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Abstract—There are two standard methods in instance seg-
mentation: top-down and bottom-up. The top-down approach
performs object detection to generate candidate proposals and
then performs pixel-level segmentation for each proposal. It is
accurate and flexible, capable of handling objects of different
sizes and shapes. However, it is computationally complex and
relies on object detection accuracy. The bottom-up approach
first performs pixel-level clustering or segmentation and then
combines candidate instances to obtain the final segmentation
result. It can handle overlapping cases and has lower compu-
tational complexity, but it may need to localize accurately, and
segment instances, and the segmentation granularity is coarser.
In this paper, the Urban Street Scene Instance Segmentation
(UISNet) algorithm is proposed. Firstly, the feature extraction
network is the foundation of UISNet, which uses EfficientNet
as the backbone network. Secondly, MPAFPN is the feature
pyramid network part of UISNet, used for multi-scale feature
fusion. By using EfficientNet and MPAFPN as the backbone
network and bottleneck layers, the accuracy of UISNet is
improved by 4% compared to ResNet and FPN. In the inference
phase, this paper introduces an innovative dual-branch design
that combines top-down and bottom-up strategies. One branch
is the bounding box aggregation branch, which generates high-
dimensional information such as the shape and orientation of
bounding boxes based on the FCOS Head. The other branch
is the mask decoding branch, which creates mask prediction
results. These two branches are fused using the Mask FCN
Header to obtain the final instance segmentation result. With
this dual-branch design, the model can effectively utilize the
information from both top-down and bottom-up approaches,
thereby improving the accuracy and robustness of instance seg-
mentation. Through experimental comparisons, the proposed
network model in this paper achieves the best performance in
terms of accuracy compared to other instance segmentation
networks, with an accuracy of 36.28 %. Moreover, the proposed
model performs better in urban street scenes, enhancing object
detection and segmentation and offering more reliable and
efficient solutions for applications such as autonomous driving
and intelligent transportation.

Index Terms—Instance
MPAFPN; FCOS

segmentation; EfficientNet;

I. INTRODUCTION

N instance segmentation, standard methods include top-
down and bottom-up approaches. The top-down approach
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first performs object detection[1]] to generate candidate pro-
posals and then performs pixel-level segmentation for each
proposal. It is accurate and flexible, capable of handling
objects of different sizes and shapes. However, it is compu-
tationally complex and relies on object detection accuracy.
The bottom-up approach first performs pixel-level clustering
or segmentation and then combines candidate instances to
obtain the final segmentation result. It can handle overlapping
instances and has low computational complexity, but it may
need to localize accurately, and segment instances and the
segmentation granularity is coarse. In this paper, we propose
the UISNet algorithm. Firstly, the feature extraction network
is the foundation of UISNet, and it adopts EfficientNet as the
backbone network. EfficientNet is an efficient convolutional
neural network structure with low parameter count and
computational complexity while effectively extracting high-
level semantic features from images. Through multiple con-
volution and pooling layers in the feature extraction network,
EfficientNet gradually reduces the size of feature maps and
increases the number of channels, thereby extracting feature
representations with rich semantic information.

Secondly, MPAFPN is the feature pyramid network part
of UISNet, used for multi-scale feature fusion. It consists
of multiple parallel feature pyramid networks, each re-
sponsible for extracting features at different scales. These
feature pyramid networks, through parallel operations, can
simultaneously process feature maps at different scales and
effectively capture information about targets at different
scales. This multi-path design enables UISNet to have good
receptive fields at different scales, improving the accuracy
and robustness of the model, for instance, segmentation tasks.

During the prediction stage, top-down and bottom-up
strategies are employed to improve instance segmentation
performance. The boundary aggregation and mask decoding
branches play crucial roles in the algorithm. The boundary
aggregation branch utilizes the Fully Convolutional One-
Stage Object Detection head to generate high-dimensional
information related to the bounding boxes, such as shape
and pose. This branch extracts and aggregates fine-grained
features for each bounding box, capturing object details and
contextual information. By introducing this branch, the in-
stance segmentation model can better understand the features
of the bounding boxes, thereby improving the accuracy and
precision of object detection. On the other hand, the mask
decoding branch is responsible for generating mask predic-
tion results. This branch uses a mask Fully Convolutional
Network (FCN) head to decode the feature map and create
masks for each instance. The mask decoding branch achieves
pixel-level segmentation[2] for each instance, resulting in
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more accurate instance segmentation results. Finally, the
outputs of these two branches are fused to obtain the final
instance segmentation result. The fusion process typically
involves aligning and matching the bounding box information
with the mask information to ensure consistency between the
segmentation result and the position and shape of the target
bounding boxes. Through this dual-branch design, the model
can fully leverage the top-down and bottom-up information,
thereby improving the accuracy and robustness of instance
segmentation.

This combined top-down and bottom-up dual-branch ap-
proach has significantly improved instance segmentation
tasks. It can effectively utilize the global context and fine-
grained information of objects, handle instances of different
sizes and shapes, and effectively address the segmentation of
overlapping cases.

II. RELATED WORK
A. Top-down Instance Segmentation

Top-down instance segmentation is a commonly used
method in instance segmentation, where it first performs
object detection to generate candidate proposals and then
performs pixel-level segmentation on each proposal. The top-
down approach utilizes the results of object detection to guide
the instance segmentation process and can handle objects of
different sizes and shapes. Two famous classical algorithms
for top-down instance segmentation are Mask R-CNN[3]] and
FCN-8s[4].

Mask R-CNN is a region-based convolutional neural net-
work method that performs pixel-level segmentation on top
of object detection. It extends the Faster R-CNN model by
adding a segmentation branch to generate precise masks for
each candidate object.

FCN-8s is a fully convolutional network used for semantic
segmentation and instance segmentation. It replaces the fully
connected layers of a convolutional neural network with
convolutional layers, enabling pixel-level classification or
segmentation of each pixel in the input image.

The advantage of top-down instance segmentation methods
is that they can utilize object detection results to guide the
segmentation process, reducing the computational burden of
pixel-level segmentation on the entire image. They can han-
dle objects of different sizes and shapes and provide higher
instance segmentation accuracy through the accuracy and
robustness of object detection. However, top-down methods
may be sensitive to object detection accuracy and the quality
of candidate proposals. If object detection produces errors
or misses, it may lead to inaccurate segmentation results.
Additionally, top-down methods typically require high com-
putational resources and time, especially when dealing with
large-scale data or complex scenes.

B. Bottom-up Instance Segmentation

Bottom-up instance segmentation is a pixel-level seg-
mentation method that performs pixel-level clustering or
segmentation on an image and then combines the candidate
instances to obtain the final segmentation result. In contrast to
top-down methods, bottom-up methods focus more on aggre-
gating and combining local information without generating
candidate proposals. Two famous classical algorithms for

bottom-up instance segmentation are HED[S]] (Holistically-
Nested Edge Detection) and SLIC[6] (Simple Linear Iterative
Clustering).

HED is a bottom-up method based on edge detection. It
generates pixel-level segmentation results by merging edge
maps at multiple scales. It utilizes deep convolutional neural
networks to learn edge features.

SLIC is a superpixel-based clustering algorithm used for
bottom-up segmentation. It divides an image into compact
superpixel blocks and then merges or separates them based
on the similarity between superpixels, resulting in the final
segmentation result.

The advantage of bottom-up instance segmentation meth-
ods is their ability to handle overlapping instances and
adapt well to unknown classes or irregular-shaped objects.
However, bottom-up methods often have higher computa-
tional complexity and may need help dealing with large-
scale data. Additionally, due to the lack of global contextual
information, bottom-up methods may not achieve the same
level of localization and segmentation accuracy as top-down
methods.

C. Fully Convolutional One-Stage Object Detection

Fully Convolutional One-Stage Object Detection
(FCOS)[7] is a single-stage object detection algorithm
based on fully convolutional networks proposed by
Facebook AI Research. The core idea of FCOS is to predict
both the object category and location information for
each position using fully convolutional networks, enabling
detection to be completed with a single forward pass during
training and inference.

Specifically, FCOS predicts the center coordinates, width
and height information, and class probabilities for each
position on the feature map. It divides the feature map into
equally sized grids, where each grid predicts the offset from
its position to the nearby object center and the object’s width,
height, and classification probability. These predictions are
used to generate object bounding boxes and class labels.

Compared to traditional methods, FCOS has several ad-
vantages: Its fully convolutional structure can handle inputs
of arbitrary sizes, avoiding cropping and scaling operations
and enabling better detection of objects at multiple scales.
FCOS only requires a single forward pass for inference,
making it faster and more suitable for real-time applications.
FCOS’s training mechanism balances samples of various
sizes, avoiding excessive focus on large objects and improv-
ing detection accuracy, especially in complex scenes.

Due to these advantages, FCOS has been widely applied
in instance segmentation algorithms such as BlendMask|[8]]
and CondlInst[9], achieving excellent results. FCOS provides
strong support for tasks like instance segmentation and has
been widely adopted.

III. METHODS
A. Overview of the UISNet Algorithm

UISNet is an object detection model, as shown in
Fig[l] It has three main components: the backbone net-
work, the Multi-Path Aggregation Feature Pyramid Network
(MPAFPN), and the prediction head.
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Fig. 1. UISNet Network Architecture

The Backbone network utilizes EfficientNet[[10] to extract
high-level features from the input image.

In the Neck section, UISNet employs MPAFPN, a multi-
scale feature fusion module. It consists of multiple parallel
feature pyramid networks that effectively extract features at
different scales, thereby improving the detection performance
of the model.

In the Head part, the model is divided into the bounding
box aggregation branch and the mask decoding branch. The
bounding box aggregation branch utilizes the FCOS Head
to generate high-dimensional information for the bounding
boxes, such as shape and pose. The mask decoding branch
generates mask prediction results. Finally, the mask FCN
Head combines the high-dimensional information from the
bounding box aggregation branch with the mask prediction
results.

B. Backbone

The backbone network of UISNet is composed of Ef-
ficientNet, an efficient and accurate convolutional neural
network architecture proposed by the Google Research team
in 2019. This architecture balances the relationship between
network depth, width, and resolution using a compound
scaling method to achieve better performance and efficiency.
In traditional convolutional neural networks, the network’s
depth, width, and input resolution are usually manually set,
which can lead to poor performance or overfitting under
resource constraints. EfficientNet automatically adjusts these
three critical parameters using a compound scaling method,
allowing the network to perform well under different re-
source constraints. The compound scaling method of Effi-
cientNet consists of three main components: width scaling,
depth scaling, and resolution scaling. Width scaling controls
the model’s width by adjusting the number of channels, depth
scaling increases the depth of the model by adding repeated
network blocks, and resolution scaling adjusts the resolution
of the input image. Through experimental comparisons, using
EfficientNet as the backbone network achieves higher accu-
racy than ResNet, with similar parameters and computational
complexity.

C5/32 —

) 4

C4/16 —>4

) 4

C3/8 |—4

b 4
=

Fig. 2. MPAFPN Network

T

—>

C. Multiple Path Aggregation Feature Pyramid Network

As shown in Fig[2] this paper presents a multi-path feature
pyramid network(MPAFPN) as the Neck structure. MPAFPN
draws inspiration from the PANet[11]] architecture and in-
corporates the following improvements.

The backbone network EfficientNet extracts the C2-C5
feature maps and then upsamples and downsamples them
to obtain the P2-P5 and N2-N6 feature maps, respectively.
Firstly, the P2-P5 feature maps are used for a top-down
pathway to pass semantic information. Then, the N2-N6
feature maps are used for a bottom-up pathway to pass
localization information.

Experimental results demonstrate that compared to
FPN[12]], MPAFPN has better feature fusion, higher compu-
tational efficiency, improved cross-scale feature representa-
tion, and enhanced semantic information representation. As
a result, MPAFPN can improve the performance of object
detection and segmentation.

D. Predict Head

As shown in Fig[3| the prediction branch consists of
three parts: the FCOS branch, the Mask Decoder branch,
and the Mask FCN Head. Next, we will provide specific
introductions for these three parts.
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As shown in Figl] The FCOS Head Branch in the top-
down part plays a crucial role in instance segmentation. It
is responsible for object-level detection by processing the
prediction maps N2-N6, which provide information about the
object’s class, position, and centerness. This branch typically
comprises sub-branches for classification, regression, control,
and centerness. The predicted maps N2-N6 generated by
MPAFPN are fed into the FCOS Head in the specific process.
In this process, N2-N6 shares the same parameters of the
FCOS Head. As shown in Figure 3, the FCOS Head is a fully
convolutional network consisting of four branches: Classifi-
cation, Regression, Controller, and Centerness. The shape of
the Classification branch is HxWxC, where C represents the
number of classes (excluding the background). In instance
segmentation tasks, this feature map is used for predicting
the class of each pixel in the image. The Regression branch
has the same shape as the Classification (HxWxC) and is
responsible for predicting and adjusting the positions of the
target bounding boxes. The Centerness branch has a shape of
HxWx1 and is used to estimate the centrality of the targets.
Its purpose is to suppress the predictions of pixels far from
the target’s center, thus eliminating low-quality predictions.

As shown in Fig[y] In the bottom-up part, the Mask De-
coder takes N2-N35 as inputs, where N2 represents the lower-
level feature map, and N3-N5 represents the higher-level
feature maps. The higher-level feature maps are upsampled
and fused with the lower-level feature map. The fused output
is simultaneously resized to the original image size. This
operation allows for preserving positional information from
the lower-level features while incorporating the semantic
information from the higher-level features.

Finally, the Mask FCN Head takes the Controller and
Mask Predict Head as inputs. The Controller is used as
weights and offsets to perform convolutional operations on
the Mask Predict Head, resulting in the final prediction struc-
ture. Its primary purpose is to gradually upsample the low-
level feature maps of the convolutional network to feature
maps of the same size as the input image and generate pixel-
level semantic segmentation predictions.

IV. EXPERIMENT
A. Datasets

This paper uses two datasets: the COCO[13]] dataset and
the Cityscapes[14] dataset.
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Fig. 3. Predict Head Network
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The COCO dataset consists of 330,000 images with anno-
tations for 200,000 instances across 80 object categories. In
addition to object bounding box annotations, COCO provides
rich information such as segmentation masks and human key-
point annotations. Due to these characteristics, the COCO
dataset is widely used in visual tasks such as object detection,
image segmentation, and human pose estimation. It has
become a standard benchmark dataset for these tasks, and
many state-of-the-art methods and models are developed and
evaluated on COCO. We use the COCO dataset to compare
our model with others and validate its effectiveness.

Cityscapes is a large-scale dataset for understanding ur-
ban street scenes. It contains 50,000 high-resolution street-
level images from 50 different cities. The pictures of
Cityscapes are clear and detailed, capturing rich urban el-
ements. Cityscapes provides fine-grained semantic segmen-
tation annotations for all 50,000 images, with each pixel
labeled with a semantic category. The dataset includes eight
categories and 20 subcategories; the annotations are precise
and detailed. Using this dataset aims to evaluate the real-
world practicality of our model in realistic street scenes.

B. Loss Function

The loss function is calculated by Equation (1):
Loss = Leate + ALmask (D

Whereas L., is the Focal Loss[[13] for semantic classifi-
cation, and L., 4 is the Dice Loss[16] for mask prediction.
Focal Loss(FL) is a loss function used to address class
imbalance issues, and the formula is shown as Equation (2):

FL(pt) = —a(l — p:)” log(pt) 2
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Fig. 5. Mask Decoder Branch
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Where p; represents the predicted probability of sample t
belonging to the positive class, o represents the class weight
for sample t, and +y is an adjustable parameter to adjust the
weight of easily classified samples.

Dice Loss(DL) is a loss function used in segmentation
tasks, and the formula is shown as Equation (3):

23" piyi + €
Z?:l pzz + Z?:l yi2 +e

Where p; represents the value of the 7., pixel in the
predicted results, y; represents the value of the 45, pixel in
the ground truth results, n represents the total number of
pixels, and € is a small constant to avoid division by zero
erTors.

DL(p,y) =1- 3)

C. Evaluation Metrics

Average Precision(AP) is the area under the precision-
recall curve. The formula is shown as Equation (4):

AP =% (Ry = Ry1) x P, @)

n

Where n represents the index of points on the precision-
recall curve, R,, denotes the recall of the nth point, R, _;
represents the recall of the (n — 1), point, and P, denotes
the precision of the ny,point.

There are multiple classes in the COCO and Cityscapes
dataset, and the mean Average Precision (mAP) is calculated
by taking the average of the AP values for all classes. The
formula for mAP is shown in Equation (5).

C
1
mAP = ;(AP]-) (5)

N represents the number of target categories, and AP;
denotes the Average Precision of the iy, category.

For segmentation tasks, the evaluation metric is the
mAP at different IoU thresholds. mAP is calculated as
mAP0U=0.5:0.05:0.95) " where [oU=0.5:0.05:0.95 refers to
IoU values ranging from 0.5 to 0.95 with an interval of
0.05. The mAP is calculated for each IoU threshold, and
the average is taken to obtain the final mAP value.

Additionally, specific mAP values are calculated
at different IoU thresholds. mAPU°U=05) (mAP;)
represents the mAP value at IoU=0.5, and

mAPUU=0T5)(1m AP;yrepresents  the mAP  value at
IoU=0.75.

Furthermore, mAP*"*! (mAPg) represents the mAP
value for region sizes smaller than 322 pixels, mAPmedium
(mAP)) represents the mAP value for region sizes between
322 and 962 pixels, and mAP'“"9¢(mAPyL) represents the
mAP value for region sizes larger than 962 pixels.

D. Experimental Settings

The experimental hardware setup in this study consisted
of an Intel(R) Xeon(R) Bronze 3104 CPU @ 1.70GHz pro-
cessor, 128GB of memory, and two NVIDIA GeForce GTX
TITAN XP graphics processors. The operating system used
was Ubuntu 22.04. The experiments used the mmdetection
2.28 deep learning framework based on PyTorch 1.3.

In the data preprocessing stage, the following data prepro-
cessing techniques were applied: RandomFlip[[17]], Normal-
ize, Random Crop, and Simple Copy Paste[18]. During the
training stage, the Adam optimizer was used with a learning
rate of 0.0002, a batch size of 6, and a weight decay of
0.05. The model was trained for 12 epochs, incorporating the
Exponential Moving Average (EMA)[19] training technique,
and the training process was accelerated using the FP16
precision format.

E. Analysis of Experimental Results.

The experimental results, as shown in Table [I], indicate
that among the box-based methods, Mask R-CNN achieves
the highest accuracy but has a slower speed. YOLACTI[20],
on the other hand, has a faster speed but slightly lower
accuracy. YOLACT++[21]] improves its accuracy while sac-
rificing some speed. In the box-free methods, when using
the same backbone, the proposed algorithm in this paper
achieves the same level of accuracy as YOLACT++ but
with a faster speed. Furthermore, compared to SOLO[22]
and PolarMask[23]] , it outperforms them by 1.4% and 5.5%
in terms of accuracy, respectively, and also maintains a
slight speed advantage. This demonstrates that UISNet has
better predictive performance in the inference stage. The
performance is further enhanced when utilizing EfficientNet
as the backbone and MPAFPN as the bottleneck layer. It
surpasses SOLO and PolarMask by 4.5% and 8.6% in terms
of accuracy, respectively, without sacrificing much speed.

As shown in Table [II] this paper compares different types
of backbone networks and bottleneck structures. In terms
of the Backbone, ResNet50[25] and FPN were used as
baselines, achieving an mAP of 33.1%. When replacing
ResNet50 with Res2Net[26], the mAP slightly decreased
to 30.76%, indicating that Res2Net has slightly lower ex-
pressive power than ResNet50. By using HRNet[27] as the
backbone, the mAP improved to 34.61%, which is 1.5%
higher than ResNet50, demonstrating that HRNet has more
robust feature representation capabilities. Introducing the
superior EfficientNet as the backbone further increased the
mAP to 35.84%, surpassing HRNet by 1.2% and confirming
the effectiveness of EfficientNet over the ResNet series
and HRNet. Regarding the Neck, with EfficientNet as the
backbone, the introduction of the MPAFPN structure raised
the mAP from 35.84% to 36.28%, a 0.4% improvement over
the original FPN neck. This validates that optimizing the
neck structure can further enhance performance.

As shown in Table three different object detection
algorithms, namely SOLO, YOLACT, and UISNet proposed
in this paper, were evaluated on the Cityscapes dataset to
assess their robustness and accuracy in real urban scenarios.
The Cityscapes dataset encompasses complex scenes. The
experimental results demonstrate that the UISNet algorithm
achieves an mAP of 33.62%, significantly outperforming
SOLO (29.96%) and YOLACT (27.12%). This indicates
that UISNet exhibits notable advantages in accuracy and
generalization compared to the previous two algorithms.

As shown in Fig[f] this paper compares different instance
segmentation algorithms in urban street scenes; different
colors distinguish other instances, such as red for pedestrians
and blue for vehicles. The result images demonstrate that the
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Fig. 6. Different Instance Segmentation Algorithm Result Images

YOLACT algorithm has the fastest recognition speed but
the lowest recognition accuracy. In contrast, the proposed
algorithm in this paper achieves significantly higher accuracy
than YOLACT. The recognition accuracy of the YOLACT++
algorithm is also lower than that of the proposed algorithm
in this paper. Although the Mask RCNN algorithm has good
recognition accuracy, it has the slowest recognition speed. In
contrast, the proposed algorithm in this paper has a much
higher recognition speed than Mask RCNN. The SOLO
V2[28] algorithm shows improvement compared to SOLO,

but its recognition accuracy is not as high as the proposed
algorithm in this paper.

V. CONCLUSION

We proposes an instance segmentation algorithm called
UISNet. Firstly, the algorithm utilizes EfficientNet in the
backbone to improve accuracy while enhancing the model’s
inference speed and efficiency. Secondly, the MPAFPN is
employed in the neck module to enhance the model’s feature
fusion performance. Lastly, during the prediction stage, the
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TABLE 1
COMPARISON OF VARIOUS INSTANCE SEGMENTATION ALGORITHMS

Algorithm Backbone Neck mAP mAP50 mAP7s mAPs mAPy, mAPp,  FPS

box-based:

MASK RCNN Resnet50-FPN 33.01 5243 35.06 17.35 35.93 45.33 3.6

YOLACT Resnet50-FPN 2699  44.43 27.75 8.81 28.01 4272 23.6

YOLACT++ Resnet50-FPN 3340 51.16 34.42 12.14 60.36 50.96 22.8
box-free:

PolarMask Resnet50-FPN 27.68  47.31 28.45 12.07 30.31 40.34 22
SOLO Resnet50-FPN 31.77  51.19 33.28 11.65 34.64 48.59 21.2
UISNet Resnet50-FPN 3310 5239 35.10 12.85 36.24 51.46 21.5
UISNet EfficientNet-MAPFPN  36.28  56.79 39.11 14.20 39.51 56.71 19.8

TABLE 11
COMPARISON BETWEEN BACKBONE NETWORKS AND FPN
BackBone Neck mAP mAPs9g mAPrs mAPs mAPNn, mAPh
Resnet50 FPN 33.10  52.39 12.85 12.85 36.24 51.76
Res2net FPN 30.76  47.57 11.69 11.69 32.1 46.88
HRNet HRFPN[24] 34.61 53.96 13.6 13.6 37.67 53.87
EfficientNet-B4 FPN 35.84  55.62 13.9 13.9 38.67 55.37
EfficientNet-B4  MPAFPN  36.28  56.79 14.2 14.2 39.51 56.71
TABLE III
COMPARISON RESULTS OF OUR ALGORITHM ON THE CITYSCAPES DATASET
Algorithm mAP mAPso mAP75 mAPs mAPy,; mAPy
SOLO 29.96  49.89 NaN 2.4 26.14 57.85
YOLACT  27.12 4246 NaN 1.9 20.62 50.81
UISNet 33.62 5479 NaN 3.6 28.82 62.64

paper adopts a dual-branch design inspired by both top-
down and bottom-up approaches. The two branches consist
of a bounding box aggregation branch and a mask decoding
branch. The bounding box aggregation branch generates
high-dimensional information, such as the approximate shape
and pose of the bounding boxes, based on the FCOS Head.
The mask decoding branch generates mask prediction results.
These two branches are fused using the Mask FCN Header.
With these improvements, UISNet achieves an improve-
ment of approximately 2%-5.0% over the baseline on the
COCO dataset and a 4%-7% improvement on the Cityscapes
dataset. This indicates that UISNet surpasses other models
in terms of accuracy and speed and demonstrates remarkable
generalization and robustness. UISNet has the potential to
provide more reliable and efficient solutions for applications
in autonomous driving, intelligent transportation, urban se-
curity, and other fields. In the future, further exploration of
the model’s performance and generalization capabilities in
various scenarios, along with optimization and adjustments
tailored to specific application contexts, will promote the
development and application of instance segmentation.

REFERENCES

[1] S. Castillo, A. Bernal, and J. Rodriguez, “Object detection in digital
documents based on machine learning algorithms.” IAENG Interna-
tional Journal of Computer Science, vol. 50, no. 2, pp. 688-699, 2023.

[2] P. O. Pinheiro and R. Collobert, “From image-level to pixel-level
labeling with convolutional networks,” in Proceedings of the IEEE

[3]

[4]

[5]

[6]

[7]

[9]

[10]

(11]

[12]

[13]

conference on computer vision and pattern recognition, pp. 1713—
1721, 2015.

K.-M. He, G. Gkioxari, P. Dollér, and R. Girshick, “Mask r-cnn,” IEEE
transactions on pattern analysis and machine intelligence, vol. 42,
no. 2, pp. 386-397, 2020.

E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 39, no. 4, pp. 640-651, 2016.

S.-N. Xie and Z.-W. Tu, “Holistically-nested edge detection,” Inter-
national Journal of Computer Vision,Kluwer Academic Publishers
Norwell, MA, USA, vol. 125, no. 1-3, pp. 3-18, 2017.

K.-S. Kim, D.-N. Zhang, M.-C. Kang, and S.-J. Ko, “Improved simple
linear iterative clustering superpixels,” in 2013 IEEE International
symposium on consumer electronics (ISCE), pp. 259-260, 2013.

Z. Tian, C.-H. Shen, H. Chen, and T. He, “Fcos: Fully convolutional
one-stage object detection,” in 2019 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pp. 9626-9635, 2019.

H. Chen, K.-Y. Sun, Z. Tian, C.-H. Shen, Y.-M. Huang, and Y.-L. Yan,
“Blendmask: Top-down meets bottom-up for instance segmentation,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 8573-8581, 2020.

Z. Tian, C.-H. Shen, and H. Chen, “Conditional convolutions for in-
stance segmentation,” in Computer Vision—-ECCV 2020: 16th European
Conference, Glasgow, UK, Proceedings, Part I 16, pp. 282-298, 2020.
B. Koonce and B. Koonce, “Efficientnet,” Convolutional neural net-
works with swift for Tensorflow: image recognition and dataset cate-
gorization, pp. 109-123, 2021.

K.-X. Wang, J.-H. Liew, Y.-T. Zou, D.-Q. Zhou, and J.-S. Feng, “Panet:
Few-shot image semantic segmentation with prototype alignment,”
in 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 9196-9205, 2019.

A. Kirillov, R. Girshick, K.-M. He, and P. Dollar, “Panoptic feature
pyramid networks,” in 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 6392-6401, 2019.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dolldr, and C. L. Zitnick, “Microsoft coco: Common objects in

Volume 32, Issue 5, May 2024, Pages 1043-1050



Engineering Letters

context,” in Computer Vision—-ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13,
pp. 740-755, 2014.

[14] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3213—
3223, 2016.

[15] T.-Y. Lin, P. Goyal, R. Girshick, K.-M. He, and P. Dollar, “Focal loss
for dense object detection,” in 2017 IEEE International Conference
on Computer Vision (ICCV), pp. 2999-3007, 2017.

[16] R.-J. Zhao, B.-Y. Qian, X.-L. Zhang, Y. Li, R. Wei, Y. Liu, and Y.-G.
Pan, “Rethinking dice loss for medical image segmentation,” in 2020
IEEE International Conference on Data Mining (ICDM), pp. 851-860,
2020.

[17] S. Takezaki and K. Kishida, “Data augmentation and the improvement
of the performance of convolutional neural networks for heart sound
classification,” JAENG Int. J. Comput. Sci, vol. 49, pp. 1033-1040,
2022.

[18] G. Ghiasi, Y. Cui, A. Srinivas, R. Qian, T.-Y. Lin, E. D. Cubuk, Q. V.
Le, and B. Zoph, “Simple copy-paste is a strong data augmentation
method for instance segmentation,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 2918-
2928, 2021.

[19] Y.-W. Li and X.-X. Zhang, “Object detection for uav images based on
improved yolov6,” JAENG International Journal of Computer Science,
vol. 50, no. 2, pp. 759-768, 2023.

[20] D. Bolya, C. Zhou, FE.-Y. Xiao, and Y.-J. Lee, “Yolact: Real-time
instance segmentation,” in Proceedings of the IEEE/CVF international
conference on computer vision, pp. 9157-9166, 2019.

[21] ——, “Yolact++ better real-time instance segmentation.” [EEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 44, no. 2,
pp- 1108-1121, 2022.

[22] X.-L. Wang, T. Kong, C.-H. Shen, Y.-N. Jiang, and L. Li, “Solo:
Segmenting objects by locations,” in Computer Vision—ECCV 2020:
16th European Conference, Glasgow, UK., August 23-28, 2020,
Proceedings, Part XVIII 16, pp. 649-665, 2020.

[23] E. Xie, P. Sun, X.-G. Song, W.-H. Wang, X.-B. Liu, D. Liang, C.-H.
Shen, and P. Luo, “Polarmask: Single shot instance segmentation with
polar representation,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 12 193-12202, 2020.

[24] B. Huang, B.-Y. He, L.-N. Wu, and Z.-M. Guo, “High-resolution
representations and multistage region-based network for ship detection
and segmentation from optical remote sensing images,” Journal of
Applied Remote Sensing, vol. 16, no. 1, pp. 12003-12003, 2022.

[25] K.-M. He, X.-Y. Zhang, S.-Q. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770-778, 2016.

[26] S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and
P. Torr, “Res2net: A new multi-scale backbone architecture,” IEEE
transactions on pattern analysis and machine intelligence, vol. 43,
no. 2, pp. 652-662, 2019.

[27] J.-D. Wang, K. Sun, T.-H. Cheng, B.-R. Jiang, C.-R. Deng, Y. Zhao,
D. Liu, Y.-D. Mu, M.-K. Tan, X.-G. Wang et al., “Deep high-resolution
representation learning for visual recognition,” IEEE transactions on
pattern analysis and machine intelligence, vol. 43, no. 10, pp. 3349—
3364, 2020.

[28] X.-L. Wang, R.-F. Zhang, T. Kong, L. Li, and C.-H. Shen, “Solov2:
Dynamic and fast instance segmentation,” Advances in Neural infor-
mation processing systems, vol. 33, pp. 17721-17732, 2020.

Volume 32, Issue 5, May 2024, Pages 1043-1050



	Introduction
	Related work
	Top-down Instance Segmentation
	Bottom-up Instance Segmentation
	Fully Convolutional One-Stage Object Detection

	Methods
	Overview of the UISNet Algorithm
	Backbone
	Multiple Path Aggregation Feature Pyramid Network
	Predict Head

	Experiment
	Datasets
	Loss Function
	Evaluation Metrics
	Experimental Settings
	Analysis of Experimental Results.

	Conclusion



