
 

  

Abstract—There are two problems in the development of 

swarm-based metaheuristic. First, there are not any 

metaheuristic is able to solve all problems superiorly. Second, 

the cross-dimension mapping between the entity and its 

reference during performing the directed search is rare to find. 

Based on these problems, this work introduces a new metaphor-

free swarm-based metaheuristic called the triple-shake 

algorithm (TSA). As its name suggests, TSA consists of three 

directed searches. The reference in the first search is the balance 

mixture between the finest entity and the member of 

permutation set. The reference in the second search is the 

balance mixture between the finest entity and a randomly 

chosen entity. The reference in the third search is the finest 

entity only. But the cross-dimension mapping is performed in 

this third search with 50 percent probability. In the benchmark 

assessment, TSA is compared with zebra optimization algorithm 

(ZOA), walrus optimization algorithm (WaOA), migration 

algorithm (MA), total interaction algorithm (TIA), and one-to-

one based optimization (OOBO). The result indicates the 

dominance of TSA among its comparators. TSA is better than 

ZOA, WaOA, MA, TIA, and OOBO in 21, 19, 17, 19, and 22 

functions consecutively out of 23 functions. 

 

Index Terms—optimization, metaheuristic, swarm 

intelligence, cross dimension mapping. 

 

I. INTRODUCTION 

 METAHEURISTIC has been implemented in a wide 

spectrum of optimization problems.  Particle swarm 

optimization (PSO) has been merged with genetic algorithm 

(GA) and back propagation algorithm to forecast the 3D 

surface roughness in milling industry [1]. The non-dominated 

sorting genetic algorithm (NSGA II) has been employed to 

optimize the agricultural product price recommendation 

problem where some factors, such as product quality, 

production level, business competition, risk, and profitability 

are considered [2]. Run-catch optimization (RCO) has been 

introduced and employed to solve the outsourcing 

optimization problem which is a problem in production 

system [3]. PSO also has been utilized to optimize the online 

train trajectory planning in which it is proven to catch up the 

schedule and improve the energy consumption saving [4]. 

African vulture optimization algorithm (AVOA) has been 

utilized to improve the power quality of charging station unit 

 

 
 

which is critical in electric vehicle (EV) system [5]. Bat 

algorithm (BA) has been employed to optimize the tuning 

parameters in the combined proportional integral differential 

(PID) controller and battery energy storage system (BESS) in 

the load frequency control (LFC) to minimize the frequency 

oscillation in a power system [6]. 

There are a lot of swarm-based metaheuristics firstly 

introduced in 2021 until today. Some metaheuristics 

introduced in 2021 are chameleon swarm algorithm (CSA) 

[7], northern goshawk optimization (NGO) [8], mixed leader-

based optimization (MLBO) [9], battle royale optimization 

(BRO) [10], coronavirus herd immunity optimization (CHIO) 

[11]. Some metaheuristics introduced in 2022 are election-

based optimization algorithm (EBOA) [12], Komodo mlipir 

algorithm (KMA) [13], golden search optimization (GSO) 

[14], hybrid leader-based optimization (HLBO) [15], clouded 

leopard optimization (CLO) [16], average subtraction-based 

optimization (ASBO) [17], golden jackal optimization (GJO) 

[18], and so on. Some metaheuristics introduced in 2023 are 

total interaction algorithm (TIA) [19], coati optimization 

algorithm (COA) [20], walrus optimization algorithm 

(WaOA) [21], migration algorithm (MA) [22], one-to-one 

based optimization (OOBO) [23], fully informed search 

algorithm (FISA) [24], lyrebird optimization algorithm 

(LOA) [25], language education optimization (LEO) [26], 

kookaburra optimization algorithm (KOA) [27], attack leave 

optimization (ALO) [28], mother optimization algorithm 

(MOA) [29], osprey optimization algorithm (OOA) [30], 

archery algorithm (AA) [31], four directed search algorithm 

(FDSA) [32], geyser inspired algorithm (GEA) [33], Nizar 

optimization algorithm (NOA) [34], and so on.  

Many swarm-based metaheuristics utilize the finest swarm 

member within the population as a reference or a component 

to construct the reference used for the directed search. This 

approach can be found in cheetah optimization (CO) [35], 

KMA [13], COA [20], and so on. The other concern is that 

almost all swarm-based metaheuristics employ strict 

dimension mapping approach. In the strict dimension 

mapping, the dimension of the related entity is mapped to the 

same dimension of its reference. Meanwhile, the cross-

dimensional mapping approach is rare to find. One example 

of metaheuristic employing the cross-dimensional mapping 

approach is NOA [34]. Moreover, according to the no-free-

lunch (NFL) theory, there is not any metaheuristic that can 

solve all optimization problems effectively and superiorly 

compared to other metaheuristics [35]. This theory has 

become the main or primary factor for many scientists to 

develop new metaheuristics, whether it is conducted by 

Triple Shake Algorithm: A New Metaheuristic 

with Strict and Cross Dimension Mappings 

Purba Daru Kusuma, Member IAENG 

M 

Manuscript received November 27, 2023; revised March 10, 2024. This 

work was financially supported by Telkom University, Indonesia. 
Purba Daru Kusuma is an assistant professor in computer engineering, at 

Telkom University, Indonesia (e-mail: purbodaru@telkomuniversity.ac.id).  

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 930-938

 
______________________________________________________________________________________ 



 

creating a brand new one or hybridizing some metaheuristics. 

Motivated by this problem, this work is aimed at 

introducing a novel swarm metaheuristic called triple shake 

algorithm (TSA). TSA is designed as a multiple search 

algorithm so that it consists of more than one search. The 

motivation of this approach is related to the NFL theory that 

each search has its own strengths and weaknesses. By 

employing multiple searches, the weakness of one search can 

be covered by the other searches. 

The scientific contributions of this work are listed as 

follows. 

1. This work introduces a new swarm-based metaheuristic 

that employs both strict dimension mapping and cross 

dimension mapping within its directed searches. 

2. The performance of this proposed metaheuristic is 

investigated by confronting it with five metaheuristics 

that were introduced in 2022 or 2023. 

3. The individual search assessment is also performed to 

investigate the contribution of each search employed in 

the proposed metaheuristic. 

4. The hyperparameter assessment is performed too to 

investigate the improvement of TSA due to the change 

of the adjusted parameters. 

The arrangement of the rest of this paper is as follows. The 

second section reviews the recent development of swarm-

based metaheuristics, especially the new ones which were 

introduced in 2023. Section three presents the inspiration, 

fundamental concept, and formulation of the proposed TSA. 

Section four presents the performance evaluation of TSA, 

including the evaluation scenario and the result. Section five 

discusses the findings, limitations, and computing complexity 

of TSA. Section six summarizes the concluding remarks and 

the proposal for future studies. 

II. RELATED WORKS 

The swarm-based metaheuristic is a branch of 

metaheuristic that employs both population-based system and 

multi-agent system. As a population-based system, swarm-

based metaheuristic consists of multiple solutions rather than 

a single solution which is commonly found in some old 

metaheuristics, such as simulated annealing (SA), tabu search 

(TS), variable neighborhood search (VNS), and so on. As a 

multi agent system, the swarm-based metaheuristic consists 

of certain number of autonomous agents that acts 

independently without any central command. This approach 

is different from other population-based metaheuristics such 

as genetic algorithm, where the improvement is controlled by 

central entity, such as in selecting the parents to breed new 

children. 

PSO is the early version of swarm-based metaheuristic. Its 

mechanism is simple, and it adopts the flocking pattern of 

birds during flight. Its simplicity can be seen from its single 

search which is the directed search. Each entity moves toward 

the mixture of the global finest entity and local finest entity 

with certain speed [36]. In its classic form, PSO does not 

employ stringent acceptance rules so that the entity will move 

to its new location although this new location does not 

provide improvement.  

Then, the massive development of swarm intelligence or 

swarm-based metaheuristic evolve its mechanism. There are 

a lot of innovations performed by many scientists in 

developing new swarm-based metaheuristics. By abstracting 

the metaphors used as their inspiration, many swarm-based 

metaheuristics can be observed based on some aspects, such 

as the interaction with the finest entity, the interaction with 

other entities, the use of neighborhood search, the acceptance 

role, and the dimension mapping between the entity and its 

reference during the directed search. The summary of some 

swarm-based metaheuristics which were firstly introduced in 

2023 is presented in Table 1. 

Some swarm metaheuristics employ multiple search 

strategy while some others still employ single search strategy. 

Many metaheuristics associated with Dehghani employ 

multiple search strategy, such as COA [20], ZOA [37], 

WaOA [21], MA [22], and so on. Some other metaheuristics 

also employ multiple search strategy, such as ALO [28], 

FDSA [32], KMA [13], and so on. In some metaheuristics, 

the multiple search strategy is followed by the split or roles 

for the members of the swarm. In this case, some members 

perform certain searches while others perform other searches. 

For example, in the first phase of COA, the first half of the 

population performs the motion toward the finest entity while 

the second half of the population performs the motion relative 

to a randomized solution within space [20]. In KMA, the 

swarm is split into three groups based on their quality. The 

first group consists of high-quality entities [13]. The second 

group consists of moderate-quality entities [13]. Meanwhile, 

the third group consists of poor-quality entities [13]. In some 

metaheuristics, such as ZOA [37], WaOA [21], MA [22], and 

OOA [30], the multiple search strategy is implemented into 

multiple phases of searches. Meanwhile, some metaheuristics 

still employ single search strategy, such as OOBO [23], GSO 

[14], FISA [24], CO [35], TIA [19], and so on. 

 

 
TABLE I 

LIST OF SOME SWARM METAHEURISTICS WHICH IS FIRSTLY INTRODUCED IN 2023 

No Metaheuristic 
Interaction with 

The Finest Entity 

Interaction with 

Other Entities 

Neighborhood 

Search 

Stringent 

Acceptance 

Multiple 

Strategy 

Cross Dimension 

Mapping 

1 TIA [19] yes yes no yes no no 

2 ALO [28] yes yes no yes yes no 

3 FDSA [32] yes yes no yes yes no 

4 WaOA [21] yes yes yes yes yes no 

5 MA [22] no yes yes yes yes no 

6 OOBO [23] no yes no yes no no 

7 COA [20] yes no yes yes yes no 

8 FISA [24] yes yes no yes no no 

9 GEA [33] no yes yes no yes no 

10 KOA [27] no yes yes yes yes no 

11 this work yes yes no yes yes yes 
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The neighborhood search with declining local search space 

is employed in some metaheuristics, such as COA [20], 

WaOA [21], ZOA [37], and so on. This method was first 

introduced in the marine predator algorithm (MPA) [38]. This 

search becomes the complementary of the directed search 

which becomes the backbone of the swarm-based 

metaheuristic. This search is designed to focus on the 

exploration in the early iteration then it shifts to exploitation 

as iteration goes. 

As shown in Table 1, there are a lot of variations in the 

recent swarm-based metaheuristics. But there is not any 

metaheuristics presented in Table 1 employs the cross-

dimension mapping between the related entity and its 

reference. Based on this fact, there is an opportunity in 

developing a new swarm-based metaheuristic that employs 

both strict dimension mapping and cross dimension mapping. 

Both mapping approaches can be accommodated through 

multiple search strategies where some searches perform strict 

dimension mapping while some others perform cross 

dimension mapping. 

III. PROPOSED MODEL 

TSA is a swarm-based metaheuristic so that it is 

constructed based on a set or collection of entities. These 

entities represent the solutions. Meanwhile, due to the nature 

of swarm intelligence, these entities are active and 

independent tracers. It means that all entities trace for 

improvement actively along the iteration. Meanwhile, each 

entity moves independently without any forcing command 

from other entities. But interaction among entities exists to 

improve the quality of the search. The term shake becomes 

the fundamental strategy in TSA. It means that there are three 

shaking processes implemented in it. 

The finest entity plays a significant role in TSA. The finest 

entity is the entity whose quality is the best among the swarm. 

It is involved in every search in TSA. This value is always 

updated every time an entity finds a better solution. 

Moreover, the finest entity becomes the final solution after 

the termination criteria, i.e., maximum iteration is reached. 

There are three sequential searches performed by each entity 

in the swarm in every iteration. 

A permutation set is generated as the first shake. This 

permutation set consists of the index of the members of the 

swarm where the order is scrambled. This process is 

performed in the beginning of every iteration. This 

permutation set is used in the first search. The objective is to 

ensure that all entities in the swarm are involved as a 

reference. This permutation creates a one-to-one mapping in 

the first search. It means that each entity will be used only 

once in the first search. This mapping is illustrated in Fig.  1. 

The reference used in the first search is the balance mixture 

between the finest entity and the entity whose index is at the 

same order as the index in the permutation set. The 

corresponding entity performs two direction movement in the 

first search. The first direction is toward the reference while 

the second direction is away from the reference. 

In the second shake, the reference is the balance mixture of 

the finest entity and a randomly chosen entity. This process 

presents the second shake. This second shake creates a many-

to-one mapping between the corresponding entity and the 

entity chosen to construct its reference. It means that there is 

a condition where an entity will be used multiple times in a 

single iteration while another entity has never been used as 

reference in one iteration. This many-to-one mapping is 

illustrated in Fig. 2. Same as in the first search, the 

corresponding entity performs two direction movement in the 

second search. The first direction is toward the reference 

while the second direction is away from the reference. 

 

 
Fig. 1. One-to-one mapping using permutation set in the first shake. 

 

 
Fig. 2. Many-to-one mapping using randomly chosen approach in the second 

shake. 

 

In the third search, the reference is the finest entity only. 

The corresponding entity moves only in a single direction 

which is toward the finest entity. Meanwhile, the interaction 

between the corresponding entity and the finest entity may 

not be in the same dimension. There is a 50 percent 

probability that the corresponding entity interacts with the 

finest entity in the same dimension. Meanwhile, there is also 

a 50 percent probability that the corresponding entity 

interacts with the finest entity in the different dimension. This 

cross-dimension mapping represents the third shake. Like in 

the second shake, this third shake is also many-to-one 

mapping. This many-to-one dimension mapping is illustrated 

in Fig. 3.  

 

 
Fig. 3. Many-to-one dimension mapping in the third shake. 

 

The TSA is then formalized using pseudocode and 

mathematical formulation. The pseudocode of the TSA is 

presented in algorithm 1. Meanwhile, the mathematical 

formulation used for a more detailed description of TSA is 

presented in (1) to (16). 

d dimension 

h objective function 

i solution index 

j dimension index 

p member of permutation set 

P permutation set 
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α, γ floating point uniform random number [0,1] 

β integer uniform random number [1,2] 

s solution 

S set of solution 

sb the finest solution 

slo lower boundary of the space 

sup upper boundary of the space 

sc1, sc2, sc3 the candidate of 1st, 2nd, and 3rd searches 

sc11, sc12 the 1st and 2nd candidates of the 1st search 

sc21, sc22 the 1st and 2nd candidates of the 2nd search 

t iteration 

tm maximum iteration 

U uniform random 

 

The construction of TSA can be split into two phases as 

seen in algorithm 1. The first phase, which is the 

initialization, is presented in lines 2 to 5. Meanwhile, the 

second phase, which is the iteration, is presented in lines 6 to 

16. In the end, line 17 shows that the finest entity becomes 

the final solution. 

 

algorithm 1: TSA 

1 begin 

2  for all s  S 

3   initialize si using (1) 

4   update sb using (2) 

5  end for 

6  for t=1 to tm 

7   create P using (3) 

8   for all s  S 

9    perform first search using (4) to (8) 

10    update sb using (3) 

11    perform second search using (9) to (14) 

12    update sb using (3) 

13    perform third search using (15) and (16) 

14    update sb using (3) 

15   end for 

16  end for 

17  return sb 

18 end 

 

The initialization phase contains two processes. The first 

process is a full random search within the space to generate 

the initial value of all entities. This process is formalized 

using (1) where the uniform random is chosen so that the 

probability of the initial entity is generated in any location 

within the search space is equal. Then, this process is 

followed by the updating of the finest entity as formalized 

using (2). The updating of the finest entity also occurs at the 

end of every search as presented in lines 10, 12, and 14 in 

algorithm 1. 

 

𝑠𝑖,𝑗 = 𝑠𝑙𝑜,𝑗 + 𝛼(𝑠𝑢𝑝,𝑗 − 𝑠𝑙𝑜,𝑗)            (1) 

 

𝑠𝑏
′ = {

𝑠𝑖 , ℎ(𝑠𝑖) < ℎ(𝑠𝑏)

𝑠𝑏 , 𝑒𝑙𝑠𝑒
              (2) 

 

The setup of permutation set is performed every time the 

optimization enters the new iteration. It is conducted before 

the loop for whole swarm begins as shown in line 7 in 

algorithm 1. This process is formalized using (3). Equation 

(3) that the permutation set consists of index from 1 to the 

dimension of the problem.  

 

𝑃 = 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛(1,2,3, … , 𝑑)           (3) 

 

The first search is formalized using (4) to (8). Equation 

(4) states that the first reference is balance mixture between 

the finest entity and the entity where the index is acquired 

from the permutation set. Equation (5) formalizes the first 

candidate of the first search based on the motion toward the 

first reference while (6) formalizes the second candidate of 

the first search based on the motion away from the first 

reference. Equation (7) formalizes the selection of the final 

first search candidate based on the quality of the first and 

second candidates previously generated using (6) and (7). 

Equation (8) formalizes the stringent acceptance approach for 

the first search. 

 

𝑠𝑡1,𝑖,𝑗 =
𝑠𝑏,𝑗+𝑠𝑝𝑖,𝑗

2
                 (4) 

 

𝑠𝑐11,𝑖,𝑗 = 𝑠𝑖,𝑗 + 𝛼(𝑠𝑡1,𝑖,𝑗 − 𝛽𝑠𝑖,𝑗)          (5) 

 

𝑠𝑐12,𝑖,𝑗 = 𝑠𝑖,𝑗 + 𝛼(𝑠𝑖,𝑗 − 𝛽𝑠𝑡1,𝑖,𝑗)          (6) 

 

𝑠𝑐1,𝑖 = {
𝑠𝑐11,𝑖 , ℎ(𝑠𝑐11,𝑖) < ℎ(𝑠𝑐12,𝑖)

𝑠𝑐12,𝑖 , 𝑒𝑙𝑠𝑒
         (7) 

 

𝑠𝑖
′ = {

𝑠𝑐1,𝑖 , ℎ(𝑠𝑐1,𝑖) < ℎ(𝑠𝑖)

𝑠𝑖 , 𝑒𝑙𝑠𝑒
            (8) 

 

The second search is formalized using (9) and (14). 

Equation (9) shows the uniformly chosen entity among the 

swarm. Equation (10) shows the balance mixture between the 

finest entity and the randomly chosen entity to form the 

second reference. Equation (11) formalizes the first candidate 

of the first search based on the motion toward the second 

reference while (12) formalizes the second candidate of the 

second search based on the motion away from the second 

reference. Equation (13) formalizes the selection of the final 

second search candidate based on the quality of the first and 

second candidates previously generated using (11) and (12). 

Equation (14) formalizes the stringent acceptance approach 

for the second search. 

 

𝑠𝑠𝑒𝑙 = 𝑈(𝑆)                  (9) 

 

𝑠𝑡2,𝑖,𝑗 =
𝑠𝑏,𝑗+𝑠𝑠𝑒𝑙,𝑗

2
                 (10) 

 

𝑠𝑐21,𝑖,𝑗 = 𝑠𝑖,𝑗 + 𝛼(𝑠𝑡2,𝑖,𝑗 − 𝛽𝑠𝑖,𝑗)          (11) 

 

𝑠𝑐22,𝑖,𝑗 = 𝑠𝑖,𝑗 + 𝛼(𝑠𝑖,𝑗 − 𝛽𝑠𝑡2,𝑖,𝑗)          (12) 

 

𝑠𝑐2,𝑖 = {
𝑠𝑐21,𝑖 , ℎ(𝑠𝑐21,𝑖) < ℎ(𝑠𝑐22,𝑖)

𝑠𝑐22,𝑖 , 𝑒𝑙𝑠𝑒
         (13) 

 

𝑠𝑖
′ = {

𝑠𝑐2,𝑖 , ℎ(𝑠𝑐2,𝑖) < ℎ(𝑠𝑖)

𝑠𝑖 , 𝑒𝑙𝑠𝑒
            (14) 
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The third search is formalized using (15) and (16). 

Equation (15) presents the two equal options where the first 

option is the same dimension mapping while the second 

option is the cross-dimension mapping. In the cross-

dimension mapping, the dimension used as reference is 

uniformly chosen among the dimensions. Equation (16) 

represents the stringent acceptance approach in the third 

search. 

 

𝑠𝑐3,𝑖,𝑗 = {
𝑠𝑖,𝑗 + 𝛼(𝑠𝑏,𝑗 − 𝛽𝑠𝑖,𝑗), 𝛾 < 0.5

𝑠𝑖,𝑗 + 𝛼(𝑠𝑏,𝑈(1,𝑑) − 𝛽𝑠𝑖,𝑗), 𝑒𝑙𝑠𝑒
       (15) 

 

𝑠𝑖
′ = {

𝑠𝑐3,𝑖 , ℎ(𝑠𝑐3,𝑖) < ℎ(𝑠𝑖)

𝑠𝑖 , 𝑒𝑙𝑠𝑒
            (16) 

IV. SIMULATION 

This section presents the assessment performed to 

investigate the performance of TSA. TSA is challenged to 

find the optimal solution of the set of 23 functions. This set 

of functions consists of seven high dimension unimodal 

(HDU) functions (f1 to f7), six high dimension multimodal 

(HDM) functions (f8 to f13), and ten fixed dimension high 

dimension (FDM) functions (f14 to f23). The detailed 

description of these functions can be seen in [28] or [8]. The 

HDU functions are designed to investigate the exploitation 

capability as they consist of only one optimal solution. The 

HDM functions are designed to investigate the exploration 

capability as they consist of multiple optimal solutions. The 

FDM capability is designed to investigate the balance 

between exploitation and exploration capabilities. In this 

assessment, the dimension is set to 40. The maximum 

iteration is set to 15 while the swarm size is set to 5. There 

are three assessments in this work: the benchmark 

assessment, individual search assessment, and the 

hyperparameter test. 

In the benchmark assessment, TSA is compared with five 

swarm-based metaheuristics: ZOA, WaOA, MA, TIA, and 

OOBO. All these five are new metaheuristics. ZOA is firstly 

introduced in 2022 while WaOA, MA, TIA, and OOBO is 

firstly introduced in 2023. The old metaheuristics like GA, 

HS, PSO, and ABC are not chosen as the benchmarks as they 

have been already beaten many times by many recent swarm-

based metaheuristics like in [34], [8], or [18]. The result of 

the first assessment is presented in Table 2 to Table 4 

representing the assessment result to solve HDU, HDM, and 

FDM functions respectively. The decimal point smaller than 

10-4 is rounded to zero. The summary of this result is 

presented in Table 5.  

The assessment result in solving the HDU functions is 

released in Table 2. This result shows that TSA is superior in 

solving these functions. TSA becomes the first best algorithm 

in six functions (f1, f2, f3, f4, f5, and f7) and the second-best 

performer in one function (f6). Moreover, TSA can provide 

the global optimal solution in three functions (f1, f2, and f4). 

All algorithms except OOBO provide the same result in f2. 

ZOA becomes the second-best performer while OOBO 

becomes the worst performer. The performance difference 

between the best performer and the worst performer is wide. 

TSA maintains its dominance among these algorithms in 

the HDM functions as released in Table 3. TSA becomes the 

best performer in five functions (f9, f10, f11, f12, and f13). TSA 

is on the second rank in solving f8. Meanwhile, the 

performance difference between the best performer and the 

worst performer is wide except in f8. 

TSA is still competitive in solving the FDM functions as 

released in Table 4. Meanwhile, the dominance of TSA is not 

so strong as it is shown in Table 2 and Table 3. TSA is on the 

first rank in seven functions (f14, f15, f16, f19, f21, f22, and f23), 

second rank in one function (f18), and third rank in two 

functions (f17 and f20). 

Table 5 summarizes the assessment result in Table 2 to 

Table 4. This summary released the number of functions 

where TSA is better than related metaheuristics in every 

group of functions. The result is obtained based on the mean 

value of each metaheuristic tested in this work. The result 

strengthens the dominance of TSA among its competitors. 

TSA is better than ZOA, WaOA, MA, TOA, and OOBO in 

21, 19, 17, 19, and 22 functions respectively. Since all 

metaheuristics achieve the result in f2 and f19, it means that 

ZOA and OOBO never outperform TSA. 

 

TABLE II 

BENCHMARK SIMULATION RESULT ON SOLVING HIGH DIMENSION UNIMODAL FUNCTIONS 

F Parameter ZOA [37] WaOA [21] MA [22] TIA [19] OOBO [23] TSA 

1 mean 0.0604 0.4468 8.5369 0.2588 8.8238x102 0.0000 

 std dev 0.0583 0.4297 5.0352 0.0895 5.1949x102 0.0000 

 mean rank 2 4 5 3 6 1 

2 mean 0.0000 0.0000 0.0000 0.0000 2.2505x1021 0.0000 

 std dev 0.0000 0.0000 0.0000 0.0000 1.0313x1022 0.0000 

 mean rank 1 1 1 1 6 1 
3 mean 4.2078x102 9.8939x102 1.4712x104 8.1733x102 3.5343x104 4.5907 

 std dev 5.5171x102 1.8586x103 1.1975x104 1.3297x103 1.8532x104 7.4257 

 mean rank 2 4 5 3 6 1 
4 mean 0.3434 0.7117 6.4527 0.6076 3.0230x101 0.0000 

 std dev 0.1630 0.4255 1.2220x101 0.1683 1.0547x101 0.0000 

 mean rank 2 4 5 3 6 1 
5 mean 3.9753x101 4.0892x101 2.4362x102 4.3064x101 3.1920x105 3.8906x101 

 std dev 0.4829 1.4301 2.8834x102 1.8579 5.7340x105 0.0364 

 mean rank 2 3 5 4 6 1 
6 mean 8.5380 8.4889 2.1197x101 7.3744 1.0367x103 7.4626 

 std dev 0.4531 0.6127 1.1128x101 0.5601 6.8936x102 0.8901 

 mean rank 4 3 5 1 6 2 
7 mean 0.0254 0.0352 0.0618 0.0412 0.4116 0.0067 

 std dev 0.0172 0.0227 0.0406 0.0318 0.3736 0.0041 

 mean rank 2 3 5 4 6 1 
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TABLE III 
BENCHMARK SIMULATION RESULT ON SOLVING HIGH DIMENSION MULTIMODAL FUNCTIONS 

F Parameter ZOA [37] WaOA [21] MA [22] TIA [19] OOBO [23] TSA 

8 mean -2.3087x103 -3.1402x103 -3.3070x103 -1.9081x103 -2.7687x103 -3.2874x103 

 std dev 4.1522x102 5.8214x102 4.7968x102 5.5397x102 6.8098x102 3.4693x102 
 mean rank 5 3 1 6 4 2 

9 mean 0.1360 2.1920 9.7182x101 2.6438 2.7782x102 0.0000 

 std dev 0.1702 3.7524 9.1725x101 3.3305 5.4140x101 0.0000 
 mean rank 2 3 5 4 6 1 

10 mean 0.0526 0.1653 2.1095 0.1204 6.8057 0.0000 

 std dev 0.0408 0.0807 3.3050 0.0318 0.9862 0.0000 
 mean rank 2 4 5 3 6 1 

11 mean 0.0511 0.0871 0.9973 0.1412 9.8010 0.0000 

 std dev 0.0650 0.0762 0.1898 0.1643 6.3394 0.0000 
 mean rank 2 3 5 4 6 1 

12 mean 1.0355 0.9890 1.3432 0.8393 2.8373x103 0.8121 

 std dev 0.1247 0.1862 0.3522 0.1467 1.2922x104 0.2136 
 mean rank 4 3 5 2 6 1 

13 mean 3.2441 3.3826 4.3418 3.3791 4.7485x104 3.0914 

 std dev 0.1032 0.1862 0.5069 0.1508 8.4708x104 0.1519 
 mean rank 2 4 5 3 6 1 

 

TABLE IV 
BENCHMARK SIMULATION RESULT ON SOLVING FIXED DIMENSION MULTIMODAL FUNCTIONS 

F Parameter ZOA [37] WaOA [21] MA [22] TIA [19] OOBO [23] TSA 

14 mean 1.3028x101 8.1253 9.1855 1.0348x101 1.5400x101 6.9100 

 std dev 7.5195 3.2222 3.3896 4.7719 1.2381x101 3.6660 
 mean rank 5 2 3 4 6 1 

15 mean 0.0127 0.0044 0.0095 0.0094 0.0232 0.0020 

 std dev 0.0168 0.0079 0.0082 0.0167 0.0208 0.0024 
 mean rank 5 2 4 3 6 1 

16 mean -0.9319 -1.0236 -1.0010 -1.0007 -0.9957 -1.0291 

 std dev 0.2358 0.0186 0.0499 0.0997 0.0466 0.0051 
 mean rank 6 2 3 4 5 1 

17 mean 2.9927 0.3992 0.4234 3.6686 0.6500 0.6057 

 std dev 4.4460 0.0023 0.0284 5.4982 0.1926 0.3493 
 mean rank 5 1 2 6 4 3 

18 mean 7.5856x101 1.9224x101 7.5248 1.6129x101 2.3160x101 1.2138x101 

 std dev 1.3050x102 2.3586x101 1.9912x101 1.2487x101 2.5774x101 1.2278x101 
 mean rank 6 4 1 3 5 2 

19 mean -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 -0.0495 

 std dev 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 mean rank 1 1 1 1 1 1 

20 mean -2.2112 -2.9411 -2.9378 -2.3943 -2.1531 -2.6073 

 std dev 0.6065 0.2399 0.1875 0.3982 0.4183 0.4450 
 mean rank 5 2 1 4 6 3 

21 mean -1.5907 -2.1274 -2.7671 -2.2224 -1.0289 -4.6115 

 std dev 0.7416 1.2697 0.1875 1.1666 0.5895 2.1632 
 mean rank 5 4 2 3 6 1 

22 mean -2.3045 -2.5576 -2.9304 -2.1419 -1.5281 -3.5667 

 std dev 1.1566 0.9617 1.0951 1.0497 1.4937 1.7279 
 mean rank 4 3 2 5 6 1 

23 mean -2.0156 -2.9496 -3.4118 -1.9849 -1.3279 -3.6884 
 std dev 0.7870 1.5513 1.7255 1.2462 0.6928 0.9981 

 mean rank 4 3 2 5 6 1 

 
TABLE V 

GROUP BASED SUPERIORITY COMPARISON 

Cluster ZOA 

[37] 

WaOA 

[21] 

MA 

[22] 

TIA 

[19] 

OOBO 

[23] 

1 6 6 6 5 7 

2 6 6 5 6 6 

3 9 7 6 8 9 

Total 21 19 17 19 22 

 

The second assessment is the individual search assessment. 

This assessment is designed to assess the contribution of each 

search in TSA since TSA is the multiple-search 

metaheuristic. Since TSA is constructed from three searches, 

there are three individual searches assessed in this work. The 

result is released in Table 6. The best result in each function 

is written in bold font. 

Table 6 releases the fact that the performance difference 

among these three searches is narrow. In two functions (f2 and 

f19), each search provides the same result. The first search 

becomes the distinct best performer in ten functions. The 

second search becomes the distinct best performer in eight 

functions. Finally, the third search becomes the distinct best 

performer in three functions. It means that the first search 

becomes the main contributor in TSA. 

The third assessment is the hyperparameter assessment. 

This assessment is designed to evaluate the relation between 

the adjusted parameters and the performance of TSA. There 

are two adjusted parameters evaluated in this assessment: 

maximum iteration and swarm size. There are two values of 

maximum iteration: 20 and 40. On the other hand, there are 

two values of swarm size: 10 and 20. The 23 functions are 

still used for the use case. The result of the assessment 

regarding the change of maximum iteration is presented in 

Table 7 while the result of the assessment regarding the 

change of swarm size is presented in Table 8. The data is only 

the average fitness score. As in general, the increase of 

maximum iteration and swarm size tends to improve the 

quality of the solution, the consideration is whether the 
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improvement is significant or not. 

 
TABLE VI 

INDIVIDUAL SEARCH ASSESSMENT RESULT 

Function 
Average Fitness Score 

1st search 2nd search 3rd search 

1 1.5746 2.0798 2.5265 

2 0.0000 0.0000 0.0000 

3 1.6634x103 2.0422x103 7.3334x103 

4 1.1711 1.3129 1.6279 

5 5.7067x101 7.1256x101 6.4967x101 
6 1.0448x101 1.0314x101 8.0940 

7 0.0400 0.0391 0.0617 

8 -3.0180x103 -2.8964x103 -2.2522x103 
9 2.6564x101 1.2706x101 3.1598x101 

10 0.5205 0.5181 0.5263 

11 0.4520 0.4198 0.5774 
12 1.1295 1.1240 0.7502 

13 3.7080 3.7753 3.5188 

14 9.3065 8.2844 9.7176 
15 0.0087 0.0059 0.0100 

16 -1.0110 -1.0092 -0.8353 

17 1.7855 2.4077 2.0932 
18 1.8571x101 2.6038x101 4.1890x101 

19 -0.0495 -0.0495 -0.0495 

20 -2.2567 -2.2145 -2.1965 
21 -2.4165 -2.6226 -1.8794 

22 -2.7147 -2.1461 -2.3959 

23 -2.1316 -2.7918 -2.0986 

 
TABLE VII 

RELATION BETWEEN MAXIMUM ITERATION AND FITNESS 

Function 
Average Fitness Score Significant 

Improvement tm = 20 tm = 40 

1 0.0000 0.0000 no 

2 0.0000 0.0000 no 
3 0.1410 0.0000 yes 

4 0.0000 0.0000 no 

5 3.8882x101 3.8892x101 no 
6 7.3422 7.2310 no 

7 0.0080 0.0022 yes 

8 -3.4307x103 -3.6685x103 no 
9 0.0000 0.0000 no 

10 0.0000 0.0000 no 

11 0.0000 0.0000 no 
12 0.7669 0.7423 no 

13 3.0607 3.0018 no 

14 7.5709 6.6958 no 
15 0.0010 0.0005 yes 

16 -1.0166 -1.0127 no 

17 1.2696 1.5103 no 
18 8.1110 9.5660 no 

19 -0.0495 -0.0495 no 

20 -2.6424 -2.9142 no 
21 -4.3501 -5.2551 no 

22 -4.6737 -5.5611 no 

23 -4.4351 -5.2419 no 

 

Result in Table 7 shows that the significant improvement 

occurs in only few functions due to the increase of maximum 

iteration. There are only three functions where the 

improvement is significant: f3, f7, and f15. In some cases, the 

stagnation occurs because in these functions, the global 

optimal solution has been found or the final solution is near 

the global optimal solution. This circumstance can be seen in 

some functions, such as f1, f2, f4, f9, and so on. Meanwhile, in 

some functions, such as in f21, f22, or f23, the stagnation occurs 

although the final solution has not been near the global 

optimal yet. 

Result in Table 8 also shows that the significant 

improvement regarding the increase of swarm size occurs in 

only few functions. In this assessment, there are only two 

functions where significant improvement is found: f3 and f15. 

Meanwhile, as also found in Table 7, in some functions, 

stagnation occurs because the global optimal solution has 

been found or the final solution is near the global optimal. 

 
TABLE VIII 

RELATION BETWEEN SWARM SIZE AND FITNESS 

Function 
Average Fitness Score Significant 

Improvement n(S) = 10 n(S) = 20 

1 0.0000 0.0000 no 

2 0.0000 0.0000 no 

3 0.3923 0.0372 yes 
4 0.0000 0.0000 no 

5 3.8883x101 3.8847x101 no 

6 6.4268 6.0550 no 
7 0.0037 0.0024 no 

8 -3.6636x103 -3.8451x103 no 

9 0.0000 0.0000 no 
10 0.0000 0.0000 no 

11 0.0000 0.0000 no 

12 0.6007 0.5898 no 
13 2.9875 2.9331 no 

14 4.5303 2.5654 no 

15 0.0016 0.0005 yes 
16 -1.0274 -1.0316 no 

17 0.4192 0.3983 no 
18 4.5938 3.0042 no 

19 -0.0495 -0.0495 no 

20 -2.9325 -3.0467 no 
21 -5.4213 -5.7816 no 

22 -5.1487 -6.3390 no 

23 -5.1409 -6.5297 no 

V. DISCUSSION 

Through the result on benchmark assessment, it is shown 

that TSA is a promising metaheuristic. TSA becomes the 

dominant performer among the five metaheuristics chosen as 

the competitors. Table 5 strengthens this statement as TSA is 

superior in all three groups of functions. This means that STA 

has acceptable capability in exploration, exploitation, and 

balancing the exploration and exploitation. The significant 

performance difference, especially in the HDU functions, 

shows the significant improvement in these problems. 

The stochastic cross dimension mapping employed in the 

third search provides moderate contribution for the search 

process. As seen in Table 6, the performance of the third 

search is still close to the performance of the first and second 

searches. Moreover, the third search can become the best 

performer in three functions where all these functions are 

high dimension functions. As the first and second searches 

are more competitive, this cross-dimension mapping 

approach has potential for future development. 

Based on the result of hyper-parameter assessment, TSA 

successfully found the quasi-optimal solution in the scenario 

of low swarm size and low maximum iteration. This 

circumstance takes place in many functions. Meanwhile, in 

some functions, stagnation still happens although the swarm 

size or maximum iteration increases significantly. It becomes 

a note that there is modification in the searching strategy so 

that this stagnation can be overcome. 

There are some limitations in this work, especially in TSA 

despite its significant improvement compared to its five 

competitors. First, TSA employs a stringent acceptance 

approach so that the solution candidate substitutes the value 

of current entity only if it provides improvement. In one side, 

this approach provides a guarantee that the optimization 

process will not move to a worse location. But, on the other 

side, this approach makes the entity stand on its current value 
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due to the stagnation of the searching process. Meanwhile, 

the stringent acceptance approach may put the risk of local 

optimal entrapment. It is better to construct a more adaptive 

acceptance approach. Second, TSA adopts only one cross-

dimension mapping which is performed stochastically. 

Although the cross-dimension mapping proves the 

improvement in some functions, developing a more 

deterministic cross-dimension mapping is important and it 

can be conducted by analyzing the pattern during the 

iteration. Third, this work has not accommodated the 

assessment with real world problems. In general, this 

assessment is important to investigate the improvement of 

TSA in a more comprehensive and realistic manner. In 

general, the real-world optimization problems are simpler 

than theoretic ones. 

 The computing complexity of TSA can be traced back by 

observing the looping process in its algorithm. TSA employs 

a nested loop consisting of two loops during the initialization. 

The size of the outer loop is swarm size while the size of the 

inner loop is the dimension. Based on this explanation, the 

computing complexity during the initialization is presented as 

O(n(S).d). Meanwhile, the looping process during the 

iteration is more complex. The size of the outer loop is the 

maximum iteration. Then, there is a loop with the size of the 

swarm size to generate the permutation set. This loop is then 

followed by the loop with the size of the swarm size too that 

represents the searching process of each agent. Inside this 

loop, there are three searches where there is a loop with the 

size of dimension which is employed in every search. Based 

on this explanation, the computing complexity during the 

iteration can be presented as O(tm.n(S).(1+3d)). 

VI. CONCLUSION 

A new stochastic optimization, i.e., metaheuristic named 

triple shake algorithm (TSA) has been presented in this paper. 

The fundamental concept of TSA which is constructed by 

three directed searches including the permutation, reference 

selection, and the stochastic cross dimension mapping has 

been presented and it is followed by the formalization through 

pseudocode and the mathematical formulation. The 

performance assessment for TSA has been performed where 

TSA is benchmarked with five brand new metaheuristics. The 

result shows that TSA is superior to its five competitors 

where it is better than ZOA, WaOA, MA, TIA, and OOBO in 

21, 19, 17, 19, and 22 functions respectively. It means that the 

dominance of TSA occurs in all three groups of functions: 

HDUs, HDMs, and FDMs. Meanwhile, through the 

individual search assessment, it is shown that the first search 

where the reference is the balance mixture between the finest 

entity and the permutation indexed entity becomes the most 

dominant search. 

In the future, it is important to improve and employ TSA 

to solve various optimization problems. The improvement 

can be taken by combining TSA with other metaheuristics or 

exploring the cross-dimension mapping in a better way. 

Meanwhile, employing TSA to solve various problems will 

give a more comprehensive perspective in evaluating the 

performance of TSA. 
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