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Abstract—Practical stability can describe qualitative behavior
and quantitative properties of systems in comparison with
traditional Lyapunov stability theory. In this paper, such stabil-
ity problem is formulated for nonlinear delayed urban traffic
systems described by uncertain differential equations which are
a type of differential equations driven by Liu processes. First of
all, we prove the existence and uniqueness of the solution. Then,
we analyze the pth moment practically exponential stability
and quasi surely globally practically uniformly exponential
stability of the system by employing general Itô formula,
Gronwall’s inequality, Hölder inequality and Borel-Cantelli
lemma. Moreover, an example is presented to verify the validity
of our theoretical methods.

Index Terms—Nonlinear delayed urban traffic systems; un-
certain differential equations; practical exponential stability;
existence and uniqueness; Liu process

I. INTRODUCTION

In recent years, the intensification of global climate change
has led to frequent rainstorms, which have caused huge
economic losses and casualties in many Chinese cities. Urban
road traffic system, as an important part of urban infrastruc-
ture, is vital to ensure the daily travel of citizens and rapid
recovery after disasters. Therefore, on the basis of accurately
quantifying the existing urban road traffic system’s ability to
cope with rainstorm weather, exploring its improvement path
has great theoretical and practical significance for improving
the urban system’s ability to cope with natural disasters. At
the same time, with the rapid development of intelligent
transportation systems, the field of transportation research
has made remarkable progress in data acquisition. Many
scholars have studied the urban traffic systems. For example,
Gu et al. ( [11]) analyzed the similarities and differences
among the three concepts of reliability, vulnerability and
resilience in traffic networks. Zhou et al. ( [35]) believed
that the transportation system toughness was mostly defined
from two aspects: the ability of the system to maintain
its own function in the face of disturbance and the time
and resources required for the system to recover to the
original state after disturbance. Goncalves and Ribeiro ( [10])
divided the toughness of urban transportation system into
static and dynamic resiliency. Akbari et al. ( [3]) given the
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corresponding definition of toughness for road transportation
system.

In practical problems, it is difficult to apply the gener-
al theory to build models because of some emergencies.
Liu ( [17]) created the uncertainty theory to address this
uncertainty. Then, Liu ( [18]) improved the uncertainty
theory and put forward the Liu process. Liu process is
the uncertain process which deals with dynamic systems
in uncertain phenomenon. Meanwhile, the systems driven
by Liu process have been studied by many scholars. For
example, Abdar et al. ( [1]) proposed different uncertainty
quantification methods. Deng et al. ( [8]) discussed a new
distributed event-triggered observer for uncertain nonlinear
multiagent systems. For uncertain systems, Dong et al. (
[9]) investigated the cooperative output regulation problem.
Kohler et al. ( [14]) presented a tube-based framework for
systems with uncertainty parameter. Liu et al. ( [20]) used
uncertain measurement to study the sliding mode control
problem. Yang et al. ( [30]) designed the MIMO uncertainty
systems.

It is worth pointing out that the time delay is always un-
avoidable due to the uncertain communication environment.
Therefore, it is required to be taken into consideration for
stochastic systems. To deal with the Partial-Nodes-Based
state estimation problem for time-varying delayed complex
networks, Liu et al. ( [19]) established a novel framework via
the Lyapunov stability theory. Wang et al. ( [26]) designed
the stiffness nonlinearities, asymmetric smooth and discon-
tinuous oscillator under time-delayed feedback control. Yu
et al. ( [32]) investigated the influence of bounded noise
and time delay on the sub-threshold signal transmission in
FitzHugh-Nagumo neuronal networks. Zhang and Fridman (
[33]) proposed an improved time-delay method and extended
it to L2-gain analysis. The stability of fractional-order time-
delayed systems was considered in ( [21], [24], [34]).

Because nonlinear characteristic of the systems make the
property of the systems more complex, it is difficult to
analyze the stability of systems. Therefore, many scholars
studied the stability of the systems ( [5], [6], [12], [16],
[27]–[29]). Sucec ( [25]) introduced the practical stability
in 1987. Then, the practical stability has been widely used
in fields of control. Compared with traditional Lyapunov
stability theory, practical stability could describe quantitative
properties and behavior. Many scholars studied the practical
stability theory ( [2], [13], [22]). For instance, Ben Makhlouf
( [4]) investigated the stability of nonlinear fractional sys-
tems. Deghat et al. ( [7]) analyzed the singularly perturbed
nonlinear systems which have boundary-layer solutions. Li
and Zhao ( [15]) considered the practical stability for delayed
positive systems. Platonov ( [23]) considered the nonlinear
stochastic systems which satisfies sector constraints. Yao et
al. ( [31]) discussed practical partially stability for delayed
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systems by using Lyapunov-Razumikhin method.
However, lots of systems considered in the literature were

driven by Brownian motion. Since uncertain systems model
the time evolution of a dynamic system with uncertain
influences and have been widely used in the fields of financial
markets, it is of great important to explore the stability of
uncertain systems. Motivated by the above considerations,
in the present paper, we deals with the practical exponential
stability of uncertain nonlinear delayed systems. The main
contributions and novelties of this article are summarized as
follows:

(1) Different from existing literature about practical expo-
nential stability for Itô stochastic systems, this paper consid-
ers uncertain influences and study the practical exponential
stability for uncertain nonlinear time-delay systems.

(2) This paper derive the existence and uniqueness of
the solution under linear growth condition and local Lips-
chitz condition by employing general Itô formula, Cauchy-
Schwarz inequality and stochastic analysis.

(3) Combining the uncertain theory to the practical sta-
bility theory, this paper provides some sufficient conditions
which guarantee pth moment practically exponential stability
and quasi surely globally practically uniformly exponential
stability of the system. At last, an example is presented to
verify the validity of our theoretical methods.

The rest of this paper is organized as follows. The uncer-
tain nonlinear delayed systems and some definitions are given
in Section 2. The existence and uniqueness, pth moment
practically exponential stability and quasi surely globally
practically uniformly exponential stability of the system are
studied In Section 3. An example is provided In Section 4.
The conclusion is given in Section 5.

II. PROBLEM FORMULATION AND PRELIMINARIES

Firstly, we give some definitions about uncertain variables
and Liu process.

Definition 1: ( [17], [18]) Let L be a σ-algebra on a
nonempty set Γ. A set function M : L → [0, 1] is called
an uncertain measure if it satisfies the following axioms:
Axiom 1: (Normality Axiom) M(Γ) = 1 for the universal
set Γ.
Axiom 2: (Duality Axiom) M(Λ) +M(Λc) = 1 for any
event Λ.
Axiom 3: (Subadditivity Axiom) For every countable se-
quence of events Λ1, Λ2, · · · ,

M{
∞⋃
i=1

Λi} ≤
∞∑
i=1

M{Λi}.

Axiom 4: (Product Axiom) Let (Γk,Lk,Mk) be uncertainty
spaces for k = 1, 2, · · · . Then the product uncertain measure
M is an uncertain measure satisfying

M{Π∞k=1Λk} = min
k≥1
Mk{Λk},

where Λk are arbitrarily chosen events from Lk for k =
1, 2, · · · .

An uncertain variable ξ is a measurable function from the
uncertainty space (Γ,L,M) to the set of real numbers.

Definition 2: ( [17]) For any real number x, let ξ be an
uncertain variable and its uncertainty distribution is defined
by

Φ(x) =M(ξ ≤ x).

In particular, an uncertain variable ξ is called normal if it
has an uncertainty distribution

Φ(x) = (1 + exp(
π(µ− x)√

3σ
))−1, x ∈ <,

denoted by N (µ, σ). If µ = 0, σ = 1, ξ is called a standard
normal uncertain variable.

Definition 3: ( [18]) An uncertain process Ct is called a
Liu process if
(i) C0 = 0 and almost all sample paths are Lipschitz contin-
uous, (ii) Ct has stationary and independent increments, (iii)
the increment Cs+t−Cs has a normal uncertainty distribution

Φt(x) = (1 + exp(
−πx√

3t
))−1, x ∈ <.

Considering the uncertain nonlinear delayed systems as
follows:

dv(t) = h1(v(t), v(t− τ(t)), t)dt

+h2(v(t), v(t− τ(t)), t)dC(t), (1)

where τ(t) ∈ [0, τ ], ς(t)−τ≤t≤0 = ς ∈ C([−τ, 0];Rn) is
the nonrandom initial data, C(t) is a one dimensional Liu
process. h1 : Rn×Rn×R+ → Rn, h2 : Rn×Rn×R+ → Rn.

Let V (v, v1, t) ≥ 0 be the real-valued functions and
V (v, v1, t) ∈ C1,2(Rn ×Rn ×R+;R+). Define the operator
LV as follows:

LV (v, v1, t)

= Vt(v, v1, t) + Vv(v, v1, t)h1(v, v1, t)

+
1

2
hT2 (v, v1, t)Vvv(v, v1, t)h2(v, v1, t),

dV (v, v1, t) = LV (v, v1, t)dt

+Vv(v, v1, t)h1(v, v1, t)dC(t).

Assumption 1: ∀t ≥ 0, |v| ∨ |v′ | ∨ |v1| ∨ |v
′

1| ≤ n,

|h1(v, v1, t)− h1(v
′
, v
′

1, t)| ∨ |h2(v, v1, t)− h2(v
′
, v
′

1, t)|
≤ Kn(|v − v

′
|+ |v1 − v

′

1|),

where Kn > 0 is a constant and n ≥ 1.
Assumption 2:

|h1(v, v1, t)| ∨ |h2(v, v1, t)| ≤ K(1 + |v|+ |v1|),

where K > 0, t ≥ 0 and v, v1 ∈ Rn.
Assumption 3:

h1(0, t) ≡ 0, h2(0, t) ≡ 0.

Assumption 4:

lim
|v|→∞

inf
t≥0

V (v, v1, t) =∞, LV (v, v1, t) ≤ −c1V (v, v1, t),

where c1 > 0.
Definition 4: ( [36]) If there exist constants C > 0, λ > 0

and α > 0 satisfy

E|v(t, t0, v0)|p ≤ C|v0|pe−λ(t−t0) + α, t ≥ t0,

for all v0 ∈ Rn, the system (1) is pth moment practically
exponentially stable. When p = 2, it is practically exponen-
tially stable in mean square.
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Definition 5: ( [36]) If there exists a constant β > 0
satisfy |v(t, t0, v0)| − β > 0 and

lim
t→∞

sup
1

t
log(|v(t, t0, v0)| − β) < 0,

for all v0 ∈ Rn, the system (1) is quasi surely globally
practically uniformly exponentially stable.

III. MAIN RESULTS AND PROOFS

Theorem 1: Under the conditions 1-4, the global solution
of system (1) is existent and unique.

Proof: Let |v0| ≤ ξ. For n ≥ ξ, n ∈ N, define the
truncation function

h1n(v, v1, t) =

 h1(v, v1, t) if |v|, |v1| ≤ n,

h1(
nv

|v|
,
nv1
|v1|

, t) if |v|, |v1| > n,
(2)

h2n(v, v1, t) =

 h2(v, v1, t) if |v|, |v1| ≤ n,

h2(
nv

|v|
,
nv1
|v1|

, t) if |v|, |v1| > n,
(3)

Then, the following system satisfies the linear growth
condition and local Lipschitz condition:

dvn(t) = h1n(vn(t), vn(t− τ(t)), t)dt

+h2n(vn(t), vn(t− τ(t)), t)dC(t). (4)

Hence, the global solution of system (4) is existent and
unique.

Let

$n = inf{t ≥ 0 : |vn(t)| ≥ n} n ∈ N, (5)

where inf $ =∞.
When 0 ≤ t ≤ $n, vn(t) = vn+1. This implies that {$n}

is increasing. Then, ∃$ satisfies

lim
n→∞

$n = $. (6)

Define

lim
n→∞

vn(t) = v(t), −τ ≤ t < $. (7)

It is easy to check that v(t) is the unique solution of system
(1).

For t ≥ 0, by applying general Itô formula, it follows that

V (vn(t ∧$n), vn(t ∧$n − τ(t ∧$n)), t ∧$n))

= V (ς(0), vn(−τ(0)), 0)

+

∫ t∧$n

0

LnV (vn(s), vn(s− τ(s)), s)ds

where LnV (vn(s), vn(s − τ(s)), s) = LV (vn(s), vn(s −
τ(s)), s), 0 ≤ s ≤ t ∧$n.

Hence,

E[V (vn(t ∧$n), vn(t ∧$n − τ(t ∧$n)), t ∧$n)]

≤ E[V (ς(0), vn(−τ(0)), 0)]

+E[

∫ t∧$n

0

LnV (vn(s), vn(s− τ(s)), s)ds]

≤ E[V (ς(0), vn(−τ(0)), 0)]

+

∫ t∧$n

0

E[V (vn(s), vn(s− τ(s)), s)]ds.

Then,

E[V (vn(t ∧$n), vn(t ∧$n − τ(t ∧$n)), t ∧$n)]

≤ E[V (ς(0), vn(−τ(0)), 0)]e(t∧$n). (8)

Since

P{$n ≤ t} inf
|v|≥n,|v1|≥n,t≥0

V (v, v1, t)

≤
∫
$n≤t

V (vn(t ∧$n),

vn(t ∧$n − τ(t ∧$n)), t ∧$n)dP

≤ EV (vn(t ∧$n), vn(t ∧$n − τ(t ∧$n)), t ∧$n),

we have

P{$n ≤ t} ≤
E[V (ς(0), vn(−τ(0)), 0)]e(t∧$n)

inf |v|≥n,|v1|≥n,t≥0 V (v, v1, t)
. (9)

P{$ ≤ t} = 0, t→∞. (10)

Therefore,
P{$ =∞} = 1. (11)

The proof is complete.
Theorem 2: For ∀(v, v1, t) ∈ (Rn × Rn × R+),

a1|v|p ≤ V (v, v1, t) ≤ a2|v|p + a3, (12)

LV (v, v1, t) ≤ −c1V (v, v1, t), (13)

where a1, a2, a3, c1 are positive constants, the system (1) is
pth moment practically exponentially stable.

Proof: Fix ∀v0 ∈ Rn, for each n ≥ |v0| and t > 0, by
using general Itô formula, we have

ec1(t∧$n)V (v(t ∧$n), v(t ∧$n − τ(t ∧$n)), t ∧$n)

= V (v0, v(−τ(0), 0)

+

∫ t∧$n

0

c1e
c1sV (v(s), v(s− τ(s)), s)ds

+

∫ t∧$n

0

ec1sLV (v(s), v(s− τ(s)), s)ds

+

∫ t∧$n

0

ec1sVv(v(s), v(s− τ(s))

×h2(v(s), v(s− τ(s))dC(s). (14)

Since

E[

∫ t∧$n

0

ec1sVv(v(s), v(s− τ(s))

×h2(v(s), v(s− τ(s))dC(s)] = 0, (15)

we have

E[ec1(t∧$n)

×V (v(t ∧$n), v(t ∧$n − τ(t ∧$n)), t ∧$n)]

= V (v0, v(−τ(0), 0)

+E
∫ t∧$n

0

ec1s[c1V (v(s), v(s− τ(s)), s)

+LV (v(s), v(s− τ(s)), s)]ds. (16)

Hence, we obtain that

E[V (v(t ∧$n), v(t ∧$n − τ(t ∧$n)), t ∧$n)]

≤ e−c1(t∧$n)V (v0, v(−τ(0), 0)

≤ e−c1(t∧$n)a2|v0|p + a3. (17)

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 1033-1037

 
______________________________________________________________________________________ 



Then,

a1E|v(t ∧$n)|p ≤ e−c1(t∧$n)a2|v0|p + a3. (18)

Letting n→∞ yields that

a1E|v(t)|p ≤ e−c1ta2|v0|p + a3. (19)

Hence,
E|v(t)|p ≤ a2

a1
e−c1t|v0|p +

a3
a1
. (20)

The proof is complete.
Theorem 3: Under the conditions in Theorem 3.2, the

system (1) is quasi surely globally practically uniformly
exponentially stable.

Proof: According to Theorem 2, when p = 2,

E|v(t)|2 ≤ a2
a1
e−c1t|v0|2 +

a3
a1
. (21)

Then, we have

|v(t)|2

= |v0 +

∫ t

0

h1(v(s), v(s− τ(s)), s)ds

+

∫ t

0

h2(v(s), v(s− τ(s)), s)dC(s)|2

≤ 3|v0|2 + 3|
∫ t

0

h1(v(s), v(s− τ(s)), s)ds|2

+3|
∫ t

0

h2(v(s), v(s− τ(s)), s)dC(s)|2.

For positive integer κ0, let κ = κ0, κ0 + 1, κ0 + 2, · · · and
∀m > 0 satisfies m2K2(2(κ + 1)K2(γ) + 1) < 1

12 where
K(γ) is the Lipschitz constant of the sample path v(γ). Then,
we have

E[ sup
κm≤t≤(κ+1)m

|v(t)|2]

≤ 3E[|v(κm)|2]

+3E(

∫ (κ+1)m

κm

|h1(v(s), v(s− τ(s)), s)|ds)2

+3E|
∫ t

0

h2(v(s), v(s− τ(s)), s)dC(s)|2

≤ 3E[|v(κm)|2]

+3E(m sup
κm≤s≤(κ+1)m

|h1(v(s), v(s− τ(s)), s)|)2

+3E[ sup
κm≤s≤(κ+1)m

|
∫ (κ+1)m

κm

h2(v(s), v(s− τ(s)), s)dC(s)|2]

≤ 3E[|v(κm)|2] + 6m2K2

+12m2K2E[ sup
κm≤s≤(κ+1)m

|v(s)|2]

+12K2K2(γ)(κ+ 1)m2

+24K2K2(γ)(κ+ 1)m2E[ sup
κm≤s≤(κ+1)m

|v(s)|2]

≤ 3
a2
a1
|v0|2e−c1κm +

a3
a1

+6m2K2(2(κ+ 1)K2(γ) + 1)

+12m2K2(2(κ+ 1)K2(γ) + 1)

E[ sup
κm≤s≤(κ+1)m

|v(s)|2].

Thus,

E[ sup
κm≤t≤(κ+1)m

|v(t)|2]

≤
3a2a1 |v0|

2e−c1κm + a3
a1

+ 6m2K2(2(κ+ 1)K2(γ) + 1)

1− 12m2K2(2(κ+ 1)K2(γ) + 1)
.

Hence,

P(ω : sup
κm≤t≤(κ+1)m

|v(t)|

−
a3
a1

+ 6m2K2(2(κ+ 1)K2(γ) + 1)

1− 12m2K2(2(κ+ 1)K2(γ) + 1)
> 3

a2
a1
|v0|2e

−c1κm
2 )

≤ e
−c1κm

2 .

From the Borel-Cantelli lemma,

sup
κm≤t≤(κ+1)m

|v(t)| −
a3
a1

+ 6m2K2(2(κ+ 1)K2(γ) + 1)

1− 12m2K2(2(κ+ 1)K2(γ) + 1)

≤ 3
a2
a1
|v0|2e

−c1κm
2 .

Thus, for κm ≤ t ≤ (κ+ 1)m, we have

lim
t→∞

sup
1

t
log(|v(t)|

−
a3
a1

+ 6m2K2(2(κ+ 1)K2(γ) + 1)

1− 12m2K2(2(κ+ 1)K2(γ) + 1)
)

< −c1
2

< 0.

The proof is complete.

IV. EXAMPLE

Consider the scalar uncertain nonlinear delayed systems
as follows:

dv(t) = h1(v(t), v(t− τ(t)), t)dt

+h2(v(t), v(t− τ(t)), t)dC(t),

where

h1(v(t), v(t− τ(t)), t) = −8v(t) + v(t− τ(t))sin(t),

h2(v(t), v(t− τ(t)), t) = 3v(t)sin(t)

τ(t) = 1 + 0.3cos(t).

Hence, τ = 1.3. Let V (v, v1, t) = v2, p = 2. Therefore,

LV (v, v1, t) ≤ −3v2.

Then, the systems are pth moment practically exponen-
tially stable and quasi surely globally practically uniformly
exponentially stable.

Remark 1: If the time delay in systems is given, we can
consider the following example:

dv(t) = h1(v(t), v(t− 1), t)dt

+h2(v(t), v(t− 1), t)dC(t),

where

h1(v(t), v(t− 1), t) = − 1

1 + t2
v(t) +

1

1 + t4
v(t− 1),

h2(v(t), v(t− 1, t) =
1

1 + t6
v(t),
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τ(t) = 1.

Let V (v, v1, t) = v2, p = 2. Therefore,

LV (v, v1, t) ≤ −2v2.

Then, the systems are practically exponentially stable
in mean and quasi surely globally practically uniformly
exponentially stable.

V. CONCLUSION

This paper has investigated the practical exponential sta-
bility of uncertain delayed nonlinear systems. The global so-
lution has been proved existent and unique. The pth moment
practically exponential stability and quasi surely globally
practically uniformly exponential stability of the system have
been derived by applying general Itô formula, Gronwal-
l’s inequality, Hölder inequality, Chebyshev inequality and
Borel-Cantelli lemma. In future works, we will consider the
practical partial stability of uncertain systems.
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