
 

  

Abstract—The existing heavy-backbone object detection 

models overlook the crucial role of cross-level interactive fusion 

of feature information in pyramid networks, resulting in the 

inability to detect occluded objects or small objects in complex 

scenes. In this thesis, we present a new heavy-neck object 

detection model called POD-YOLO based on YOLOv5s. Firstly, 

we propose the POD-RepC3 module to increase the model's 

capability to obtain the multi-layer feature. Additionally, 

addressing the issue of large object size span, we propose a 

bidirectional partial dynamic fusion module (Bi-PDC) as the 

detection neck of the pyramid network. This module preserves 

the accurate positioning signals and facilitates cross-level 

interactive fusion of feature information. Finally, we design 

Reparameterized Bi-directional Dynamic Feature Pyramid 

Network (RepBi-DFPN), a deep feature fusion network that 

integrates contextual information and enhances both feature 

expression and fusion capabilities of our model. The experiment 

results suggest that the suggested method is positive on the 

PASCAL VOC dataset. The mAP@0.5 and mAP@0.5：0.95 

performance reached 81.3% and 58.2%, respectively, which 

increased by 2.4% and 4.1% compared to original algorithm 

YOLOv5s. Furthermore, experiment results also demonstrate 

that model's performance can compete with SOTA object 

detection models. In this paper, the algorithm optimizes the 

feature fusion capability of the pyramid network to effectively 

decrease the false detection and missing detection of the model. 

The model's ability to accurately detect multi-scale targets is 

significantly improved. 

 
Index Terms—Image processing, Object detection, Feature 

pyramid,  Multi-scale，Feature fusion 
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I. INTRODUCTION 

OMPUTER vision technology has developed rapidly, 

and object detection has become one of the hot points in 

the areas of image processing. It has demonstrated the 

widespread potential applications in areas such as 

human-computer interaction, image classification, automatic 

driving[1], and medical diagnosis. With advancements in 

computer performance and rapid progress of deep learning 

and graphics processing technology, the effectiveness of 

algorithms for object detection has achieved unprecedented 

levels. In recent years, object detection methods based on 

deep learning have made remarkable progress. The object 

detection algorithms that follow a two-stage approach, such 

as R-CNN [2], Fast R-CNN [3], and Faster R-CNN [4], 

achieve slightly higher detection accuracy by using RPN 

networks to extract candidate boxes. Consequently, by 

continuously optimizing and improving the feature extraction 

network and anchor box regression work, single-stage 

detection algorithms like the YOLO [5], SSD [6], 

YOLO9000[7],YOLOv3 [8], YOLOv4 [9], and YOLOv5 [10] 

have been developed. These algorithms directly classify and 

predict objects on the feature map, eliminating the need for 

additional region classification steps, thereby enhancing 

detection speed, and the YOLO-series models have gained 

significant popularity. 

Although object detection networks have made significant 

advancements in architecture design and training strategies, 

detecting multi-scale objects remains challenging. In a 

typical object detection framework, the backbone network 

obtains deep-level latent features, whereas the neck module 

integrates these features to capture multi-scale information. 

However, compared to image recognition, object detection 

requires the higher image resolution, resulting in the 

computational cost of backbone networks accounting for 

most of the reasoning cost. This backbone design paradigm is 

a historical problem left over from the development of image 

recognition to object detection, instead of a design that is 

optimized end-to-end for object detection. Consequently, the 

paradigm has led to the suboptimal performance in object 

detection models [11]. Therefore, the neck module's feature 

fusion is crucial for multi-scale object detection. To mitigate 

the problems associated with the wide range of target size 

spans, most feature pyramid networks rely on multi-scale 

features from conventional CNN backbones for fusion. 

However, as CNNs advance, backbone networks become 

larger and more computationally demanding. In contrast to 

conventional backbones, the main emphasis of FPN [12] lies 
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in the integration of high-level semantic information and 

low-level space information. Moreover, current research on 

feature fusion networks heavily depends on optimal 

backbone design, and the communication of information 

between different levels of characteristics cannot be fully 

facilitated. YOLOv3 combines three different scale feature 

maps using up-sampling and fusion methods, followed by 

independent detection of these multi-scale feature maps. 

YOLOv3 combines three different scale feature maps using 

up-sampling and fusion methods, followed by independent 

detection of these multi-scale feature maps. [13] uses 

depthwise separable convolution[14] and SPP[15] in the 

feature pyramid to decrease the count of parameters and 

enhance the feature representation; however, this approach 

increases redundancy and memory usage. YOLOv5 extracts 

object features using  deep residual network with multi-scale 

prediction accomplished through the FPN-PAN[16] structure. 

However, current network structure neglects high-frequency 

information loss during cross-layer feature fusion and does 

not adequately address large object size spans. Moreover, 

limited pixel availability in small objects hinders effective 

feature extraction, making it susceptible to background noise 

interference and the potential loss of information during 

convolutional neural network's forward propagation. 

We propose POD-YOLO, A novel object detection model 

utilizing YOLOv5s as its foundation, to address above 

problems. Our approach includes the POD-RepC3 module 

for capturing multi-layer information and achieving a balance 

between local and global contexts, the bi-directional partial 

dynamic fusion module (Bi-PDC) for promoting the 

cross-level interaction of feature information, the 

Omni-Dimensional Dynamic Convolution (ODConv) for 

acquiring the ample semantic information flexibly, 

meanwhile, Reparameterized Bi-directional Dynamic 

Feature Pyramid Network (RepBi-DFPN) as a foundation for 

constructing POD-YOLO by using the YOLOv5s backbone 

network. 

In summary, the key contributions are three-fold: 

1)  Design a POD-RepC3 module that balances local and 

global information, enhancing the model's capacity to 

extract multi-scale feature. 

2)   Propose the bi-directional partial dynamic fusion module 

Bi-PDC, which can effectively solve the problem of 

large object size spanning range and enhance cross-level 

interactive fusion of features. 

3)   A flexible, deep and long neck module RepBi-DFPN is 

proposed for feature fusion, and based on this, we 

propose a new detector called POD-YOLO, which has 

better overall feature information fusion capabilities. 

 

II. RELATED WORK  

The YOLOv5 architecture is composed of four 

components: Input, Backbone, Neck, and Head. The input 

end of model utilizes Mosaic data augmentation to randomly 

arrange, crop, and adjust the color of the input image. 

A. Backbone 

Backbone uses the CSPDarknet53 framework[17], which 

consists of three parts: Conv, C3, and SPPF. In the backbone 

network, the Conv and C3 layers are connected to strengthen 

feature extraction, and the C3 module effectively avoids the 

gradient disappearance. The SPPF structure uses three 

maximum feature pooling layers to strengthen the network's 

ability to perceive images and resolve feature information. 

 
 

Fig. 1. POD-YOLO Network Model Structure 
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B. Neck 

The Neck module adopts the FPN and PANet feature 

pyramid network structures. Specifically, the FPN structure 

integrates semantic feature information through a top-down 

pathway, and the PANet structure migrates the strong 

positioning features from the lower network layer to the 

higher network layer. 

 

C. Head 

The prediction component in YOLOv5s comprises three 

prediction layers with varying scales. Among them, the 

small-scale detection head is used to detect large targets, and 

the large-scale detection head is used to detect small targets. 

 

III. ALGORITHM DESIGN 

A.  Overall Architecture of POD-YOLO Model 

Although extensive research on effective object detection 

models, dealing with the challenge of large object size span 

remains difficult. In order to achieve efficient multi-scale 

information fusion, we propose the POD-YOLO with a 

heavy-neck design. This model replaces the conventional 

convolution modules with the Omni Dimensional Dynamic 

Convolution[18] to tackle increased parameter redundancy. 

We introduce a new POD-RepC3 module with efficient 

fusion characteristics to advance the model's capacity to 

extract multi-layer feature. Additionally, we propose Bi-PDC 

module to improve localization accuracy and enable flexible 

and efficient integration of feature information at various 

scales in object detection model. 

The general structure can be observed in Fig. 1. Firstly, the 

Bi-PDC connects the backbone network and feature fusion 

network, preserving object position information in adjacent 

three-layer feature maps whereas fusing features at different 

scales. After extracting the deep and complex feature 

information using the POD-RepC3 module, the ODConv 

dynamically adjusts convolution kernel size to incorporate 

contextual information. Finally, RepBi-DFPN maximizes the 

semantic details contained in output feature map through 

cross-level connections. 

 

B. Partial Dynamic Convolution 

In order to improve neural network efficiency, currently, 

many research efforts are focused on reducing floating-point 

operations, such as popular depthwise separable convolution. 

Although DWConv is effective in reducing the FLOPs, it is 

usually followed by pointwise convolution, so it is not a 

straightforward replacement for traditional convolution. 

Otherwise, it will lead to serious accuracy devastation. Even 

in practice, it is possible to increase the width of network to 

offset the decrease in precision, however, this will account 

for higher memory space. In contrast, FasterNet [19] 

considers redundancy in feature mapping and proposes 

PConv to decrease FLOPs and memory access, and improve 

the effectiveness of spatial feature extraction. Inspired by 

PConv, we propose a partial dynamic convolution(PODConv) 

that can strike an improved equilibrium between the 

precision of the model and its computational effectiveness. 

PODConv extracts the spatial features of some input 

channels and leaves the remaining channels unaltered. In 

Fig.2(a), we can see for memory access that is consistent or 

regular, first or final continuous cp channels is used as a 

representative for feature extraction using ODConv. The 

remaining (c-cp) channels are unchanged and concatenated 

with the feature map of cp output channels after feature 

extraction, preserving feature details of the unoccluded area 

in object detection and providing more comprehensive 

context information. To utilize all channel information, 

ODConv is added after concatenating the cp channel with the 

(c-cp) channel, as shown in Fig.2(b). ODConv  adjusts the 

convolutional kernel size dynamically to extract features at 

various scales. It first compresses the input features and then 

maps them to a lower-dimensional space. Attention weights 

are calculated for each dimension of kernel space, which are 

then multiplied with convolutional kernel. Finally, the 

attention-weighted convolutional kernel is convolved with 

the input features to fuse information from different scales. 

The PODConv feature extraction process adjusts the 

convolutional kernel size based on object size and scale, 

obtaining  different receptive fields across various feature 

layers. This effectively improves the expression of edge 

features, addressing occlusion and scale change problems in 

object detection. Compared to the traditional convolution, 

PODConv offers greater flexibility in feature extraction and 

reduces parameter redundancy. 

 

C. Bi-directional Partial Dynamic Concatenation Module  

The previous studies have only fused features from the 

same or previous layer to aid in the model's detection, as it 

connects features between adjacent layers. Therefore, we 

  
 (a)                                                                                            (b) 

 
Fig. 2.  Structure of the PODConv 
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propose the bi-directional partial dynamic concatenation 

module (Bi-PDC) as the detection neck of the feature fusion 

network to accurately locate objects. 

As shown in Fig.3, in the Bi-PDC module, a low-level 

feature map from backbone Ci-1 is adjusted for the quantity 

of channels by convolution operations with a convolution 

kernel size of 1×1. The ODConv dynamically modifies 

convolution kernel's parameters, weightings the attention of 

the four dimensions of kernel space, and utilizes feature 

information in each dimension to achieve convolution 

operations in different dimensions. Thus, it can capture 

multi-dimensional features so as to obtain sufficient 

contextual semantic information. PODConv extracts deep 

features from the backbone Ci feature map and preserves 

clear edge information for the accurate localization signals. 

Finally, the feature information from backbone Ci-1, Ci, and 

Pi+1 is fused into Pi to fully aggregate adjacent layers' feature 

maps, combining high-level semantic and low-level spatial 

information to densify the network structure. As cross-scale 

feature interaction module, Bi-PDC enhances the expression 

ability of multi-scale features by improving cross-level 

interaction and information transmission, ensuring flexible 

and efficient multi-scale feature fusion in RepBi-DFPN. 

 

D. Efficient POD-RepC3 Module  

ResNet[20] and DenseNet[21] are widely used in modern 

CNNs due to their effective solutions for gradient vanishing 

and the intermediate feature aggregation. CSPNet utilizes 

cross-stage dense connection to reduce computational burden 

without losing accuracy. As an important part of YOLOv5, 

the C3 module is composed of multiple stacks of residual 

modules, which enhance the model's ability to obtain features 

by deepening the network and expanding its receptive field. 

However, the network's multi-branching architecture leads to 

increase memory consumption during feature fusion, 

resulting in a noticeable decrease in inference speed. 

Therefore, this paper introduces POD-RepBlock and 

POD-RepC3 (Fig.4), which leverage reparameterization [22] 

to enhance both accuracy and efficiency in object detection. 

Specifically, POD-RepBlock comprises of PODConv and 

RepConv_3×3, reducing the computational redundancy and 

providing the comprehensive contextual information. The 

feature map obtained by Bi-PDC module is then input into 

POD-RepC3, as shown in Fig 4(c). First of all, PODConv 

dynamically adjusts the convolution kernel size for certain 

input channels to obtain varying receptive fields, merges 

spatial features across different ranges, reduce parameters, 

and optimizes parameter utilization in feature fusion for 

enhanced model performance. Then, RepConv learns rich 

semantic features, captures the shape, texture, and reduces 

the memory footprint of the model by reducing the 

parameters of the convolutional layer. Thus, it makes model 

more lightweight and efficient. Eventually, POD-RepBlock 

incorporates feature information from various scales to 

improve the model's comprehension of object context. This 

allows POD-RepC3 module to propagate different layers of 

features during fusion, promoting feature information 

transmission and preservation of spatial details. 

Consequently, this improves feature expression capability 

and boosts object detection algorithm performance. 

 

E. Feature Fusion Network RepBi-DFPN  

The feature pyramid network aims to integrate features 

from different scales, which has been proven to be a key and 

effective part of object detection [23]. However, the single 

sequential fusion approach used by FPN weakens the 

correlation between features in each layer as the distance 

increases, making it difficult to establish an effective 

mapping between deep and shallow features and ensuring 

adequate feature fusion. Considering the limitations of 

one-way information flow, PANet incorporates a bottom-up 

path aggregation network to reduce the length of information 

path for low-layer and high-layer features. This approach 

facilitates accurate signal propagation of low-layer features 

but comes with higher computational costs. BiFPN 

 
Fig. 3.  Structure of the Bi-PDC 

 

 
(a)                                         (b) 

 
(c)                                            (d) 

 
Fig. 4.  POD-RepBlock and POD-RepC3 structure diagram 
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eliminates nodes with only one input edge and adds 

skip-layer connections from the original input at the same 

layer. 

The FPN, PANet, and BiFPN architectures focus on 

feature fusion without considering intra-block connectivity 

of feature fusion networks. Therefore, we propose a new 

Reparameterized bi-directional dynamic feature pyramid 

network (RepBi-DFPN) that is both flexible and lightweight. 

The Bi-PDC in Fig.5 combines feature maps Ci-1, Ci, and 

Pi+1 from the backbone network to obtain the multi-scale 

object information and transmit the feature information 

comprehensively. The POD-RepC3 module enhances the 

expression ability of underlying features by processing the 

feature map with sufficient context information and fusing 

multi-scale features with abundant semantic information. The 

feature map Pi and Ni-1 are fused again after ODConv 

feature extraction, effectively integrating high-level semantic 

information and increasing flow of feature information. 

RepBi-DFPN effectively integrates multi-scale feature 

information by the flexible cross-scale connections and 

intra-block connection, improves semantic expression ability 

of features whereas preserving accurate object localization 

and provides rich feature information. This makes it possible 

to accurately perceive and localize objects of different sizes, 

thereby improving object detection performance. 

IV. EXPERIMENT 

A. Experiment Dataset 

We used images from all classes of the PASCAL 

VOC2007 and 2012 datasets to validate the effectiveness of 

the model. The dataset encompasses a wide range of 20 

distinct object categories, including people, animals, 

furniture, etc., with a total of 16,551 images in the train+val 

part of the VOC2012 and 4,952 images in the test part of the 

test set in the VOC2007. 

 

B. Experimental Environment and Parameter Setting 

The experimental environment is Windows 11 operating 

system, the CPU is AMD Ryzen 7 5800H with Radeon 

Graphics, the graphics card is NVIDIA GeForce RTX 3060, 

and the video memory is 6GB. The model is implemented 

using the Python 1.9.1 deep learning framework and the 

Python 3.7 programming language, and GPU acceleration 

using CUDA11.1. 

 
 

Fig. 5.  Structure of the RepBi-DFPN 

 
 

(a)                                                                                              (b) 
 

Fig. 6.  Comparison of YOLOv5s and POD-YOLO detection results 
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The algorithm requires an input image size of 640 × 640, 

the Warmup method is used to warm up the model and the 

network is trained using the cosine learning rate decay 

strategy, the initial rate of learning is set at 0.01, and the last 

round of learning rate decay ratio is 0.01. The size of the 

training batch is 16, and the total number of epochs is 300. 

The network parameters are iterated using the stochastic 

gradient descent optimizer SGD, incorporating a weight 

decay rate of 0.0005 and a momentum factor of 0.937. 

 

C. Evaluation Measures 

To evaluate the efficacy of the object detection model 

proposed in this paper, mAP, Params and FLOPs are used as 

evaluation indexes. 

Create a graph displaying the precision-recall curve, where 

recall is represented on the horizontal axis and precision on 

the vertical axis and integrate it to find the area AP under the 

curve. AP indicates average precision. The relevant 

expressions are as stated below: 

TP
P

TP FP
=

+
                                  (1) 

TP
R

TP FN
=

+
                                 (2) 

1

0
( )AP P R dR=                                 (3) 

P and R in the expression are precision and recall 

respectively. P(R) represents the P-R curve. TP denotes the 

true positive, which is the count of samples accurately 

classified as positive by the model. FP indicates the false 

positive, which is the count of samples that the model 

inaccurately classifies as positive. FN indicates false 

negatives, which is the count of negatives that the model 

predicts incorrectly. 

The IoU threshold used to determine whether the object is 

detected correctly is 0.5 to 0.95, and a total of 10 values are 

taken at medium intervals. The ultimate assessment metric is 

derived by computing the mean of 10 precision values, 

denoted as mAP@0.5:0.95. And the mean average precision 

obtained at an IoU threshold of 0.5 is referred to as mAP@0.5. 

The mAP is calculated as follows, with 1 being the number of 

categories: 

1

0
1 1

1 1
( )

c c

i

i i

mAP AP P R dR
c c= =

= =              (4) 

 

D. Visualization Analysis 

Fig.6 illustrates the experimental outcomes of our 

algorithm in comparison with YOLOv5s, aiming to visually 

validate the efficacy of our approach. Based on the results of 

the experiments, it becomes apparent that the object detection 

using YOLOv5s in Fig.6(a) appear to miss the objects, 

whereas 

 
Fig. 7.  Confusion matrix for POD-YOLO object detection experiment 
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TABLE I 
RESULT OF ABLATION EXPERIMENTS 

 

TABLE Ⅱ 
PERFORMANCE COMPARISON OF VARIOUS ALGORITHMS 

 

the scene is effectively scanned by the POD-YOLO 

algorithm to identify all objects (Fig.6(b)) and exhibits a 

more significant enhancement in the precision of detection 

when compared to the YOLOv5s algorithm. Therefore, our 

proposed algorithm effectively addresses the problem of 

inadequate fusion of global multi-scale information caused 

by the loss of high-frequency information in feature fusion 

process. 

To evaluate the detection performance of POD-YOLO 

across various categories in the dataset, an analysis is 

conducted. Fig.7 shows the confusion matrix after model 

training, which is composed of 20 categories. The matrix's 

diagonal elements reveal accurate prediction and 

classification of most small target classes in the dataset. 

POD-YOLO algorithm not only comprehensively considers 

the target information but also effectively utilizes highly 

relevant feature information. This solves the problem that 

small or obscured targets are prone to lose important 

information during object detection. 

 

E. Ablation Studies 

The proposed method's effectiveness is verified through 

ablation experiments on PASCAL VOC dataset, maintaining 

consistent environment and parameter settings. Table I 

displays the results of the ablation experiments (bold 

indicates the highest precision). In the table, POD-RepC3 

indicates that the POD-RepC3 module is applied to feature 

fusion network, ODConv indicates that the conventional 

convolution in RepBi-DFPN is replaced by ODConv. 

Bi-PDC means that the feature fusion network uses the new 

Bi-PDC module at its neck. The ablation experiment 

compares the parameters Params, FLOPs and mAP of the 

algorithm, where Baseline represents the backbone network 

of YOLOv5s. 

To augment the capacity for expressing features, the 

POD-YOLO uses the POD-RepC3 module to promote the 

transmission and share of feature information. As shown in 

Table.1, with the introduction of this module, the FLOP is 

reduced by 1.8G, and the mAP@0.5 increased by 1.2%, the  

mAP@0.5:0.95  increased by 1.5%. The use of POD-RepC3 

in the feature fusion process not only significantly decreases 

computational redundancy but also effectively enhances the 

model's understanding of the object context, thereby 

improving recognition accuracy. Using ODConv instead of 

traditional convolution effectively integrates semantic 

information and greatly improves accuracy while reducing 

FLOP by 1.3G. The mAP@0.5  improved by 0.7% and the 

mAP@0.5:0.95 improved by 0.8%. More comprehensive 

implementation of multi-scale feature fusion is particularly 

important for feature fusion networks. Therefore, The 

Bi-PDC module serves as the intermediary component 

connecting the backbone and the feature fusion network in 

the RepBi-DFPN to accurately preserve the object to 

accurately preserve the object localization information. 

Improved the mAP@0.5 and the mAP@0.5:0.95  of the 

object detection model by 1.7% and 2.1%, respectively. 

Compared with the original model, the mAP@0.5  and the 

mAP@0.5:0.95  of the proposed model are significantly 

improved, reaching 81.3% and 58.2%, respectively. 

 

F. Comparison With Other State-of-the-art Detectors 

The detection capability of POD-YOLO is further 

validated through comparative experiments conducted on the 

baseline model, YOLO lightweight models, and YOLO 

complex models. Experimental conditions for each detection 

algorithm are consistently maintained, with all algorithms 

utilizing the same training and testing datasets. The results of 

these experiments are displayed in Table Ⅱ. 

1) Comparison with the baseline model  

In terms of model complexity, although POD-YOLO has 

more parameters than YOLOv5s, POD-YOLO has less 

computation than the baseline model. And its performance 

surpasses that of the YOLOv5s by a considerable margin. 

The mAP@0.5 and the mAP@0.5:0.95 increased by 2.4% 

and 4.1%, respectively. Meanwhile, with the purpose of 

compare the effectiveness of model more intuitively, the 

mAP curves of the POD-YOLO and YOLOv5 models are 

compared as displayed in Fig.8. It is evident that when 

Model Size mAP@0.5(%) mAP@0.5:0.95(%)  Params(M) FLOPs(G) 

Baseline 640×640 78.9 54.1 7.074 16.1 

+ POD-RepC3 640×640 80.1(+1.2) 55.6(+1.5) 7.082 14.3 

+ODConv 640×640 79.6(+0.7) 54.9(+0.8) 7.422 14.8 

+Bi-PDC 640×640 80.6(+1.7) 56.2(+2.1) 6.958 16.3 

POD-YOLO 640×640 81.3(+2.4) 58.2(+4.1) 8.177 14.1 

Model Size mAP@0.5(%) mAP@0.5:0.95(%) Params(M) FLOPs(G) 

YOLOv5s 640×640 78.9 54.1 7.1 16.1 

YOLOv5m 640×640 81.5 57.5 20.9 48.3 

YOLOv4 640×640 79.0 57.3 52.9 120 

MobileNetv3-YOLOv5s 640×640 55.3 32.6 3.6 6.4 

ShuffleNetv2-YOLOv5s 640×640 56.1 35.4 5.6 11.6 

YOLOv7-tiny 640×640 79.0 53.3 6.1 13.3 

YOLO-SK 640×640 79.1 55.0 6.9 16.1 

Ours 640×640 81.3 58.2 8.2 14.1 
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compared to the baseline model, the proposed algorithm can 

achieve more comprehensive multi-scale feature fusion by 

using flexible cross-scale connection and intra-block 

connection in the feature fusion network, which can reduce 

complexity of model and efficiently improve the detection 

accuracy of the model. 

2) Comparison with YOLO lightweight models  

The POD-YOLO maintains similar model complexity to 

YOLOv7-tiny[24] and YOLO-SK[25], however, achieves 

the highest precision. And it is 2.3% and 2.2% higher than 

YOLOv7-tiny and YOLO-SK in  the mAP@0.5, respectively. 

The proposed algorithm's effectiveness is further validated by 

replacing backbone network of the baseline model YOLOv5s 

with two mainstream lightweight neural network models, 

MobileNetv3 and ShuffleNetv2. The two models are named 

the MobileNetv3-YOLOv5s and ShuffleNetv2-YOLOv5s, 

respectively. Experimental results show that due to the 

influence of specific design strategies, the target details and 

rich context information in complex scenes cannot be 

captured, resulting in the low detection accuracy of 

MobileNetv3-YOLOv5s and ShuffleNetv2-YOLOv5s. 

3) Comparison with YOLO complex models   

Compared to YOLOv5m and YOLOv4, POD-YOLO has 

significant advantages in terms of the computation and 

parameters. POD-YOLO has 60.8% fewer parameters than 

YOLOv5m and less than a quarter of its computation, but the 

mAP@0.5 has same performance, and the mAP@0.5:0.95 

performance is better. It is evident that POD-YOLO makes 

the model have a better ability of overall feature information 

fusion through the effective use of parameters, and finally 

achieves the effect of improving  detection performance. 

Comprehensively evaluating these different detection 

algorithms, the proposed algorithm is relatively better, which 

meets the detection requirements of multi-scale targets and 

maintains the characteristics of efficient network model. 

 

V. CONCLUSION 

To address the problem of insufficient cross-level feature 

information fusion in current object detection model, we 

present a novel heavy neck object detection model based on 

YOLOv5s. Firstly, the POD-RepC3 module is proposed to 

enhance the model's capacity in capturing multi-scale feature 

information. Meanwhile, the Bi-PDC module functions as the 

neck of the feature fusion network to enhance cross-level 

fusion of feature and solve the problem of large object size 

spans. Secondly, PODConv is used to the flexible adaptation 

of receptive field sizes, thereby to enhance the model's ability 

to identify and classify accurately and optimize the utilization 

of computing resources. Finally, a flexible, deep and long 

neck module RepBi-DFPN is designed for feature fusion, 

which fully fused the local features and global context 

information of the object, enable the POD-YOLO algorithm 

to have better overall feature information fusion capabilities. 

 
Fig. 8.  mAP comparison curves of POD-YOLO and YOLOv5 models 
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