1 }

≥ ϵ

max {T ∗
1 , T

∗
2 }

(50)

When there are multiple switches in the system, the
following inequality can be obtained

tk+1 − tk ≥ Nkπd (51)

Based on the above, the minimum triggering time is as
follows

π∗ = min

{
ϵ

max {T ∗
1 , T

∗
2 }

, πd

}
(52)

Thus, it proves that using event triggered control (18) will
not result in Zeno behavior.

IV. SIMULATION

The dynamic equation of a single connecting-rod mechan-
ical arm system based on network control [32] is considered
as follows

Jq̈ +Bq̇ +MgL sin(q) = Kτu (53)

Where q denotes the angle of rigid connecting rod, u, J and
B denote the control input, the moment of inertia and the
unknown damping coefficient respectively. M , L, Kτ and g
represent the mass, the length, the torque and gravitational
acceleration, respectively.
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Here, it is assumed that the robotic arm moves the same
specified loads one after another on a specified trajectory,
then (53) can be rewritten as follows

Jσ q̈ +Bq̇ +MσgLσ sin(q) = Kτu (54)

where σ ∈ {1, 2} denotes the signal of switching. Jσ , Mσ

and Lσ all are unknown constant parameters. Let x1 = q,
let x2 = q̇, then (54) can be transformed into

ẋ1 = x2

ẋ2 =
Kτ

Jσ
u− B

Jσ
x2 −

MσLσg

Jσ
sin(x1)

y = x1

(55)

Assuming yd(t) = sin(t), J1 = 1kgm2, J2 = 2kgm2,
B = 1kgm2s−1, Kτ = 2, M1gL1 = 10kgm2s−2,
M2gL2 = 30kgm2s−2. The design parameters are θ0 = 1,
θ∞ = 0.3, l = 0.5, k1 = 8, k2 = 4, ϵ = 0.5, ∆1 = 0.2,
r = 200, ∆2 = 0.2, δ = 0.2, ρ = 0.5, c = 20,
ξ = 0.05. Taking x1(0) = x2(0) = 0, ϑ̂1 (0) = [−0.5, 5]T ,
ϑ̂2 (0) = [−1,−10]T , λ̂1 (0) = λ̂2 (0) = 1. The tracking
error under PPC is shown in Figure 2. Choose τd = 2s,
then the switching signal is shown in Figure 3. By using the
event-triggered control (18)-(19), Figure 4 shows that the
system output can be well tracked. The estimation values of
the parameters are shown in Figures 6-8. Through Figure
9, it is noted that Bw = 0 on some mismatched intervals,
indicating that the event-triggered mechanism (18) in this
example operates in a mixed manner. The above simulation
results also verify the absence of Zeno behavior.

V. CONCLUSION

This paper studies the event-triggered PPC problem for
a class of switched uncertain nonlinear systems. Firstly,
an improved PPC method is proposed. Then, an effective
switching event-triggered mechanism is given, which effec-
tively solves the mismatch problem between subsystems and
corresponding controllers. This method no longer requires
strict assumptions about ETC of switching systems in some
literatures, so it is more intuitive and effective than existing
methods. This paper also designs a mixed threshold function
to avoid Zeno behavior, and designs an adaptive control
law to compensate for sampling errors, thereby ensuring the
convergence of tracking errors.
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