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Abstract—In this paper, we propose a novel approach to solv-
ing theorem proving problems without relying on any deduction
method. We transform logical formulas into numbers, vectors
and matrices, and feed the corresponding data into various
machine learning algorithms to predict their satisfiability. Here,
we introduce ProverX, a novel theorem prover that utilizes var-
ious binary classification algorithms, ranging from traditional
machine learning to deep learning, to tackle the satisfiability
(SAT) problem of propositional logic. Empirical experiments
were conducted to evaluate the performance of ProverX using
datasets we generated. ProverX achieved accuracy rates ranging
from 81.8% to 98.7%, demonstrating a remarkable speedup
of almost 180 times compared to CTL-RP, a highly efficient
prover. These results demonstrate the feasibility of replacing
deduction with learning in theorem proving, opening promising
avenues for further exploration in more complex logics, e.g.,
Modal Logic, Coalition Logic, Propositional Linear-Time Tem-
poral Logic, Computation Tree Logic, etc., provided that their
resolution methods exist. We also present a detailed analysis of
the best-performing machine learning approaches for this task
and introduce a new algorithm, IPDA, which has the potential
to further enhance performance.

Index Terms—machine learning, theorem proving, resolution
calculus, satisfiability problem

I. INTRODUCTION

IN the field of formal verification, the satisfiability (SAT)
problem [1] lies at the heart of formal verification, its

solutions powering many real world applications, such as
software verification [2], circuit design [1], scheduling prob-
lems, planning problems, optimization problems and more.

Currently, most of the decision procedures or calculi cre-
ated to solve SAT problems are based on some form of logic
deduction, such as, tableau [3], [4], natural deduction [5],
resolution [6], etc. These techniques, while powerful, can
face limitations in scalability and speed, particularly for
increasingly complex formulas.

In this paper, we propose a machine learning based ap-
proach [7] to execute the theorem proving process for the
SAT problem of Propositional Logic (PL), in particular. We
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introduce ProverX, a novel theorem prover, of which we
developed using the machine learning based approach. For
the initial version, i.e., ProverX version 1.0, the main purpose
is to solve SAT problem by exploring the possibilities of
employing various machine learning approaches, instead of
using logical deduction.

In our past research, we have established resolution calculi
for a number of logics, such as Computation Tree Logic
[8], Coalition Logic [9], Alternating-Time Temporal Logic
[10] and Propositional Linear-Time Logic [11]. Inspired
by our past research in developing resolution calculi for
diverse logics, we recognize the inherent compatibility of
clausal formulas, generated during the proving process. We
believe that these clauses are ideal training data for ProverX,
empowering it to learn the intricate relationships between
logical formulas and their satisfiability. In other words, prior
to running the proving algorithm, any given original logic
formula has to be transformed into an equi-satisfiable clausal
normal form, which can be easily represented as vectors or
two-dimensional matrices. In our perspective, these clauses
are very ideal to be treated as the input data for machine
learning. Assuming that the original logic formula that needs
to be proven is θ, let T (θ) be the set of clauses obtained from
transforming θ, where the satisfiability of θ is preserved.
Then, our approach is to utilize a resolution prover to
label T (θ) to be satisfiable or unsatisfiable, i.e., label ‘1’ is
obtained if no contradictions are found, meaning that there
exists at least one model to satisfy formula θ or label ‘0’
if a contradiction is found, meaning that there does not
exist any model that can satisfy θ, respectively. After the
labelling process, we feed T (θ) as a sample to our machine
learning based prover, ProverX, as a learning process. The
experiments we conducted reveal that, given that we have
sufficient amount of randomly generated θ, ProverX has the
ability to perform outstandingly and comparably to other
existing approaches.

The rest of paper is organized as follows. In Section II,
we mention a newly emerging research field that utilizes
machine learning technologies to solve SAT problems. Sec-
tion III provides a foundational understanding of resolution,
one of the most efficient theorem proving calculi that exist.
In Section IV, we present the method on how we built
ProverX as well as the detailed experimental work we had
conducted. Finally, in Section V, we draw our conclusions
from our findings and outline the future work in regards of
how to possibly expand the functionality of ProverX to other,
possibly more complicated logics.
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II. RELATED WORK

Machine learning has become a growingly popular re-
search subject in recent years. Through the applications of
machine learning, many critical breakthroughs and develop-
ments have happened in the industrial fields, such as image
classification, object recognition, product recommendations
and many more. Despite the growing interests in it, in
the field of formal method, machine learning was once
deemed unsuccessful in competing with the approach of
formal logics reasoning. In fact, most of the machine learning
related papers, with respect to theorem proving, have only
emerged in the past five years, specifically those that focus on
solving SAT problems using machine learning technologies.
This particular research area of ‘Machine Learning for SAT
problems’ is named and often known as ML4SAT.

In ML4SAT, the most significant and well-known devel-
opment to date is NeuroSAT [12]. NeuroSAT is a neural
network-based SAT solver that was introduced in 2019. It
works by training on a dataset of random SAT problems and
learning to predict whether a given problem is satisfiable
or unsatisfiable. If the problem turns out to be satisfiable,
NeuroSAT then proceeds to use the information to search
for a satisfying assignment. Despite the fact that, currently,
it has yet to outperform the modern SAT solvers that
employs logical deduction, NeuroSAT has its own special
advantageous traits. Firstly, NeuroSAT, in particular, is able
to solve larger-sized problems that the traditional SAT solvers
find difficult to handle. Secondly, it is able to generalize
itself to new problem domains, even if it was not previously
trained on problems from the said domains. Last, but not
least, NeuroSAT is known to be more energy-efficient than
traditional SAT solvers, making it a good approach to adopt
in the case of solving problems using mobile devices and
other resource-constrained platforms.

Moving onto the next development in the research, two
novel Transformer and Graph Neural Network-based solu-
tions for SAT problems, namely TRSAT [13] and SAT-
former [14], were successfully implemented in 2021 and
2022, respectively. Both solutions are built based on the
idea of Transformer [15], which is a very successful neural
network architecture that has been shown to be effective for
natural language processing and computer vision tasks. TR-
SAT was built to mainly focuses on a specific variant of SAT
problems, the MaxSAT problem, and various experiment
results have shown TRAST has quite a notable performance.
SATformer, on the other hand, employs Transformer in order
to learn relationship between clauses in a SAT problem. This
relationship learning process allows SATformer to quickly
and efficiently find a satisfying assignment for the problem,
if one exists. Experiment results have shown that SATformer
has the ability to outperform state-of-the-art SAT solvers on
various benchmarks.

The last notable research to mention is the literature survey
published by Guo et al. [16] in 2022. This survey discusses
the recent five-years development of ML4SAT and presents
comparisons and detailed summary of various existing solver.
It further analyzes the introduction of machine learning,
specifically deep learning, into SAT problems, as a new
perspective that may result in the birth of an excellent and
promising approach to tackle SAT problems.

In general, the recent development of modern SAT solvers

that employ logical deduction has not shown any ground-
breaking achievement, as this field has been quite matured.
On the other hand, recent research interest in ML4SAT has
invented a new and wider dimension in tackling SAT prob-
lems. While it is true that ML4SAT provers such as ProverX,
NeuroSAT, TRSAT, SATformer, etc., are still undergoing
further development, they all have strong potentials to push
the boundary of the current research on SAT problem solvers
forward.

III. INTEGRATION OF RESOLUTION AND MACHINE
LEARNING

A. Resolution

In order to comprehend the details of the work we present
in later section of our paper, we first give a brief explanation
and definition of the resolution calculus. First and foremost,
the hierarchies of the research field of resolution is defined
as follows:

Artificial Intelligence ⊇ Formal Method ⊇
Formal Verification ⊇ Theorem Proving ⊇

Resolution,

where A ⊇ B means that B is the sub-field of A.
In 1965, Alan Robinson [6] proposed an extremely simple

calculus, named Resolution, which contains only one infer-
ence rule in the whole system. To be able to understand this
resolution rule, the following definitions are needed:

1) A proposition is either true or false.
2) A literal is either a proposition or its negation.
3) A formula in the form of l1 ∨ l2 ∨ . . . ∨ ln (where

l1, l2, . . . , ln are literals) is called a clause.
Given the above definitions, Robinson’s inference rule, in

the form of Propositional Logic1, is as follows:

C ∨ l D ∨ ¬l
C ∨D

where C and D are disjunctions of literals; and C∨ l, D∨¬l
and C ∨D are three clauses. It should be noted that clauses
are sets, which means that a literal l can only occur at most
once in a clause. Consequently, the resolvent of p∨q∨r and
¬r ∨ p ∨ q is the clause p ∨ q instead of p ∨ q ∨ p ∨ q. It is
then obvious that, this inference rule is only applicable on
clauses. Thus, the formula (p∨q)∧¬p∧¬q cannot be proven
directly, i.e., it has to be transformed first into a clause set
{p ∨ q,¬p,¬q}, before the resolution rule can be applied.

To check the satisfiability of an arbitrary formula θ,
resolution requires the following two procedures:

1) Utilising logical equivalences, such as r ∨ (p ∧ q) ≡
(r∨p)∧ (r∨q), ¬(p∧q) ≡ ¬p∨¬q,¬¬p ≡ p, etc., to
transform θ into a set of clauses N = {Ci|1 ≤ i ≤ n}
and θ ≡ C1 ∧ C2∧, . . . ,∧Cn, where C1, C2, . . . , Cn

are clauses. Thus, θ and N share the same satisfiability,
i.e. θ is satisfiable if, and only if, N is satisfiable.

2) While applying the resolution rule as many times as
possible on set N, if an empty clause ⊥ is obtained,
then θ is unsatisfiable. Otherwise, θ is satisfiable. To

1In [6], the resolution rule was presented in the form of First-Order
Logic. For simplicity, in this paper we use its Propositional Logic form,
as Propositional Logics is a true subset of First-Order Logic.
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be precise, the pseudo-code of the proving algorithm
is given as below.

Algorithm 1: The resolution sos procedure

1: while N ̸= ∅ and ⊥ ̸∈ N do
2: given← choose one(N);
3: N ← N − {given};
4: SOS ← SOS ∪ {given};
5: New ← resolution(given, SOS);
6: New ← New −N ;
7: New ← New − SOS;
8: N ← N ∪New;
9: end

In Algorithm 1, N,SOS and New are three clause sets,
where initially, N contains all the clauses, whereas SOS and
New are empty sets; given is a randomly-selected clause
from N ; resolution(given, SOS) denotes the application
of the inference rule on given and every clause in SOS;
New is a set of resolvents from resolution(given, SOS).

When the ‘while’ loop terminates, if the empty clause
⊥ does not exist, then N is satisfiable. Otherwise, N is
unsatisfiable. It is worth noting that Algorithm 1 assumes
that all clauses do not contain any repeated literals. In other
words, a clause p ∨ l ∨ l should be rewritten as p ∨ l and,
likewise, a clause p∨¬l ∨¬l should be rewritten as p∨¬l,
etc.

Due to its nature, resolution is referred as a machine-
oriented algorithm. The process of simply repeating the
application of the inference rule, mentioned above, until
either an empty clause is produced or the rule application is
exhausted, makes resolution very suitable to be implemented
by computers. This results in a vast development of highly ef-
ficient resolution-based theorem provers, e.g., Vampire [17],
SPASS [18] and E [19]. Hence, as its popularity grows,
the application of resolution has been extended to more
complicated logics, such as Linear-Time Temporal Logic,
Computation Tree Logic and Alternating-Time Temporal
Logic.

B. Machine learning and ProverX

In this section, to discover which machine learning ap-
proach works best for ProverX, we initiate our research by
letting ProverX to handle the simplest satisfiability problem,
which consists of only two propositions.

Let p0 and p1 be two unique propositions, from which 9
unique clauses can be derived. We represent these 9 clauses
using a two-dimensional matrix with cell value ranging from
0 to 2 as given below.

C =



0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2



Assume C[i] = (x, y) is the i-th row of C, then, where x
represents p0, we have the following principles:

1) if x is equal to 0, p0 is not selected for C[i];
2) if x is equal to 1, p0 is selected for C[i]; and
3) if x is equal to 2, ¬p0 is selected for C[i].

These three principles also apply to y, to which y represents
p1. With these given principles, then each row of matrix C
can be transformed into a clause as given below.

C[0] = (0, 0) → ⊥
C[1] = (0, 1) → p1
C[2] = (0, 2) → ¬p1
C[3] = (1, 0) → p0
C[4] = (1, 1) → p0 ∨ p1
C[5] = (1, 2) → p0 ∨ ¬p1
C[6] = (2, 0) → ¬p0
C[7] = (2, 1) → ¬p0 ∨ p1
C[8] = (2, 2) → ¬p0 ∨ ¬p1

Be aware that C[0] is a special case, in which neither
p0,¬p0, p1 nor ¬p1 is selected. It contains no propositions
and no literals, i.e., it is an empty clause, and, therefore,
is often denoted with the symbol ⊥. In general, any clause
set containing an empty clause ⊥ is considered to be un-
satisfiable. However, in practice, many theorem provers do
not consider this scenario for two reasons: (1) no inference is
needed to be applied to obtain the unsatisfiable result; and (2)
this scenario can be avoided by simply scanning the clause
set linearly. In this paper, C[0] will also not be considered.
Thus, where NE stands for No Empty Clause, a new matrix
CNE with |CNE | = 8 is defined, as follows.

CNE =



0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2


Next, we define all the possible clause sets formed by CNE .
Let vector V = (v1, v2, . . . , v8), vi ∈ {0, 1} be the selection
of clauses for a clause set S. In the case where vi = 1, the
i-th clause from CNE is selected for S. Otherwise, it is not
selected. For example, when V = (0, 1, 0, 1, 0, 0, 0, 0), the
second and fourth rows of CNE are selected. These second
and fourth rows correspond to (0, 2) and (1, 1), which are
denoted by the clauses ¬p1 and p0 ∨ p1 respectively, thus,
giving us the clause set S = {¬p1, p0 ∨ p1}. Deriving from
this property, all the possible clause sets of which can be
formed from CNE are given as follow:

C8 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1
· · ·
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1


,

where C8 = {S|S ∈ {0, 1}8} and its number of rows is 256.
We then extend matrix C8 by running Algorithm 2 to form
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the feature matrix and obtain a matrix X of the size 256×16.
Each row of matrix X is a sample for learning and represents
a set of clauses that is to be tested for its satisfiability. Each
of these matrix rows has 16 features and they are denoted as
C1P0, C1P1, C2P0, C2P1, . . . C8P0, C8P1, where CiPj
is the status of proposition pj in clause C[i].

Algorithm 2: Expansion of C8

1: for i in [0, 255] do
2: for j in [0, 7] do
3: if X[i, j] == 0 then
4: C8[i, j]← (0, 0)
5: end
6: if X[i, j] == 1 then
7: C8[i, j] < −CNE [j]
8: end
9: end

10: end

We then proceed onto labelling and proving matrix X by
using CTL-RP [20], a well-developed and well-optimized
theorem prover that has been widely used in various
projects [21]. The satisfiability result from X’s 256 rows
forms a vector Labels = (0, 1, 1, . . . , 0, 0), in which 0
denotes unsatisfiable and 1 denotes satisfiable. Then, V T , the
transpose of V , is attached to matrix X as the 17th column.
And, thus, up to this point, all the pre-processing steps are
completed and matrix X is ready to be inputted into the
learning algorithms.

IV. EXPERIMENTS AND RESULTS

A. Statistics of the data

To conduct the experiments, we utilize the theorem prover
CTL-RP under 64-bits CentOS Linux to label every row of
matrix X with either ‘1’, if it is satisfiable, or ‘0’ if it is
unsatisfiable. We then employ TruthProver, another prover
that we have developed, to verify the correctness of the labels
previously given by CTL-RP. In the case where all the labels
are verified to be correct, we then can safely assume that the
classes, on which each sample is assigned to, are correct.
The preliminary statistics obtained from conducting the ex-
periments are presented in Fig 1 and Table I. Furthermore, we
compose a heat chart in Fig 2, which shows the satisfiability
distribution in matrix X . The light colored entities of the heat
chart correspond to the satisfiable cases, and, likewise, the
darker colored entities correspond to the unsatisfiable cases.

TABLE I
THE STATISTICS OF THE SATISFIABILITY

Satisfiable Unsatisfiable Sum
The number 94 162 256

The ratio 36.7% 63.3% 100.0%

B. Non-deep learning algorithms

To further display the difficulty level of the satisfiability
problem we are dealing with in our experiments, we pick
three well-known traditional learning algorithms to classify
our pre-processed data. These three algorithms are Naive

Fig. 1. The ratio of satisfiable and unsatisfiable cases

Fig. 2. The distribution of the satisfiability

Bayes Classifier (NBC), Logistic Regression (LR) and Sup-
port Vector Machine (SVM).

The Naive Bayes Classifier (NBC) [22] stands out as one
of the simplest machine learning algorithms for classification.
It relies on probability theory and assumes the independence
of all features. NBC is frequently chosen, especially in the
initial stages of experiments, as the first approach to solving a
classification problem by many researchers. This preference
is due to its remarkably fast computational speed and the
absence of hyperparameters to adjust. The results produced
by NBC often yield sound estimations, providing valuable
insights into the difficulty of the problem.

The second learning algorithm we have selected is Logis-
tic Regression (LR) [23], a regression function commonly
employed as a binary classifier. Utilizing the Sigmoid func-
tion [23], LR maps each sample to a value in between
the exclusive range of (0, 1), i.e., the value 0 and 1 are
not included. LR then establishes a threshold θ and defines
two classes: one comprising samples with mapping values
within the range (0, θ), and another comprising those within
the range [θ, 1). Consequently, optimal hyperparameters can
be determined by performing Grid Search on these two
classes. Specifically, concerning our satisfiability problem,
the hyperparameters for LR are presented in Table II.

Lastly, our third choice, Support Vector Machine
(SVM) [24]–[26], operates through (1) mapping data into
a higher dimensional space with a proper kernel function;
and (2) splitting the high dimensional space with a hyper-
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TABLE II
THE HYPER-PARAMETERS OF LR

Scope Best
Penalty L1, L2, None L2

Max iteration 100, 1000, 10000 100

Solver newton-cg, lbfgs, liblinear, sag, saga liblinear

Fig. 3. The accuracy results

plane, which maximizes the sum of distances between the
data point and the hyper-plane. Commonly used kernel
functions for SVM are Linear, Polynomial, Sigmoid and RBF
kernel functions. Similarly to LR, we determine the optimal
hyperparameters for our satisfiability problem through Grid
Search, as listed in Table III below.

TABLE III
THE HYPER-PARAMETERS OF SVM

Scope Best
C 1, 5, 10, 50, 100, 1000, 100000 50

gamma 0.001, 0.005, 0.01, 0.005, 0.01, 0.1, 1 0.1

kernel functions linear, poly, rbf, sigmoid rbf

We then proceed by splitting the dataset, matrix X, into a
training set and a testing set with a ratio of 7:3. We train
our model with the aforementioned hyperparameters, and
the accuracy results produced by the three chosen learning
algorithms are presented in both Table IV and Figure 3.

TABLE IV
THE ACCURACY RESULTS

Algorithm Accuracy
NBC 81.8%

LR 83.1%

SVM 94.8%

According to these accuracy results, we observe that
even a straightforward classifier, such as NBC, exhibits a
relatively good performance in classifying the two classes.
LR, while performing slightly better than NBC, incurs a
much higher computational cost. Thus, within the context
of our satisfiability problem, LR’s performance is acceptable
but not notably superior. SVM, on the other hand, as a
highly effective learning algorithm, performs exceptionally
well, achieving the highest correctness percentage among the
three. Comparing the results from these three algorithms, we

can strongly deduce that replacing deduction with a machine
learning approach brings about a potentially promising new
research development.

C. Deep learning algorithm
The popularity of the study of deep learning begun when

AlexNet [27] was proposed. Initially, deep learning was
mostly dominating in the fields of image recognition and
image identification [28]–[30], among others. Other domains,
such as strategic games, product recommendations, finance,
medical diagnosis, and natural language processing, have
also started to adopt deep learning approaches to solve
problems. In this paper, we also attempt to apply a deep
learning approach to the fields of logical deduction and
theorem proving.

Due to the characteristic of our pre-processed data, where
every feature (or column) represents a certain part of a logical
expression and that every feature is equivalently important,
there is no necessity to engineer any feature of the data any
further. This characteristic, in fact, makes our pre-processed
data to be quite suitable for deep learning application, as
deep learning is an end-to-end algorithm.

In Figure 4, we depict the structure of our deep neural
network, which is Multi-Layer Perceptrons (MLP) and is a
fully connected neural network. It consists of the following
elements:

• The input layer, containing 16 nodes.
• The first hidden layer, containing 64 nodes.
• The second hidden layer, containing 128 nodes.
• The third hidden layer, containing 128 nodes.
• The fourth hidden layer, containing 64 nodes.
• The output layer, containing 2 nodes.
In the experiments we conducted, once the model was

trained, we used the testing data to evaluate the deep neural
network and found its accuracy level up to 98.7%. We
provide the relevant confusion matrix in Figure 5.

Being aware of the fact that CTL-RP is an efficiency-
oriented theorem prover and is well-known for being second-
ranked, when compared to all the existing provers [31],
we use it, in our experiments mentioned in this paper, as
a comparison against ProverX, specifically in term of pro-
cessing time performance. We present the result comparison
between CTL-RP and ProverX in Table V with the following
clarification remarks: (1) for CTL-RP, the time spent to build
the model corresponds to the time for the compiler to build
the binary; whereas, (2) for ProverX, it is the time used to
train the data; and (3) proving time is the sum of the time
taken in proving all 256 existing cases. From these results, we
can safely deduce that ProverX has remarkably outperformed
CTL-RP in term of speed.

TABLE V
PROVERX VS. CTL-RP: RUNNING TIME PERFORMANCE

Prover Building Model Proving
ProverX 422 milliseconds 7 milliseconds

CTL-RP 1522 milliseconds 1292 milliseconds

D. Analysis of the errors
In this section, we delves into the errors made by our four

machine learning algorithms, seeking patterns and exploring

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 1004-1011

 
______________________________________________________________________________________ 



Fig. 4. The structure of our deep neural network

TABLE VI
ERRORS FOR DIFFERENT ALGORITHMS

Algorithm The Error Set False Positive Set False Negative Set
NBC 24 26 45 104 150 162 168 196 200 208 224 228 232 240 24 26 162 45 104 150 168 196 200 208 224 228 232 240

LR 24 101 104 150 162 163 165 196 200 208 228 232 240 24 101 162 163 165 104 150 196 200 208 228 232 240

SVM 54 139 196 209 54 139 209 196

MLP 209 209

Fig. 5. The confusion matrix

paths for improvement. We investigate whether their mis-
takes are complementary, showcasing instances where one
algorithm corrects the error of another (e.g., NBC predicted
wrongly for Case 24, but SVM gets it right). Ultimately,
we aim to identify challenging cases and develop a novel
algorithm that synergizes machine learning with deduction
to enhance performance.

In Table VI, we present the details of their incorrect pre-
dictions. Each row shows the errors of a specific algorithm:

• Column 1: Labels of all wrongly predicted cases (e.g.,
“24” in the first column of the first row indicates NBC
incorrectly classified Case 24).

• Column 2: False Positives (FP): elements mistakenly
believed to be satisfiable (e.g., “26” in the second col-
umn of the first row indicates that this case is supposed
to be classified as unsatifiable, but the result produced
by NBC was satisfiable.).

• Column 3: False Negatives (FN): elements wrongly
predicted as unsatisfiable (e.g., Case 139 for SVM).

The relation between the three columns is the following: the

set of the first column is the union of the sets from the second
and third columns.

Table VI reveals interesting trends:
• Performance Improvement: Moving down each column,

the set size decreases, showing performance improve-
ment across algorithms.

• Algorithm Similarities: NBC and LR display similari-
ties, with a bigger FN than FP set (prone to classifying
satisfiable cases as unsatisfiable). Conversely, SVM and
MLP exhibit the opposite trend.

TABLE VII
INTERSECTION OF WRONG PREDICTIONS

Algorithms Intersection
NBC ∩ LR 24 104 150 162 196 200 208 228 232 240

NBC ∩ SVM 196
NBC ∩ MLP ∅
LR ∩ SVM 196
LR ∩ MLP ∅

SVM ∩ MLP 209
NBC ∩ LR ∩ SVM 196

All Four Sets ∅

Next, we study complementarity and common mistakes
made by those four algorithms. Table VII explores the inter-
section of error sets for each pair of algorithms, revealing:

• Complementarity: SVM, MLP, and LR have fewer
shared errors, suggesting their mistakes are spread out
and complementary.

• High Similarity: NBC and LR share many wrong pre-
dictions, indicating potential redundancy in their ap-
proaches.

• Challenging Cases: Cases 196 (FN across all traditional
algorithms) and Case 209 (FP for SVM and MLP) seem
particularly difficult.

We present the most challenging Cases 196 and 209 in
propositional logic form as follows.

case196 {¬p0 ∨ ¬p1,¬p0, p0 ∨ ¬p1}
case209 {¬p0 ∨ ¬p1,¬p0,¬p1, p0 ∨ p1}

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 1004-1011

 
______________________________________________________________________________________ 



By directly observing the two cases above, it is quite hard
to draw any conclusion of why they are the hardest cases.
Instead of relying solely on machine learning, we take a
step back and consider incorporating deduction. We employ
resolution on Clauses 2 and 4 of Case 209, generating a new
resolvent, the process of which has been presented below.

¬p0 p0 ∨ p1
p1

case209 ′ {¬p0 ∨ ¬p1,¬p0,¬p1, p0 ∨ p1} ∪ {p1}

Adding this resolvent to Case 209 creates Case 209’,
which both SVM and MLP correctly classify. According to
this method, we have tried the similar way for other wrong
cases and found the similar results. From those experiments,
we believe that resolution inferences can help to improve the
prediction accuracy of machine learning algorithms.

Drawing from this insight, we propose an algorithm,
Iterative Prediction and Deduction Algorithm (IPDA), which
blends machine learning and deduction.

Algorithm 3: IPDA
Input: input, n step, limit, sim threshold
Output: second

1:s← 0;
2: count← 0;
3:first←ML model.predict(input);
4: while count < limit and s < sim threshold do
5: new input← resolve(input, n step);
6: second←ML model.predict(new input);
7: s← similarity(first, second);
8: input← new input;
9: first← second;

10: count← count+ 1;
11: end

The two important parts of IPDA are the methods
resolve() and similiarity().

• resolve(): Applies resolution inferences on each row of
input (limited to n step steps) to generate resolvents
and, then, combines input with newly produced resol-
vents to form new input.

• similarity(): Calculates the similarity between first
and second and the result, s, is in the range [0, 1],
inclusively.

The rest of the algorithm is self-explanatory.
IPDA opens a new research direction in combining ma-

chine learning and deduction for theorem proving. Future
work will implement IPDA, explore optimizing its parame-
ters, evaluating its performance on propositional logic and
more complex logics, and investigating other integration
approaches.

V. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated that by employing
various machine learning algorithms, such as Naive Bayes
Classification, Logistic Regression, Support Vector Machine,
and Deep Neural Network, it is feasible to use machine

learning approaches for theorem proving in SAT problems.
Based on our experimental results, we believe that two
possible strategies: (1) combining machine learning and
logical deduction; and (2) utilizing deep learning, have the
potential to yield promising breakthroughs in this field.
Furthermore, considering the success and widespread use of
machine learning technologies in many other fields, coupled
with the positive outcomes of our experiments, it is highly
likely for the deep learning approach to soon become one
of the mainstream research directions in the field of theorem
proving.

Based on the experimental results, ProverX demonstrates
promising potential for further development. It possesses the
capability to take logical formulas for resolution calculus as
input and produce highly accurate satisfiability results at an
excellent speed. In fact, our results indicate that the proving
time spent by ProverX is 184 times faster than that of CTL-
RP. This is particularly noteworthy considering that CTL-RP
is written in the programming language C, while ProverX
is implemented in Python. While the comparison between
ProverX and traditional theorem provers reveals that ProverX
consumes more time for learning and training the model,
once the model is built, ProverX consistently delivers results
in a relatively constant time for any input. This is because
the trained model is designed to be infinitely reusable. In
contrast, for traditional provers, each input is treated as a
new problem, and the proving process begins anew for each
input. This nature results in significant variations in proving
time for different inputs.

Even so, despite its notable performance in processing
speed, ProverX is by no means without drawbacks. Firstly,
while resolution calculus consistently produces 100% correct
results, ProverX is currently capped at a 98% accuracy rate.
Hence, although ProverX can be adopted as a quick screening
method in the industry or applications requiring a real-time
response, it is not yet able to completely replace resolution
calculus. Secondly, due to the current nature of the input,
any increase in the number of propositions will significantly
affect the size of the input for ProverX. In other words, the
input matrix for ProverX grows in size dramatically with
the increase in the number of propositions involved in the
logical formulas. This translates into a significant influence
on ProverX’s performance.

In the future, we intend to focus on three major directions
for the development of ProverX. Firstly, we aim to find a
mapping approach to effectively and concisely map logical
formulas without inflating the size of the input when a large
number of propositions are involved. Secondly, we plan to
implement the IPDA algorithm for ProverX and investigate
how to effectively integrate machine learning and logical
deduction. Thirdly, given the success of this methodology
in propositional logic, we aspire to explore and extend the
application of ProverX to higher complexity logics, such as
Linear Temporal Logic [32], Computational Tree Logic [33]
and Alternating-Time Temporal Logic [34]. We hope that the
use of ProverX for these non-traditional logics can reduce
the proving time dramatically and, therefore, result in a
better usability of these complex logics in solving real-life
and industrial problems, instead of merely solving imaginary
examples found in textbooks.
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