
Answer Code Validation Program with Test Data
Generation for Code Writing Problem in Java

Programming Learning Assistant System
Khaing Hsu Wai, Nobuo Funabiki, Soe Thandar Aung, Xiqin Lu, Yanhui Jing, Htoo Htoo Sandi Kyaw,

Wen-Chung Kao

Abstract—In order to support the learning of novice stu-
dents in Java programming, the web-based Java Programming
Learning Assistant System (JPLAS) has been developed. JPLAS
offers several types of exercise problems to foster code reading
and writing skills at different levels. In JPLAS, the code writing
problem (CWP) asks a student to write a source code that will
pass the test code given in the assignment where the correctness
is verified by running them on JUnit. In this paper, to reduce
the teacher’s workload during the marking process, we present
the answer code validation program that verifies all the source
codes from a large number of students for each assignment and
reports the number of passing tests for each source code in the
CSV file. Besides, to test a source code with various input data,
we implement the test data generation algorithm that identifies
the data type, generates new data, and replaces it for each test
data in the test code. Furthermore, to verify the correctness of
the implemented procedures in the source code, we introduce
the intermediate state testing in the test code. For evaluations,
we applied the proposal to source codes and test codes in a
Java programming course in Okayama university, Japan, and
confirmed the validity and effectiveness.

Index Terms—programming learning, Java, JUnit, code writ-
ing problem, code validation, test data generation

I. Introduction

FOR many years, Java has been widely employed in
various industries as a dependable and adaptable object-

oriented programming language [1]. It’s utilization has in-
volved critical systems within large enterprises as well as
smaller embedded systems. The demand for skilled Java
programmers remains high among IT companies, leading to
a growing number of academic institutions and professional

Manuscript received August 29, 2023; revised March 9, 2024.
K. H. Wai is a PhD candidate of Department of Information and

Communication Systems, Okayama University, Okayama, Japan (e-mail:
khainghsuwai@s.okayama-u.ac.jp).

N. Funabiki is a professor of Department of Information and Com-
munication Systems, Okayama University, Okayama, Japan (e-mail:
funabiki@okayama-u.ac.jp).

S. T. Aung is a PhD candidate of Department of Information and
Communication Systems, Okayama University, Okayama, Japan (e-mail:
soethandar@s.okayama-u.ac.jp).

X. Lu is a PhD candidate of Department of Information and Com-
munication Systems, Okayama University, Okayama, Japan (e-mail:
pch55zhl@s.okayama-u.ac.jp).

Y. Jing is a postgraduate student of Department of Information and
Communication Systems, Okayama University, Okayama, Japan (e mail:
pf709l29@s.okayama-u.ac.jp).

H. H. S. Kyaw is an assistant professor of Department of Computer
and Information Science, Tokyo University of Agriculture and Technology,
Tokyo, Japan (e-mail: htoohtoosk@go.tuat.ac.jp).

W.-C. Kao is a professor of Department of Electrical Engi-
neering, National Taiwan Normal University, Taipei, Taiwan (e-mail:
jungkao@ntun.edu.tw).

institutions, which are providing Java programming courses
to fulfill this need.

To support self-studies of novice students in Java pro-
gramming, Java Programming Learning Assistant System
(JPLAS) has been developed. The personal answer platform
on Node.js [2], which will be distributed to students on
Docker [3], has been implemented [4]. JPLAS provides
several types of exercise problems with automatic marking
functions that have different learning goals. It is expected
that the exercise problems in JPLAS will gradually progress
the learning stages of students. JPLAS can cover self-studies
of Java programming at different levels by novice students.

In the process of studying programming, novice students
should start by solving uncomplicated and concise exercise
problems that focus on code reading studies, enabling them
to comprehend and grasp the programming language’s gram-
mar and concepts. After they have acquired basic knowledge
and skills from code reading studies, they should move to
code writing studies. It is crucial for students to develop the
abilities of reading source codes effectively as they directly
impact their proficiency in writing source codes correctly.

To support the novice students’ progressive programming
study, JPLAS provides the following types of exercise prob-
lems. By solving these problems in this order, it is expected
for the students to gradually advance their programming
levels by themselves.

1) Grammar-concept Understanding Problem (GUP) gives
questions about the concepts of important keywords,
including reserved words and commonly used libraries
in the programming language, in the provided source
code. It focuses on keywords and libraries in the source
code [5].

2) Value Trace Problem (VTP) requires analyzing codes to
determine the output values and output messages of the
variables in the given source code [6].

3) Mistake Correction Problem (MCP) requests to correct
the mistaken element in the source code. It is for the
study of code debugging [7].

4) Element Fill-in-blank Problem (EFP) requests to com-
plete the missing elements in the given source code in
order to gain the original source code [8].

5) Code Completion Problem (CCP) involves correcting
errors and filling in missing elements in the provided
source code in order to debug and complete the original
source code [9].

6) Phrase Fill-in-blank Problem (PFP) requests to fill in
each blank by the original set of elements or the
message in the source code [10].

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 981-994

 
______________________________________________________________________________________ 



7) Code Writing Problem (CWP) requests to write a source
code that can pass the given test code [11].

By following the course curriculum in Okayama univer-
sity, the previous paper in [12] reported the course im-
plementation of GUP, VTP, MCP, EFP, CCP, and PFP in
JPLAS for code reading and partial code writing studies.
The correctness of the answer in these problems is checked
through string matching. In JPLAS, students should solve
the code reading related problems first to understand the
definitions of the keywords and control flows in source codes.
Then, they should solve the code writing related problems
to allow writing full source codes by themselves.

Another previous paper in [13] reported the same course
implementation of CWP and the application results of the an-
swer code validation program to the source codes submitted
by the students in the course. The correctness of the answer
in CWP is checked automatically through unit testing [14]
on JUnit [15].

This paper specifically focuses on the code writing prob-
lem (CWP) of JPLAS. The CWP asks a student to write
a Java source code that passes the test code given in the
assignment. The test code will examine the correctness of
the specifications and behaviors of the source code through
running on JUnit, called the test-driven development (TDD)
method [16]. In JUnit, one test can be performed by using
one method in the library whose name starts with “assert”.
This paper adopts the “assertEquals” method to compare the
execution result of the source code with its expected value.

Therefore, test codes and source codes are fundamental
components in the code writing problem of JPLAS. Students
write the source code with the goal of making it pass all
the test cases defined in the test codes. The test cases act
as a reference or specification for the expected behavior of
the source code. By running the test codes against their
source code, students can quickly evaluate the correctness
and functionality of their implementation. If the source code
passes all the test cases, it is an indication that the code is
likely correct and performs as expected.

Among the exercise problems in JPLAS, the CWP is
crucial for students as it enables them to practice and attain
proficiency in writing source codes from scratch. For CWP,
the answer platform has been implemented for students
to solve the given CWP assignments efficiently [4]. By
implementing the capability of automatically running unit
testing, students can easily check the correctness of their
source codes by clicking the corresponding button.

However, the current implementation of CWP causes three
limitations. First, the teacher needs to run and excute the
test codes and the source codes one by one manually at the
marking process, although a lot of source codes are usually
submitted from students. This load is very large for the
teacher. Second, the test data in each test code is usually only
one type. Thus, unit testing may pass an incorrect source
code that will only output the expected output described
in the given test code without implementing the requested
procedure. Third, even if the source code implements a
different logic or algorithm from the requested one, unit
testing cannot find it.

In this paper, we implement the answer code validation
program to solve the first limitation [13]. This program
automatically checks the source codes submitted by students

for every assignment and generates a CSV file that provides a
count of passing tests for each source code. By reviewing the
test result summary for all students, the teacher can quickly
assess the correctness of student answers and assign grades
according to that test result summary.

To solve the second limitation, we implement the test data
generation algorithm that identifies the data type, randomly
generates a new data with this data type, and replaces it
for each test data in the test code, so that the source code
can be tested with various input data in the test code.
By dynamically changing the test data, it is expected to
reduce the risk of cheating and enhance the validity of CWP
assignments.

To solve the third limitation, we introduce the intermediate
state testing in the test code that will check the correctness
of the important variables in the source code to implement
the requested logic or algorithm. If a student implements a
different logic or algorithm including the use of a library, this
test is not passed. Besides, it is expected that students will
gain deeper understanding of the logic or algorithm, improve
problem-solving skills, and develop strong foundations in
algorithmic thinking.

In summary, the proposal in this paper will reduce the
teachers’ workload of marking source codes submitted from
the students, and enhance the correctness of marking results.

The rest of this paper is organized as follows: Section II
provides an overview of related works in literature. Sec-
tion III reviews our previous works of CWP and the answer
platform. Section IV presents the implementation details of
the answer code validation program. Section V presents the
test data generation algorithm and the intermediate state test-
ing. Section VI evaluates the proposal. Finally, Section VII
concludes this paper with future works.

II. Literature Review

We would like to discuss literature review in this section.
In [17] and [18], Ala-Mutka et al. and Konecki made

contributions by highlighting common challenges faced by
novice programmers and discussing existing approaches and
discussions on programming teaching. Numerous tools were
proposed to assist students to solve programming difficulties.
Among them, ToolPetcha, which was proposed by Queiros
et al., is the tool that serves as a automated programming
assistance [19].

In [20], Carbone et al. investigated various factors that can
contribute to students discontinuing an basic programming
course, encompassing aspects such as motivations and critical
thinking abilities.

In [21], Piteira et al. investigated the challenges and
difficulties encountered by learners in the process of learning
computer programming. This study focused on understanding
specific areas or concepts that students find challenging
when acquiring programming skills. Through the analysis
of the difficulties faced by the learners, the authors provided
insights and recommendations for improving programming
educations.

In [22], Li et al. presented a learning environment based
on games, aimed at assisting novice students in programming
educations. The environment employs game creation tasks
to simplify the comprehension of fundamental programming

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 981-994

 
______________________________________________________________________________________ 



concepts. Additionally, it incorporates visualization tech-
niques that enable students to interact with game objects,
facilitating their understanding of crucial programming prin-
ciples.

In [23], Nguyen et al. discussed the development of
an intelligent chatbot designed for educational purposes,
particularly in programming courses. It introduces the Integ-
Rela model, a method for integrating multiple knowledge
domains to form a comprehensive knowledge base. This
model allows the chatbot to effectively retrieve and provide
relevant information across various subjects. The chatbot acts
as a virtual tutor, aiding students in learning programming
concepts. The effectiveness of this system is demonstrated
through experiments, showing its potential as a practical tool
in e-learning environments.

In [24], Matsumoto et al. examined the impact of a puzzle-
like programming game called, Algologic, on learning pro-
gramming. It focused on the achievement degree of students
after learning of programming and reported the analysis
result. This study finds a positive relationship between stu-
dents’ performance in the game and their success in learning
programming.

In [25], Okonkwo et al. focused on a chatbot called
RevBot, which was developed to help students practice past
exam questions in Python programming. Using the Snatchbot
Chatbot API, RevBot is designed to interact with students,
providing questions and answers for revisions. This study
included the evaluation of its usefulness, indicating that it
can enhance students’ performance in Python programming.
The paper highlights the potential of RevBot as a useful tool
in educational contexts, especially for introductory program-
ming courses.

In [26], Ihantola et al. conducted a comprehensive review
of recent developments in automated assessment tools de-
signed for programming exercises. The authors examined
the significant characteristics and methodologies, such as
programming languages, learning in management systems,
resubmission restrictions, testing tools, manual assessments,
security concerns, distribution mechanisms, and specialized
features.

In [27], Staubitz et al. addressed the challenge of providing
practical programming exercises and automated assessment
in Massive Open Online Courses (MOOCs). They focused
on the development of an approach that combines hands-
on programming exercises with automated assessment tools
to enhance the learning experience in online programming
courses.

In [28], Denny et al. introduced the assessment on a
web-based tool named CodeWrite, which was designed to
facilitate drill and practice for Java programming. The tool
relies on students to create exercises that can be shared within
their class. However, it should be noted that the absence of a
testing tool like JUnit limits the range of possible variations
for program testing.

In [29], Shamsi et al. introduced a grading system named
eGrader, specifically designed for introductory Java pro-
gramming courses. The system utilizes a graph-based ap-
proach for grading, where dynamic analysis of submitted
programs is performed using JUnit, and static analysis is
conducted based on the program’s graph representation. The
accuracy of the system was validated through experimental

evaluations.
In [30], Mei et al. presented a test case prioritization

technique called JUPTA that utilizes estimated coverage
information obtained from static call graph analysis of test
cases in JUnit. The authors demonstrated that test suites
prioritized by JUPTA exhibited greater effectiveness in terms
of fault detection compared to random and untreated test
orderings.

In [31], Edwards et al. explored the use of test-driven
development (TDD) in the classroom. TDD is shown to
provide students with automatic and concrete feedback on
their performance, leading to improved learning outcomes.
The paper highlights the benefits of TDD in enhancing
student engagement, comprehension, and problem-solving
skills in computer science education.

In [32], Edwards et al. provided their insights of using
test-driven development (TDD) with an automated grader.
This paper shared the advantages and challenges encountered
while implementing TDD in the context of computer science
education and the evaluation of effectiveness using that
automated grading system. Through discussion, the authors
highlighted on how TDD with automated grader enhances the
student learning and gives the valuable comments on their
programming assignments.

In [33], Desai et al. presented a survey of evidence regard-
ing the use of test-driven development (TDD) in academia.
The authors explore existing literature and studies related
to TDD implementations in educational settings. The paper
examines the benefits, challenges, and outcomes associated
with TDD adoptions in computer science educations. By
analyzing the evidence, the authors provide insights into the
impact of TDD on the student learning, skill development,
and overall educational effectiveness.

In [34], Elgendy et al. presented a method using Genetic
Algorithms (GAs) for automatically generating test data for
ASP.NET web applications. It introduces new genetic oper-
ators designed for the unique structure of web applications,
aiming to improve the efficiency and coverage of test data
generations. The tool developed in this study uses static anal-
ysis to identify crucial data-flow elements in applications,
and then, applies GAs to generate test cases that effectively
cover these elements. The paper demonstrates the tool’s
effectiveness through case studies and empirical evaluation,
highlighting its utility in enhancing the reliability of ASP.NET
web applications.

In [35], Kitaya et al. a web-based automatic scoring system
designed for Java programming assignments. The system
accepts a student’s Java application program as input and
promptly provides a test result, including a compiler check,
JUnit testing, and result evaluation. This system shares
similarities with the code writing problem in JPLAS, where
the result test can be incorporated into the existing JUnit test.

In [36], Ünal et al. conducted a qualitative study in order
to explore students’ perceptions of a collaborative learning
environment. They developed a learning environment uti-
lizing technology for dynamic web-powered problems. A
semi-structured interview method was employed to gather
students’ perceptions on the learning environment, which
facilitated collaborative problem-solving using dynamic web
technologies. The findings suggested that incorporating col-
laborative learning techniques centered around problem-

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 981-994

 
______________________________________________________________________________________ 



solving, and leveraging dynamic web technologies can be
beneficial for the learning environment in a community
college setting.

In [37], Tung et al. discussed the implementation of
Programming Learning Web (PLWeb). It can provide an
integrated development environment (IDE) for teachers to
create exercises and a user-friendly editor for students to
submit solutions. Features like visualized learning status and
a plagiarism detection tool are added in the system to assist
the learning and teaching process.

In [38], Szab et al. introduced a Java code grading feature
named MeMOOC, which automatically evaluates syntactical,
semantical, and pragmatic aspects of code. The grading
process involves compilation checks, Checkstyle analysis,
and JUnit testing, specifically designed for MOOC.

In [39], Zinovieva et al. conducted a comparative assess-
ment of multiple online platforms used for programming edu-
cation. They specifically selected engaging assignments from
hackerrank.com, an educational site for students. The study
examined user experiences with online coding platforms
(OCP) and compared the features of different platforms
that could be employed for teaching programming to com-
puter science and programming enthusiasts through distance
learning. Furthermore, the authors suggested incorporating
online programming simulators to enhance computer science
instruction, considering the functionality of the simulators as
well as students’ preparedness levels and expected learning
outcomes.

While the previous studies made valuable contributions
to programming education, our Java Programming Learning
Assistant System (JPLAS), built upon these foundations, in-
troduces novel features and advancements. JPLAS offers rich
exercise problems for both code reading and code writing
studies, which are essential for understanding and practicing
programming concepts and syntax. JPLAS incorporates the
answer platform built on Node.js and Docker [3], which
allows students to submit their code solutions and receive the
automated feedback [4]. This platform includes an automatic
marking function that verifies the correctness of student
answers using unit testing with JUnit [15] to validate the
functionality of the answer source code. With it, the students
can easily check the correctness of their source codes by
clicking the corresponding button on the answer platform.

III. Overview of CodeWriting Problem

In this section, we discussed an overview of code writing
problem (CWP) and the answer platform using Node.js in
JPLAS.

A. Code Writing Problem

The Code Writing Problem (CWP) assignment is com-
prised a statement along with a test code, which is given by
the teacher. In CWP, students are tasked with writing source
code that satisfies predefined test cases contained in the test
code. Code testing is employed to validate the correctness
and accuracy of the students’ source code, utilizing JUnit
to execute the test code alongside with the source code. To
ensure the accurate implementation of the source code, the
students should follow the detailed specifications provided in
the test code.

To generate a new assignment for CWP, the teacher needs
to perform the following operations.

1) Create the problem statement and prepare the input data
for the assignment,

2) Collect the correct answer source code as a model
source code for the assignment,

3) Execute the model source code to obtain the expected
output data,

4) Prepare the test code from the input and output data to
make test cases, and describe the required information
for implementing the source code, and

5) Register the test code and the problem statement for the
new assignment.

B. JUnit

In order to facilitate code testing, an open-source Java
framework JUnit is utilized, aligning with the test-driven
development (TDD) approach. JUnit can help the automatic
unit test of a source code or class. Java programmers can
use it quite easily because it has been designed with the
user-friendly style for Java. With JUnit, performing a test
is simplified through the usage method in the library whose
name starts with “assert”. In the case of CWP, the test code
adopts the “assertEquals” method that compares the output
generated by executing the source code with the expected
output data for a given set of input data.

C. Test Code

A test code is created by using the JUnit library. The
BubbleSort class in Figure 1 [41] is used to explain how
to write the corresponding test code. This BubbleSort class
contains a method for performing the bubble sort algorithm
on an integer array. “sort(int[] array)” method performs the
basic bubble sort algorithm on the input array “array” and
returns the sorted array.

package p3;
public class BubbleSort {

public int[] sort(int[] array) {
int n = array.length;
for (int i = 0; i < n - 1; i++) {

for (int j = 0; j < n - i - 1; j
++) {
if (array[j] > array[j + 1])

{
int temp = array[j];
array[j] = array[j + 1];
array[j + 1] = temp;

}
}

}
return array;
}

}

Fig. 1: Example source code for BubbleSort.

The test code in Figure 2 is designed for testing the sort
method in the BubbleSort class in Figure 1.

The test code includes import statements for the JUnit
packages, which contain the necessary test methods, at lines
2 and 3. At line 5, it also declares the BubbleSortTest class.

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 981-994

 
______________________________________________________________________________________ 



package p3;
import org.junit.Test;
import static org.junit.Assert.*;
import java.util.Arrays;
public class BubbleSortTest {

@Test
public void testSort() {

BubbleSort bSort = new BubbleSort();
int[] codeInput1 = {8,7,4,1,5,9};
int[] codeOutput = bSort.sort(

codeInput1);
int[] expOutput = {1,4,5,7,8,9};
try {

assertEquals("Test1:",Arrays.
toString(expOutput),Arrays.
toString(codeOutput));

} catch (AssertionError ae) {
System.out.println(ae.getMessage

());
}

}
}

Fig. 2: Example test code for BubbleSort.

The test code contains test methods, annotated with “@Test”
in line=6, showing that they are test cases that JUnit, a testing
framework, will run to check the output of the sort method.
This test is performed as follows:

1) Generate the bSort object of the BubbleSort class in the
source code.

2) Call the sort method of the bSort object with the
arguments for the input data.

3) Compare the result of the sort method at codeOutput
with the expOutput data using the assertEquals method.

D. Answer Platform of CWP

In order to support students solving the CWP assignments,
we have developed an answer platform as a web application
system using Node.js. The software architecture, illustrated
in Figure 3, operates on Linux or Windows operating systems
and follows the MVC (Model-View-Controller) model.

Fig. 3: Software architecture of CWP.

For the model (M) part of the MVC model, JUnit, a
widely-used testing framework for Java, is employed. It
facilitates the execution and validation of the test cases
specified in the CWP assignments. The platform utilizes

the file system for data management, where all the neces-
sary data is provided through files. Students’ programs are
implemented using Java programming language. In terms
of the view (V) part, the browser-based interface of the
answer platform is designed to provide students with a user-
friendly environment for solving CWP assignments. Rather
than utilizing the default template engine of Express.js (a
web application framework for Node.js), the platform utilizes
Embedded JavaScript (EJS) as the template engine. EJS
simplifies the syntax structure and enhances the ease of use
for students. For the control (C) part, Node.js and Express.js
[40] are adopted as the server-side technologies. JavaScript
is used to implement the programs that handle the server-side
logic and process students’ submissions. These technologies
enable the platform to handle student requests, manage data,
and interact with the model and view components effectively.

The integration of these technologies and frameworks
forms the foundation of the CWP answer platform. It
provides students with a web-based interface where they
can write and submit their source code solutions for CWP
assignments. The platform leverages JUnit for testing the
submitted code against the specified test cases. The test
results are promptly displayed to students, helping them
assess the correctness of their solutions.

The web-based answer interface for solving a CWP as-
signment is illustrated in Figure 4. The interface displays
the test code of the assignment on the right side, while
the left side provides an input space where students can
write their answer source code. To successfully pass all the
tests specified in the test code, a student needs to write
the corresponding source code while looking at it. Once the
student has finished writing the source code, they can click
the “Submit” button for submitting it to the system. With
submission, the system promptly performs immediate testing
by compiling the source code and executing the test code
with JUnit. The test results are then displayed at the bottom
section of the interface.

However, in the current implementation of this platform,
the student needs to manually save the source code in a
file with a name matching the test code. The teacher must
get this source code file in order to verify for the final
checking along with the answer code validation program.
The implementation of automatic file saving for submissions
will be our future works. It is noted that Figure 3 and Figure 4
are adopted from the previous paper [13].

IV. Program for Answer Code Validation

The implementation of answer code validation program
for the code writing problem in JPLAS is presented in
this section. This functionality is achieved by modifying
the existing code testing program in the answer platform.
Instead of evaluating one source code at a time, the upgraded
program now enables automatic testing of all source codes
contained within a folder. Therefore, each folder is expected
to contain the source codes for the same test code.

A. File System Directory Structure

The folder structure for the answer code validation pro-
gram can be seen in Figure 5, which was adapted from
[13]. The “test” folder within the “addon” folder serves as

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 981-994

 
______________________________________________________________________________________ 



Fig. 4: Answer interface of CWP.

a repository for both the test code and the source code
files submitted by students for each CWP assignment. The
“codevalidator” folder includes the necessary Java programs
to evaluate the source codes and generate the corresponding
results. Additional folders and jar files are used in order
to execute the code testing program. The “output” folder
stores the text files containing the testing results, including
JUnit logs. From them, this program will generate the CSV
file and save it in the “csv” folder, allowing the teacher to
conveniently check the results of all the students in the same
file.

Fig. 5: File system structure for answer code validation
program.

B. Procedure of Answer Code Validation

The answer code validation that will check the correctness
of all the source codes from the students will be described
in the following procedure.

1) The zip file containing the source codes for each assign-
ment using one test code are downloaded. It is noted
that a teacher usually uses an e-learning system such as
Moodle in his/her programming course.

2) The contents of the zip file are extracted and they are
stored in the relevant folder under the “student codes”
folder in the project path.

3) The corresponding test codes are then stored under the
“addon/test” folder in the project directory.

4) Each source code in the “student codes” folder is read,
the test code is run with the source code using JUnit,
and the testing results are saved in the text files under the

the “output” folder. This process is repeated for every
source codes in the folder.

5) The summary of the test results for all the source codes
by the CSV file is generated and it is saved in the “csv”
folder.

C. Answer Code Validation Example

The example of folder structure and related files are illus-
trated in Figure 6, which was adapted from [13]. To facilitate
the process, the teacher requires to save the source code
(“helloWorld.java” in this example) of each student in the
assignment folder (“Java CWP basic”) inside the student
folder (“student1”) for each assignment before running the
program. It is noted that in the program, the folder structure
for the source codes can be customized by preferences.
For example, when using Moodle, the source code file for
each student can be directly stored in the assignment-student
folder.

Then, the test code (“helloWorldTest.java”) is executed
by the program with every source code sequentially, and
the test output is recorded in the corresponding file (“stu-
dent1 Java CWP basic output.txt”) within the “output”
folder. After testing all the source codes in the assignment
folder, the program writes all the test outputs in the CSV file
(“student1 Java CWP basic.csv”) within the “csv” folder.

D. Advantages and Limitations

The answer code validation program utilizes automated
testing techniques to validate the correctness of the student
solutions. It leverages JUnit, a widely-used testing frame-
work in Java, to execute the test code with each source
code and assess their conformity to the expected output. The
program can automatically test a large number of student
source codes in a short amount of time. By executing the
test code sequentially with each source code, it eliminates

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 981-994

 
______________________________________________________________________________________ 



codevalidator

student codes

student1

student2

addon

test

Java CWP algorithm

Java CWP basic

output

student1 Java CWP basic output.txt

student2 Java CWP basic output.txt

csv

student1 Java CWP basic.csv

student2 Java CWP basic.csv

Fig. 6: Example of file structures with folder hierarchy

the need for manual operations, reducing the time and efforts
required by the teacher.

While the answer code validation program offers several
advantages, it also has some limitations. The program can
identify whether a student’s solution produces the expected
output or not. However, it may not provide detailed insights
into the specific errors or issues in the code. Further manual
analysis may be required to diagnose and address the exact
problems in the students’ solutions. The correctness of the
validation heavily relies on the quality and coverage of the
test cases in the test code. If the test cases do not cover all the
possible scenarios, the program may overlook certain errors
or inaccurately assess the students’ solutions. The program
focuses solely on evaluating the output of the students’
source codes, using the predefined test cases. It may not fully
capture the overall understanding or design aspects of the
solutions. The evaluation of subjective or higher-level aspects
of the assignments may still require manual assessments by
the teacher.

V. Test Data Generation Algorithm and Intermediate State
Testing

In this section, we analyze the limitations of the current
test code, and present the test data generation algorithm and
the intermediate state testing in the test code to solve them.

A. Limitation of Current Test Code

First, we discuss the limitations of current test code for
the above example test code in Figure 2.

1) Fixed Data Output: The fixed test data in the test code
can lead to the issue of cheating, where a student may rely on
the limited set of test cases to write the source code without
truly understanding the concepts. The following source code

in Figure 7 shows one of the examples of the limitation of
the fixed output data for the above test code in Figure 2.

package p3;
public class BubbleSort {

public static int[] sort(int[] array) {
int[] res = {1,4,5,7,8,9};
return res;

}
}

Fig. 7: Example source code for fixed data ouptput.

In this example, the source code directly returns the output
without implementing any logic or algorithm as the test
case has the fixed output data. Therefore, the generation
of test data algorithm should be implemented in order to
dynamically change the test data and replace them in the
test code. This algorithm will analyze and identify the type
of data in the test codes, and will generate the new data to
replace the fixed test data. This algorithm can reduce the risk
of cheating and can improve the validity and reliability of
the programming assignments.

2) Library Use: Another limitation of the current test code
lies in use of a library for implementing the logic or algo-
rithm. A student may use the library without implementing
the correct logic/algorithm. For instance, a scenario is con-
sidered where it is required to implement a sorting algorithm.
Instead of implementing the algorithm from scratch, the
student may rely on a library that provides a pre-built sorting
function. The student does not understand the fundamentals
of the logic/algorithm itself. The following source code in
Figure 8 shows this example for using a library without
implementing the algorithm. The current test code cannot
check it.

package p3;
import java.util.Arrays;
public class BubbleSort {

public static int[] sort(int[] a) {
Arrays.sort(a);
return a;

}
}

Fig. 8: Example source code for using library.

3) Implementation of Different Logic or Algorithm: The
current test code cannot detect the implementation of the
different logic or algorithm from the requested one. The
following source code in Figure 9 shows the example for
implementing a different simple sorting algorithm. According
to this example, the students may implement selection sort or
other simple sorting algorithms instead of bubble sort as the
final output sorted result of almost all the sorting algorithms
is the same. To find this error, the intermediate state of the
important variables, such as the data to be sorted, should be
checked, in addition to the final state.

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 981-994

 
______________________________________________________________________________________ 



package p3;
public class BubbleSort {

public static int[] sort(int[] a) {
int n = a.length;
for (int i = 0; i < n - 1; i++) {

int minIndex = i;
for (int j = i + 1; j < n; j++) {

if (a[j] < a[minIndex]) {
minIndex = j;

}
}
int temp = a[i];
a[i] = a[minIndex];
a[minIndex] = temp;

}
return a;

}

Fig. 9: Example source code for implementing of different
algorithm.

To address these limitations, we propose the test data
generation algorithm and the intermediate state testing in the
test code in the following subsections.

B. Test Data Generation Algorithm

The test data generation algorithm automatically generates
and replaces the input data and the expected output data for
each test case in the given test code. To achieve this goal, we
adopt a standard format for describing them in the test code.
Figure 10 shows the test code with the standard format for
testing the sort method in the BubbleSort class in Figure 1.
In this standard format, for each test case, the input data to
the method under testing is given by codeInput1, the output
data from the method under testing is by codeOutput, and
the expected output data is by expOutput.

package p3;
import static org.junit.Assert.*;
import org.junit.Test;
import java.util.Arrays;
public class BubbleSortTest {

@Test
public void testSort() {

BubbleSort bSort = new BubbleSort();
int[] codeInput1 = {8,7,4,1,5,9};
int[] codeOutput = bSort.sort(

codeInput1);
int[] expOutput = {1,4,5,7,8,9};
try {

assertEquals("Test1:",Arrays.
toString(expOutput),Arrays.
toString(codeOutput));

} catch (AssertionError ae) {
System.out.println(ae.getMessage

());
}

}

Fig. 10: Example of test code with standard format

1) Generating New Test Data: Once the data types are
identified, the algorithm can generate new test data based
on each data type. The approach for generating test data
can vary depending on the specific data type. Here are some
considerations for generating different data types:

• For integer types: Random numbers within a specified
range can be generated.

• For floating-point types: Random real numbers within
a specified range can be generated.

• For arrays: The algorithm can determine the array size
and populate it with random values based on the element
type.

• For strings: Various strategies can be used, such as
generating random strings, using existing word lists, or
incorporating specific patterns or constraints based on
the assignment requirements.

The goal is to generate a diverse set of test data that covers
different scenarios and edge cases to ensure comprehensive
testing.

2) Replacing Test Data: Once the new test data is gener-
ated, the algorithm replaces the original test data in the test
code with the newly generated test data. This ensures that
each test case is executed with different input values. There
are also some limitations, for complex data types.

3) Automatic Test Data Generation Procedure: The pro-
cedure for the test data generation algorithm is described as
follows:

1) Read the input data from the test code with the standard
format.

2) Detect the input data by codeInput1 and find the data
type.

3) Generates the new input data according to the following
procedure:
• For int, an integer number between 2 and 10 is

randomly selected.
• For double and float, a real number between 2.0 and

10.0 is randomly selected.
• For int[], the array size between 5 and 10 is randomly

selected at first and an integer number between -99
and 99 is randomly selected.

• For double[] and float[], the array size between 5 and
10 is randomly selected at first and a real number
between -99 and 99 is randomly selected.

• For the String and String[], an English full name
is randomly selected by using names library. The
array size between 5 and 10 is randomly selected for
String[]. The other data type will be considered in
our future works.

4) Replace the input data for codeInput1 in the test code
by the newly generated input data.

5) Run the newly generated test code with the correct
source code on JUnit, where the correct source code
needs to be prepared for each assignment.

6) Find the expected output data from the JUnit log.
7) Replace the expected output data for expOutput in the

test code by this expected output data.

C. Intermediate State Testing for Logic and Algorithms

The intermediate state testing checks the randomly se-
lected intermediate state of the important variables during
the execution of the logic/algorithm. Figure 12 shows the test
code to check the values of the variables for the sorted data
after two iterations are over, in addition to checking the final
values. In the test code, the second input data codeInput2
represents the number of iteration steps to be tested. To pass

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 981-994

 
______________________________________________________________________________________ 



this test code, a student needs to additionally implement the
sort(int[] a, int iteration) method by overloading
the original sort method in the source code. Figure 11
shows the source code to pass the test code in Figure 12.
A student can easily implement the method for intermediate
testing from the original method, where only the for loop
termination condition needs to be modified. In addition, a
student can practice the use of overloading.

package p3;
public class BubbleSort {

// intermediate state
public static int[] sort(int[] a, int

iteration) {
int i, j, temp;
for (i = 0; i < iteration; i++) {

for (j = 0; j < a.length - 1; j
++) {
if (a[j] > a[j + 1]) {

temp = a[j + 1];
a[j + 1] = a[j];
a[j] = temp;

}
}

}
return a;

//final state
public static int[] sort(int[] a) {

int temp = 0;
for(int i=0; i < a.length; i++){

for(int j=1; j < (a.length - i);
j++){
if(a[j-1] > a[j]){

temp = a[j-1];
a[j-1] = a[j];
a[j] = temp;

}
}

}
return a;

}
}

Fig. 11: Example source code for intermediate state testing.

By observing the intermediate states, we can gain insights
into how the code progresses and whether it behaves cor-
rectly at each step. This approach allows us to detect potential
issues, such as incorrect loop conditions, incorrect variable
assignments, or improper algorithm implementations. It en-
sures that the logic or algorithm is correctly implemented
and functioning as intended.

The intermediate state testing plays a crucial role in
assessing code quality for several reasons. Firstly, it helps
identify logical errors or algorithmic flaws that may not be
evident from the final output alone. Secondly, it encourages
students to think critically about their codes and consider the
step-by-step executions of the codes. It promotes a deeper
understanding of the code’s behaviors and encourages better
programming practices. Lastly, by incorporating intermediate
state testing into the evaluation process, we can provide more
comprehensive and accurate assessments of the students’
abilities, as it highlights their understanding of the underlying
logic and their attentions to details. Therefore, by examining
intermediate values of variables, it provides insights into

package p3;
import static org.junit.Assert.*;
import org.junit.Test;
import java.util.Arrays;
public class BubbleSortTest {

//intermediate state testing
@Test
public void testSortIteration() {

BubbleSort bSort = new BubbleSort();
int[] codeInput1 = {5,2,8,1,9};
int codeInput2 = 2;
int[] codeOutput = bSort.sort(

codeInput1 , codeInput2);
int[] expOutput = {2,1,5,8,9};
try {

assertEquals("Test 1:",Arrays.
toString(expOutput),Arrays.
toString(codeOutput));

} catch (AssertionError ae) {
System.out.println(ae);

}
}
//final state testing
@Test
public void testSort() {

BubbleSort bSort = new BubbleSort();
int[] codeInput1 = {8,7,4,1,5,9};
int[] codeOutput = bSort.sort(

codeInput1);
int[] expOutput = {1,4,5,7,8,9};
try {

assertEquals("Test 2:",Arrays.
toString(expOutput),Arrays.
toString(codeOutput));

} catch (AssertionError ae) {
System.out.println(ae.getMessage

());
}

}
}

Fig. 12: Example test code for intermediate state testing.

the step-by-step execution of the code and allows for the
detection of logical errors or algorithmic flaws.

VI. Evaluation
In this section, we evaluate the proposal through applica-

tions to the Java programming course in Okayama University,
Japan, in two years. The evaluation was conducted to 1, 005
source codes from 83 students to 15 CWP assignments.
These source codes were processed using the answer code
validation program, which automatically verified the code
and generated a report indicating the number of passed tests.
The evaluation was also focused on the performance of the
students in terms of the pass rates of the test cases.

A. CWP Assignments in Course

The Java programming course is offered to the third-year
students in Okayama University, Japan. They have studied
C programming in the first year. A total of 28 students took
this course in 2022, where a total of 55 students did in 2023.

15 CWP assignments were prepared with the two groups
for studying basic grammar and fundamental algorithms
topics, considering their levels in Java programming study.
The corresponding test codes were made and given to the

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 981-994

 
______________________________________________________________________________________ 



students. Then, a total of 260 source codes were submitted
from the students in 2022, and a total of 745 codes were in
2023.

Table I shows the group topic, the class name, the number
of test cases in the test code, and the number of students
who submitted answer source codes in two years for each of
the 15 CWP assignments. After submissions, the submitted
source codes were verified using the answer code validation
program. After that, we analyzed the solution results of the
students.

TABLE I: CWP assignments.
group ID class name # of # of students
topic test cases 2022 2023

basic
grammar

1 CodeCorrection1 3 28 55
2 CodeCorrection2 3 28 55
3 MaxItem 6 28 55
4 MinItem 7 28 55
5 ReturnAndBreak 3 28 55

fundamental
algorithms

6 BinarySearch 9 12 47
7 BinSort 5 12 47
8 BubbleSort 4 12 47
9 Divide 4 12 47

10 GCD 5 12 47
11 HeapSort 4 12 47
12 InsertionSort 4 12 47
13 LCM 5 12 47
14 QuickSort 5 12 47
15 ShellSort 4 12 47

B. Individual Assignments Results

First, the solution results of the individual CWP assign-
ments are analyzed. Figure 13 shows the class name, and
the average pass rate by the test data in the test codes that
were given to the students for the two years. When the
average pass rate by the test data generated by the proposal is
different from that by the original test data, it is also shown
with the bracket. The average pass rate is calculated by
dividing the number of passed test cases by the total number
of test cases in the test code. Moreover, we generated three
different sets of random test data, and tested the source codes
by them.

By comparing the two average pass rates for the “funda-
mental algorithms” group, the effectiveness of the proposed
test code is confirmed. In the assignment with ID=14, the
method in the source code of one student returned the output
data in the test case instead of implementing the algorithm,
which was found by applying the random test data. It is
noted that some source codes cannot pass the test case for
the intermediate state of the algorithm, because they use the
library method or the different algorithm. For the assignment
with ID=6, the library method “Arrays.binarySearch()” is
used. For the assignments with ID=7, 8, 11, the library
method “Arrays.sort()” is used. Moreover, the enrollment in
the Java programming course in 2023 increased compared to
2022. The class is onsite in 2023 while the class was online in
2022. Therefore, we observed that the onsite class had higher
engagement levels than the online class. For the upcoming
year, we are considering a hybrid model that combines both
onsite and online.

C. Individual Students Results

Next, we analyze the solution results of the individual
students for the 15 CWP assignments. Table II provides the
number of submitted answer codes from the students and

TABLE II: Number of students and results in each group.

group # of students # of source codes CPU Time (mins)
topic 2022 2023 2022 2023 2022 2023
basic 28 55 140 275 2.43 4.77grammar

fundamental 12 47 120 470 1.95 7.64algorithms
total 40 102 260 745 4.38 12.41

the average CPU time for each assignment group for the
two years.

Figure 14 and 15 present the solution results of the
individual students in 2022 and 2023, respectively. In 2022,
all of the 28 students correctly answered to the “basic
grammar” assignments, whereas only 12 students answered
to the “fundamental algorithms” assignments. It seems that
many students did not understand or take the “fundamental
algorithms” course that was offered in one year before.
Therefore, at the beginning of this Java programming course,
it will be necessary to encourage students to study “funda-
mental algorithms” by themselves if they did not take the
course, because the algorithm programming is very important
for them. In 2023, all of the 55 students answered to the
“basic grammar” assignments and 47 students among them
tried to answer the “fundamental algorithms” assignments.

D. Reducing Teacher Workload

Then, we evaluate the reduction of workloads of the
teacher by the proposal. If the teacher does not use the
proposal, he/she needs to repeat the following steps for each
of the 1, 005 source codes: 1) open the source code on an IDE
such as VS-Code, 2) run the test code with JUnit on the IDE,
and 3) manually record the result in a text file. If the proposal
is used, the teacher only needs to run the program. The CPU
time was 7.2min for the basic grammar assignments and
9.59min for the fundamental algorithms assignments. Hence,
the proposal can greatly reduce the workload.

E. Discussion

The evaluation results offer valuable insights into the ef-
fectiveness of the proposed test code in assessing the student
solutions and reducing the teacher workload. In this section,
we will discuss the implications of the results, highlight the
strengths and limitations of this study, and suggest potential
future improvements.

The analysis of the individual assignments reveals that the
proposed test codes generally resulted in similar average pass
rates to those by the original test codes. However, in the three
assignments for “fundamental algorithms”, the average pass
rates decreased when the proposed test codes were used.
Some students used library methods in their source codes.
Thus, the proposal could avoid incorrect marking of the
source codes.

Furthermore, when examining the results of the individual
students, it becomes apparent that the “basic grammar” as-
signments were well understood by the majority of students,
as evidenced by the high average pass rates. In contrast,
the “fundamental algorithms” assignments posed more chal-
lenges to them, as evidenced by the lower average pass rates.

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 981-994

 
______________________________________________________________________________________ 



Fig. 13: Results of individual assignments.

Fig. 14: Solution results for individual students in 2022.

This result highlights the need of emphasizing algorithmic
programming skills to students.

With the automatic code validation, the proposed test
code eliminates the need of manual assessments and result
recording. It could save considerable time and efforts for the
teacher, allowing him/her to focus on providing feedback and
guidance to students. The reduced workload also opens up
the possibility to handle larger classes efficiently. By enabling

students to self-assess their understanding of the assignments,
the proposal will encourage active learning and promote self-
improvements by them.

While the evaluation offered promising results, there are
several limitations to be considered. This evaluation was
conducted within the specific context of a Java programming
course in Okayama University. The findings may not directly
be generalized to other educational settings or programming

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 981-994

 
______________________________________________________________________________________ 



Fig. 15: Solution results for individual students in 2023.

languages. The effectiveness of the proposed solution should
be further validated in different contexts for its wider appli-
cability. The evaluation primarily focused on the pass rates
of the test cases to assess the validity and effectiveness of
the proposal. Other important aspects of the code quality,
such as readability, efficiency, and adherence to programming
best practices, were not evaluated. Therefore, future studies
should incorporate these dimensions for comprehensive as-
sessments of student performances.

VII. Conclusion

This paper presented the answer code validation program
that will automatically verify all the source codes from a lot
of students for each code writing problem (CWP) assignment
in Java programming learning assistant system (JPLAS) and
report the number of passing tests in the CSV file to help the
teacher. To address the limitations in the current test code,
we also presented the test data generation algorithm and the
intermediate state testing. For them, we defined the standard
format of writing test cases in the test code. By dynamically
generating various test data with different data types and
replacing them in the test code, our aim was to enhance the
validity of CWP assignments and reduce the risk of cheating.
Furthermore, the inclusion of intermediate state testing in the
test code helps to verify the implementation of the requested
logic or algorithm, promoting a deeper understanding of logic
and algorithmic thinking among students.

For evaluations, the proposal was applied to 1, 005 source
codes from 55 undergraduate in the Java programming course
in Okayama university, Japan for two years. The analysis
of individual assignments reveals that there were a few

assignments in the “fundamental algorithms” group where
the average pass rate decreased when using the proposed
test code. This was observed in cases where students utilized
library methods or implemented different algorithms by using
the proposed intermediate state testing. Moreover, as the
CPU time for testing 1,005 source codes was 7.2min for
basic grammar and 9.59min for fundamental algorithms,
the proposal can greatly reduce the teachers’ workload.
Therefore, the validity and effectiveness of the proposal have
been confirmed.

However, it is important to acknowledge certain limitations
of this study. Firstly, the evaluation was conducted within the
specific context of a Java programming course at Okayama
University, which may limit the results to other educational
settings or programming languages. Additionally, the eval-
uation focused primarily on the pass rates of test cases,
and other aspects such as code readability, efficiency, and
adherence to programming best practices were not explicitly
evaluated. Future studies could consider these additional
dimensions to provide a more comprehensive assessment of
student performance. In future works, we will study test
codes with the proposal for other logic or algorithms in
mathematics, physics, and engineering topics, generate new
assignments for other Java grammar topics, and apply them
to students in Java programming courses. Besides, we will
study about the coding rule checking program and plagiarism
for the readability and efficiency of the codes.

References

[1] Top Programming Languages 2022. IEEE Spectrum (online), https:
//spectrum.ieee.org/top-programming-languages-2022.

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 981-994

 
______________________________________________________________________________________ 



[2] Node.js (online), https://nodejs.org/en.
[3] Docker (online), https://www.docker.com/.
[4] S. T. Aung, N. Funabiki, L. H. Aung, H. Htet, H. H. S. Kyaw, and S.

Sugawara, “An implementation of Java programming learning assistant
system platform using Node.js,” in Proc. ICIET, pp. 47-52, 2022.

[5] S. T. Aung, N. Funabiki, Y. W. Syaifudin, H. H. S. Kyaw, S.
L. Aung, N. K. Dim, and W.-C. Kao, “A proposal of grammar-
concept understanding problem in Java programming learning assistant
system,” J. Adv. Inform. Tech., vol. 12, no. 4, pp. 342-350, 2021.

[6] K. K. Zaw, N. Funabiki, and W.-C. Kao, “A proposal of value trace
problem for algorithm code reading in Java programming learning
assistant system,” Inf. Eng. Express, vol. 1, no. 3, pp. 9-18, 2015.

[7] Y. Jing, N. Funabiki, S. T. Aung, X. Lu, A. A. Puspitasari, H. H. S.
Kyaw, and W-C. Kao, “A proposal of mistake correction problem for
debugging study in C programming learning assistant system,” Int. J.
Info. Edu. Tech. (IJIET), vol. 12, no. 11, pp. 1158-1163, 2022.

[8] N. Funabiki, Tana, K. K. Zaw, N. Ishihara, and W.-C. Kao, “A graph-
based blank element selection algorithm for fill-in-blank problems in
Java programming learning assistant system,” IAENG International
Journal of Computer Science, vol. 44, no. 2, pp. 247-260, 2017.

[9] H. H. S. Kyaw, S. S. Wint, N. Funabiki, and W.-C. Kao, “A code
completion problem in Java programming learning assistant system,”
IAENG International Journal of Computer Science, vol. 47, no. 3, pp.
350-359, 2020.

[10] X. Lu, S. Chen, N. Funabiki, M. Kuribayashi, and K. Ueda, “Aproposal
of phrase fill-in-blank problem for learning recursive function in C
programming,” in Proc. LifeTech, pp. 127-128, 2022.

[11] N. Funabiki, Y. Matsushima, T. Nakanishi, and N. Amano, “A Java
programming learning assistant system using test-driven development
method,” IAENG International Journal of Computer Science, vol. 40,
no.1, pp. 38-46, 2013.

[12] X. Lu, N. Funabiki, S. T. Aung, Y. Jing and S. Yamaguchi, “An
implementation of Java programming learning assistant system in
university course”, in Proc. ICIET, pp. 215-220, 2023.

[13] K. H. Wai, N. Funabiki, S. T. Aung, K. T. Mon, H. H. S. Kyaw and
W.-C. Kao, “An Implementation of Answer Code Validation Program
for Code Writing Problem in Java Programming Learning Assistant
System,” in Proc. ICIET, pp. 193-198, 2023.

[14] Unit-testing (online), https://www.javatpoint.com/unit-testing.
[15] JUnit (online), http://www.junit.org/.
[16] Test-driven development (online), https://testdriven.io/

test-driven-development/.
[17] K. Ala-Mutka, “Problems in Learning and Teaching Programming,” A

literature study for developing visualizations in the Codewitz-Minerva
project, pp. 1-13, 2004.

[18] M. Konecki, “Problems in programming education and means of their
improvement,” DAAAM Int. Sci. Book, pp. 459-470, 2014.

[19] R. A. Queiros, L. Peixoto, and J. Paulo, “PETCHA - a programming
exercises teaching assistant,” in Proc. ITiCSE, pp. 192-197, 2012.

[20] A. Carbone, I. Mitchell, J. Hurst, and D. Gunstone, “An exploration
of internal factors influencing student learning of programming,” in
Proc. Conf. Res. Pract. Inform. Tech. Ser., pp. 25-34, 2009.

[21] M. Piteira and C. Costa, “Learning computer programming: study
of difficulties in learning programming,” in Proc. ISDOC, pp. 75-80,
2013.

[22] F. W.-B. Li and C. Watson, “Game-based concept visualization for
learning programming,” in Proc. ACM MTDL, pp. 37-42, 2011.

[23] H. D. Ngyyen, T.-V. Tuan, X.-T. Pham, A. T. Huynh, V. T. Pham,
D. Nguyen, “Design intelligent educational chatbot for information
retrieval based on integrated knowledge bases,” IAENG International
Journal of Computer Science, vol. 49, no. 2, pp. 531-541, 2022.

[24] S. Matsumoto, S. Yamagishi, and T. Kashima, “Relationship Analysis
between Puzzle-Like Programming Game and Achievement Result
After Learning the Basic of Programming,” LNECS Int. Multi. Conf.
Eng. Comput. Sci., pp. 168-171, 2018.

[25] C. W. Okonkwo, and A. Ade-Ibijola, “Revision-Bot: A Chatbot
for Studying Past Questions in Introductory Programming,” IAENG
International Journal of Computer Science, vol. 49, no.3, pp. 644-652,
2022.

[26] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, “Review of re-
cent systems for automatic assessment of programming assignments,”
in Proc. Koli Calling, pp. 86–93, 2010.

[27] T. Staubitz, H. Klement, J. Renz, R. Teusner, and C. Meinel, “Towards
practical programming exercises and automated assessment in Massive
Open Online Courses,” in Proc. TALE, pp. 23-30, 2015.

[28] P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx,
“CodeWrite: supporting student-driven practice of Java,” in Proc.
SIGCSE, pp. 471-476, 2011.

[29] F. A. Shamsi and A. Elnagar, “An intelligent assessment tool for
student’s Java submission in introductory programming courses,” J.
Intelli. Learn. Syst. Appl., vol. 4, pp. 59-69, 2012.

[30] H. Mei, D. Hao, L. Zhang, J. Zhou, and G. Rothermel, “A static
approach to prioritizing JUnit test cases,” IEEE Trans. Soft. Eng., vol.
38, no. 6, pp. 1258-1275, 2012.

[31] S. H. Edwards, “Using test-driven development in the classroom: Pro-
viding students with automatic, concrete feedback on performance,”
in Proc. EISTA, pp. 421-426, 2003.

[32] S. H. Edwards and M. A. Pérez-Quiñones, “Experiences using test-
driven development with an automated grader,” Journal of Computing
Sciences in Colleges, vol. 22, no. 3, pp. 44-50, 2007.

[33] C. Desai, D. Janzen, and K. Savage, “A survey of evidence for test-
driven development in academia,” ACM SIGCSE Bulletin, vol. 40, no.
2, pp. 97-101, 2000.

[34] I. T. Elgendy, M. R. Girgis, and A. A. Sewisy, “A GA-Based Approach
to Automatic Test Data Generation for ASP.NET Web Applications,”
IAENG International Journal of Computer Science, vol. 47, no.3, pp.
557-564, 2020.

[35] H. Kitaya and U. Inoue, “An online automated scoring system for Java
programming assignments,” International Journal of Information and
Education Technology, vol. 6, no. 4, pp. 275-279, 2016.

[36] E. Ünal and H. Çakir, “Students’ views about the problem based
collaborative learning environment supported by dynamic web tech-
nologies,” Malaysian Online Journal of Educational Technology, vol.
5, no. 2, pp. 1-19, 2017.

[37] S. H. Tung, T. T. Lin and Y. H.Lin, “An Exercise Management System
for Teaching Programming,” J. Softw., vol. 8, no. 7, pp. 1718-1725,
2013.

[38] M. Szab and K. Nehz, “Grading Java code submissions in MeMOOC,”
in Proc. microCAD Int. Sci. Conf, 2018.

[39] I. S. Zinovieva, V. O. Artemchuk, A. V. Iatsyshyn, O. O. Popov, V.
O. Kovach, A. V. Iatsyshyn, Y. O. Romanenko, and O. V. Radchenko,
“The use of online coding platforms as additional distance tools in
programming education,”Journal of physics: Conference series,, vol.
1840, 2021.

[40] Express (online), https://expressjs.com/.
[41] Bubble Sort (online), https://www.javatpoint.com/bubble-sort-in-java.

K. H. Wai received the B.E. and M.E. degrees
in information science and technology from Uni-
versity of Technology (Yatanarpon Cyber City),
Myanmar, in 2016 and 2020, respectively. She is
currently an Ph.D. candidate in Graduate School
of Natural Science and Technology, Okayama Uni-
versity, Japan. Her research interests include edu-
cational technology and web application systems.

N. Funabiki received the B.S. and Ph.D. de-
grees in mathematical engineering and information
physics from the University of Tokyo, Japan, in
1984 and 1993, respectively. He received the M.S.
degree in electrical engineering from Case Western
Reserve University, USA, in 1991. From 1984 to
1994, he was with Sumitomo Metal Industries,
Ltd., Japan. In 1994, he joined the Department
of Information and Computer Sciences at Osaka
University, Japan, as an assistant professor, and
became an associate professor in 1995. In 2001,

he moved to the Department of Communication Network Engineering
(currently, Department of Electrical and Communication Engineering) at
Okayama University as a professor. His research interests include computer
networks, optimization algorithms, educational technology, and Web tech-
nology. He is a member of IEEE, IEICE, and IPSJ.

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 981-994

 
______________________________________________________________________________________ 



S. T. Aung received the B.E. degree in Information
Technology from the University of Technology
(Thanlyin), Myanmar, in 2017. She received the
M.E. degree in Electronic and Information Sys-
tem Engineering at Okayama University, Japan, in
2023. She is currently a Ph.D student in Depart-
ment of Information and Communication System
Engineering at Okayama University, Japan. She
received the OU Fellowship in 2023. Her research
interests include educational technology.

X. Lu received the B.S. degree in electronic
information engineering from Hubei University
of Economics, China, in 2017, and received the
M.S degree in electronic information systems from
Okayama University, Japan, in 2021, respectively.
She is currently a Ph.D. student in Graduate School
of Natural Science and Technology, Okayama Uni-
versity, Japan. She received the OU Fellowship in
2021. Her research interests include educational
technology.

Y. Jing received the B.S. degree in information
management and information system (Japanese-
English bilingual strengthening) from Dalian Uni-
versity of Foreign Languages, China, in 2020. She
is currently a master student in electronic informa-
tion systems at Okayama University, Japan. Her
research interests include educational technology.

H. H. S. Kyaw received the B.E. and M.E.
degrees in information science and technology
from University of Technology (Yatanarpon Cyber
City), Myamar, in 2015 and 2018, and Ph. D.
in information communication engineering from
Okayama University, Japan, in 2021, respectively.
She is currently an assistant professor in Division
of Advanced Information Technology and Com-
puter Science, Tokyo University of Agriculture and
Technology, Koganei, Japan. Her research interests
include educational technology and web applica-

tion systems. She is a member of IEICE.

W.-C. Kao received the M.S. and Ph.D. degrees
in electrical engineering from National Taiwan
University, Taiwan, in 1992 and 1996, respectively.
He was at SoC Technology Center, ITRI, Taiwan,
from 1996 to 2000, and at NuCam Corporation,
Taiwan, from 2000 to 2004. Since 2004, he has
been with National Taiwan Normal University
(NTNU), Taipei, Taiwan, where he is currently
the Research Chair Professor at Department of
Electrical Engineering and the Dean of College of
Technology and Engineering. His current research

interests include system-on-a-chip (SoC) as well as embedded software
design, flexible electrophoretic display, machine vision system, digital
camera system, and color imaging science. He is a fellow of IEEE.

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 981-994

 
______________________________________________________________________________________ 




