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Abstract—This paper investigates steady infiltration problems
involving periodic channels in two-layered soil with the presence
of root-water uptake. The problems are governed by a set
of Richards’ equations accompanied by boundary interface
conditions. To address these problems, we transform the system
of Richards’ equations, along with the corresponding boundary
conditions, into a set of steady diffusion-convection equa-
tions with transformed boundary conditions. The mathematical
model is then tackled through a numerical approach utilizing
the Iterative Dual Reciprocity Method (IDRM). Through this
numerical method, we obtain solutions that describe the distri-
bution of soil water potential and hydraulic conductivity within
the soil. The outcomes of this study shed light on the influence of
soil texture and saturated hydraulic conductivity on the values
of soil water potential and hydraulic conductivity.

Index Terms—Steady infiltration, layered soil, iterative dual
reciprocity method, root-water uptake.

I. INTRODUCTION

THe examination of water infiltration through layered
soils is a fundamental aspect of soil physics. This line of

research appears to have originated from investigations con-
ducted in rice fields, where a saturated zone was maintained
above an unsaturated zone within a soil structure featuring
fine soil overlying coarse soil [1]. Consequently, this initial
work has spurred a series of studies focused on water infiltra-
tion through layered soils, encompassing scenarios with fine-
over-coarse or coarse-over-fine soil structures. These studies
have taken various forms, including analytical investigations
[2], [3], [4], numerical simulations [5], [6], and experimental
research [7].

Srivastava and Yeh conducted analytical studies on prob-
lems related to transient infiltration toward the water table,
focusing on both homogeneous and layered soils [2]. How-
ever, their proposed method may not be suitable for solving
infiltration issues in layered soils with varying soil coarse-
ness. To address this limitation, Barontini et al. introduced
an analytical method to handle infiltration problems where
hydraulic conductivity decreases exponentially with depth
[3]. Nevertheless, the approach employed by Barontini et
al. is not applicable when the hydraulic conductivity in the
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lower layer exceeds that in the upper layer. To fill this gap, De
Luca and Cepeda proposed an analytical approach capable
of addressing one-dimensional infiltration into two-layered
soils of any type [4].

In addition to analytical approaches, finite difference meth-
ods (FDM) have been utilized to investigate one-dimensional
flow in layered soils. Ross and Bristow, for instance, em-
ployed FDM for simulating one-dimensional water move-
ment in layered soils [6]. Oldenburg and Pruess worked on
the study of a capillary barrier that forms at the interface of
a fine soil layer overlying a coarse soil layer using FDM [5].

Numerical techniques extensively employed for solving
the Richards equation in multi-layered soil problems include
finite element methods (FEM). Researchers have applied
FEM in various studies, as evidenced by references such as
[8], [9], [10], [11], [12], [13], [14], [15], [16]. In practice,
two commercial models, namely HYDRUS and SEEP/W,
are commonly used to tackle these problems. These models
typically rely on a Galerkin approach to finite elements,
which makes them well-suited for addressing challenges in
flow domains with complex geometries. However, it’s worth
noting that these methods come with certain drawbacks.
Specifically, across interfaces between elements, the normal
flux often exhibits discontinuities, and mass is not conserved
within element [17], [18], [19].

In recent times, the boundary element method (BEM) and
the dual reciprocity method (DRM) have gained increased
attention among scientists and engineers in the realm of
numerical methods. They offer distinct advantages over fi-
nite element methods (FEM) and finite difference methods
(FDM). Notably, one of their key advantages is their ability
to reduce problem dimension by one and enable solution
evaluation at any point within the problem domain, as
referenced in works such as [20], [21].

Both BEM and DRM have been effectively employed
by numerous researchers to address infiltration problems in
homogeneous soils, as demonstrated in studies by researchers
[22], [23], [24], [25], [26], [27]. To implement BEM, it is
necessary to derive the fundamental solution of the governing
equation for the specific problem at hand. For infiltration
problems, this entails obtaining the fundamental solution of
either the Helmholtz equation or the diffusion-convection
equation.

In contrast, DRM does not require such complex funda-
mental solutions. It relies on a simpler fundamental solution,
typically that of Laplace’s equation. Moreover, DRM is
adaptable to solving infiltration problems even when root-
water uptake is involved, whereas BEM may not be suitable
for such scenarios. This highlights the flexibility of DRM
compared to BEM as a numerical method for tackling a wide
range of infiltration problems.

The majority of previous studies on water flow through
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layered soils have primarily focused on one-dimensional
problems. Consequently, the objective of this study is to de-
velop a mathematical model for simulating two-dimensional
water infiltration scenarios in two-layered soils, accounting
for root-water uptake. This research builds upon the work
presented in a prior study [28].

In this paper, we introduce an Iterative Dual Reciprocity
Method (IDRM) as a novel approach to solve the formulated
model. By employing this method, we have the capability to
transform the model into a one-dimensional problem, simpli-
fying the computational process. Addressing the nonlinearity
of the boundary conditions at the interface involves imple-
menting iterative steps within the IDRM framework. Our
application of the IDRM will be focused on solving water
infiltration problems originating from periodic trapezoidal
channels into two-layered soils that incorporate root-water
uptake. The ultimate goal is to simulate the suction potential
and hydraulic conductivity profiles within the soil.

II. PROBLEM FORMULATION

In this research, we examine problems related to steady
infiltration problems from periodic trapezoidal channels in
two-layered soils. These channels have the surface area of
2L per unit length of the channels, with the distance between
the centers of adjacent channels measuring 2(L + D). The
channels possess a width of 4L/π and a depth of 3L/2π.
The upper layer contains a root zone, characterized by
dimensions of 2Xm for width and Zm for depth. These
channels remain continuously filled with water, and water
infiltrates the soil at a constant rate, denoted as v0. We make
certain assumptions in line with previous works [29], [23],
[24], which consider the channels to be sufficiently long
and numerous. Additionally, we assume that the channels’
geometry remains unchanged in the direction parallel to their
length.

The upper layer has a thickness of D1, while the lower
layer extends to a depth of D2 above the water table.
Consequently, the problems we address can be treated as
two-dimensional problems. Since the problem is symmetrical
about the center of each channel and any line located at a
distance of L+D from the channel’s center, we can represent
the problem’s geometry using a Cartesian coordinate system
denoted as XOZ. This coordinate system is bounded by the
lines X = 0, X = L + D, Z = 0, and Z = D1 + D2.
It’s important to note that in this coordinate system, the
positive direction for the Z axis is downward. The problem’s
geometry is further visualized in Figure 1.

III. BASIC EQUATIONS

A. Mathematical model development

Water infiltration in unsaturated soil with sink term is
modelled by the Richards’ equation [30], [31], [32], [33],
[34], given by

∂θ

∂t
= ∇. (K∇ψ)− ∂K

∂Z
− S, (1)

which can be written as

∂θ

∂t
=

∂

∂X

(
K
∂ψ

∂X

)
+

∂

∂Z

(
K
∂ψ

∂Z

)
− ∂K

∂Z
− S, (2)

Fig. 1: Geometry of the problems.

where θ, K and S are respectively the water content in the
soil, the hydraulic conductivity in the soil [35], [36], [37],
[38], and the sink term. Here ψ is the suction potential [39],
[40], [23], [41], [30]. The sink term in this study is the root
water uptake, modeled as that in [26],

S(X,Z, ψ) = γ(ψ)
Ltβ(X,Z)Tpot

Zm∫
0

L+D∫
L+D−Xm

β(X,Z)dXdZ

, (3)

where γ is the dimensionless soil water stress response
function, defined as [24]

γ(ψ) =

 − 5
8ψ, for − 1.6 ≤ ψ ≤ 0
1, for − 4.7 < ψ < −1.6

2
7ψ + 82

35 , for − 8.2 ≤ ψ ≤ −4.7
, (4)

Lt is the width of the soil surface associated with the
transpiration rate, Tpot is the potential transpiration, and β
is the spatial root-water uptake distribution modeled as

β(X,Z) =

(
1− Z

Zm

)(
1− L+D −X

Xm

)
exp(−K),

(5)
where

K =
PZ
Zm

|Z∗ − Z|+ PX
Xm

|X∗ − (L+D −X)|.

Here PZ , PX , Z∗ and X∗ are empirical parameters.
Flux normal to a surface with outward pointing normal

n = (n1, n2) is [30]

F = Un1 + V n2 = −K
[
∂ψ

∂X
n1 +

(
∂ψ

∂Z
− 1

)
n2

]
. (6)

Applying Gardner’s formula [42], [43],

K = Kse
αψ, (7)

where Ks is the saturated hydraulic conductivity and α is
the soil parameter related to the soil grain size, we have

∂ψ

∂X
=

1

αK

∂K

∂X
, (8)

∂ψ

∂Z
=

1

αK

∂K

∂Z
, (9)

Engineering Letters

Volume 32, Issue 5, May 2024, Pages 1051-1061

 
______________________________________________________________________________________ 



and Equation (2) becomes

∂θ

∂t
=

1

α

(
∂2K

∂X2
+
∂2K

∂Z2

)
− ∂K

∂Z
− S. (10)

Flux normal in Equation (6) can now be written as

F =

(
− 1

α

∂K

∂X

)
n1 +

(
K − 1

α

∂K

∂Z

)
n2. (11)

For the case of time-independent infiltration problem, Equa-
tion (10) becomes

∂2K

∂X2
+
∂2K

∂Z2
− α

∂K

∂Z
= S. (12)

In this study, time-independent infiltration problems into
two-layered soil with root-water uptake in the upper layer is
considered. Following [4], the system of differential equa-
tions to model the problems is

∂2K1

∂X2
+
∂2K1

∂Z2
− α1

∂K1

∂Z
= α1S, (13)

∂2K2

∂X2
+
∂2K2

∂Z2
− α2

∂K2

∂Z
= 0, (14)

where K1 and α1 are, respectively, the hydraulic conductivity
and the soil parameter of the upper layer, K2 and α2 are the
hydraulic conductivity and the soil parameter of the lower
layer. Flux normal to the upper layer and the lower layer
with outward pointing pointing normals n1 = (n11, n21) and
n2 = (n12, n22) are

F1 =

(
− 1

α1

∂K1

∂X

)
n11 +

(
K1 −

1

α1

∂K1

∂Z

)
n21,(15)

F2 =

(
− 1

α2

∂K2

∂X

)
n12 +

(
K2 −

1

α2

∂K2

∂Z

)
n22,(16)

respectively.
1) Interface conditions: The conditions at the interface

layer are given by [4], [19]

ψ1 = ψ2, (17)
F1 = −F2, (18)

at Z = D1. Here ψ1 is the soil water potential in the upper
layer, and ψ2 is the soil water potential in the lower layer.

From Equation (7), we have

ψi =
1

αi
ln

(
Ki

Ksi

)
, i = 1, 2. (19)

Use of Equation (19) in Equation (17) yields

K2 =
Ks2

K
α2/α1

s1

K
α2/α1

1 , (20)

where Ks1 is the saturated hydraulic conductivity of upper
level soil and Ks2 is the saturated hydraulic conductivity of
lower level soil.

Substituting Equation (20) into Equation (16) results in

F2 =

(
− 1

α2

∂K2

∂X

)
n12+

(
Ks2

K
α2/α1

s1

K
α2/α1

1 − 1

α2

∂K2

∂Z

)
n22,

(21)
Substituting Equation (15) and Equation (21) to Equation
(18) yields

∂K2

∂n
= α2

(
K1 −

Ks2

K
α2/α1

s1

K
α2/α1

1

)
− α2

α1

∂K1

∂n
. (22)

2) Boundary conditions: From the boundary conditions
described in the preceding section and the interface con-
ditions presented, using Equation (15) and Equation (16),
boundary interface conditions in terms of K1 and K2 are

∂K1

∂n
= α1(v0 + n21K1), on the surface of the channel,

(23)
∂K1

∂n
= −α1K1, for

2L

π
< X < L+D and Z = 0, (24)

∂K1

∂n
= 0, for X = 0 and

3L

2π
< Z < D1, (25)

∂K1

∂n
= 0, for X = L+D and 0 < Z < D1, (26)

K2 =
Ks2

K
α2/α1

s1

K
α2/α1

1 , for 0 < X < L+D

and Z = D1, (27)

∂K2

∂n
= α2

(
K1 −

Ks2

K
α2/α1

s1

K
α2/α1

1

)
− α2

α1

∂K1

∂n
,

for 0 < X < L+D and Z = D1, (28)
∂K2

∂n
= 0, for X = 0 and D1 < Z < D1 +D2, (29)

∂K2

∂n
= 0, for X = L+D and D1 < Z < D1 +D2,

(30)

and

K2 = Ks2, for 0 < X < L+D and Z = D1 +D2. (31)

Hence, the mathematical model for two-layered infiltration
problems in present study is the system of partial differential
equations (13) and (14) with respect to boundary interface
conditions (23) to (31).

B. Dual reciprocity procedure

Equations (13) and (14) are two-dimensional diffusion-
convection equations, which may be solved numerically
using a DRM by recasting the equations into

λ(ξ1, η1)K1(ξ1, η1)

= α1

∫∫
Ω1

φ(x, y; ξ1, η1)

×
[
∂

∂Z
(K1(x, y)) + S(ψ,X,Z)

]
dxdy

+

∫
Γ1

[
K1(x, y)

∂

∂n
(φ(x, y; ξ1, η1))

−φ(x, y; ξ1, η1)
∂

∂n
(K1(x, y))

]
ds, (32)

and

λ(ξ2, η2)K2(ξ2, η2)

= α2

∫∫
Ω2

φ(x, y; ξ2, η2)
∂

∂Z
(K2(x, y))dxdy

+

∫
Γ2

[
K2(x, y)

∂

∂n
(φ(x, y; ξ2, η2))

−φ(x, y; ξ2, η2)
∂

∂n
(K2(x, y))

]
ds, (33)
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where φ(x, y; ξ, η) is the fundamental solution of two-
dimensional Laplace equation, and

λ(ξi, ηi) =

{
1/2, (ξi, ηi) lies on smooth part of Γi
1, (ξi, ηi) ∈ Ωi

,

for i = 1, 2. (34)

Boundaries Γ1 and Γ2 are discretized into a number
of elements, and a number of interior points are chosen
in Ω1 and Ω2. Let C(1)

1 , C(2)
1 , · · · , C(N1)

1 be the line
segments on Γ1 (Γ1 ≈ C

(1)
1 ∪ C

(2)
1 ∪ · · · ∪ C

(N1)
1 ),

and C
(1)
2 , C(2)

2 , · · · , C(N2)
2 be the line segments on Γ2

(Γ2 ≈ C
(1)
2 ∪C(2)

2 ∪· · ·∪C(N2)
2 ). Point (a(i)1 , b

(i)
1 ) is the mid

point of C(i)
1 , i = 1, 2, · · · , N1, and Point (a(j)2 , b

(j)
2 ) is the

mid point of C(j)
2 , j = 1, 2, · · · , N2. Let (a(N1+1)

1 , b
(N1+1)
1 ),

(a
(N1+2)
1 , b

(N1+1)
1 ), · · · , (a

(N1+M1)
1 , b

(N1+M1)
1 ) be

the interior points in Ω1, and (a
(N2+1)
2 , b

(N2+1)
2 ),

(a
(N2+2)
2 , b

(N2+1)
2 ), · · · , (a

(N2+M2)
2 , b

(N2+M2)
2 ) be the

interior points in Ω2. Let n0 be the number of elements on
the interface.

Using the elements and interior points described, the
integral equations in Equations (32) and (33) are recast into
a system of linear algebraic equations

λ(n1)K
(n1)
1 =

N1∑
j=1

(
F
(n1j)
2,1 K

(j)
1 − F

(n1j)
1,1 K̄

(j)
1

)

+α1

N1+M1∑
j=1

µ1
(n1j)

[
S
(
K

(i)
1 , a

(i)
1 , b

(i)
1

)

+

N1+M1∑
m=1

ρ̄
(jm)
Z

(
N1+M1∑
i=1

ω
(mi)
1 K

(i)
1

)]
,

for n1 = 1, 2, · · · , N1 +M1, (35)

and

λ(n2)K
(n2)
2 =

N2∑
k=1

(
F
(n2k)
2,2 K

(k)
2 − F

(n2k)
1,2 K̄

(k)
2

)
+α2

N2+M2∑
k=1

µ2
(n2k)

×

[
N2+M2∑
l=1

ρ̄
(kl)
Z

(
N2+M2∑
i=1

ω
(li)
2 K

(i)
2

)]
,

for n2 = 1, 2, · · · , N2 +M2. (36)

In system of linear algebraic equations (35) and
(36), the symbols used for notation are as follows:
λ(n1) = λ(a1

(n1), b1
(n1)), λ(n2) = (a2

(n2), b2
(n2)),

K
(n1)
1 = K1(a1

(n1), b1
(n1)), K(n2)

2 = K2(a2
(n2), b2

(n2)),
K̄1

(n1) = (∂K1/∂n)|(x,y)=(a1(n1),b1(n1)), K̄2
(n2) =

(∂K2/∂n)|(x,y)=(a2(n2),b2(n2)),

F
(n1j)
1,1 =

∫
C

(j)
1

φ(x, y; a
(n1)
1 , b

(n1)
1 )ds(x, y),

F
(n2j)
1,2 =

∫
C

(j)
2

φ(x, y; a
(n2)
2 , b

(n2)
2 )ds(x, y),

F
(n1j)
2,1 =

∫
C

(j)
1

∂

∂n

[
φ(x, y; a

(n1)
1 , b

(n1)
1 )

]
ds(x, y),

F
(n2j)
2,2 =

∫
C

(j)
2

∂

∂n

[
φ(x, y; a

(n2)
2 , b

(n2)
2 )

]
ds(x, y).

The notation ρ(mk) represents the value of a radial basis
function ρ centered at the point (a(m), b(m)) when evaluated
at the point (a(k), b(k)). The symbol ρ̄(jm)

Z denotes the partial
derivative of ρ with respect to Z when evaluated at the point
(a(m), b(m)), where ρ is the radial basis function centered
about the point (a(j), b(j)). The coefficients ω1

(mk) and
ω2

(nk) are defined as
N1+L1∑
i=1

ω1
(mi)ρ(ik) =

{
1, if m = k
0, if m ̸= k

,

N2+L2∑
i=1

ω2
(ni)ρ(ik) =

{
1, if n = k
0, if n ̸= k

.

Two numbers µ1
(n1j) and µ2

(n2j) are defined as

µ1
(n1j) =

N1+L1∑
k=1

Ψ1
(n1k)ω1

(kj),

and µ2
(n2j) =

N2+L2∑
k=1

Ψ2
(n2k)ω2

(kj),

where

Ψ1
(n1k) = λ(n1)χ(a

(n1)
1 , b

(n1)
1 , a

(k)
1 , b

(k)
1 )

+

N1∑
j=1

[
∂

∂n

(
χ(x, y; a1

(j), b1
(j))
)]∣∣∣∣

(x,y)=(a1(k),b1(k))

×F
(nj)
1,1

−
N∑
j=1

χ(a1
(k), b1

(k); a1
(j), b1

(j))F
(nj)
2,1 ,

Ψ2
(n2k) = λ(n2)χ(a

(n2)
2 , b

(n2)
2 , a

(k)
2 , b

(k)
2 )

+

N2∑
j=1

[
∂

∂n

(
χ(x, y; a2

(j), b2
(j))
)]∣∣∣∣

(x,y)=(a2(k),b2(k))

×F
(nj)
1,2

−
N∑
j=1

χ(a1
(k), b1

(k); a1
(j), b1

(j))F
(nj)
2,2 ,

and χ is a function satisfying

∂2χ

∂x2
+
∂2χ

∂y2
= ρ.

In system of linear algebraic equations (35), when j ranges
from N0 + 1 to N0 + n0, both K1 and K̄1 are unknown
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variables. Consequently, the total number of unknowns are
N1 + M1 + n0. Similarly, the number of unknowns in
system of linear algebraic equation (36) is N2 +M2 + n0.
Consequently, it may not be feasible to solve the system of
linear algebraic equations represented by (35) and (36) since
the number of equations provided is N1+M1 and N2+M2.
To address this, we apply interface conditions (20) and (22)
so that the system of linear algebraic equations (36) can be
expressed as follows.

λ(n2)κ(n2)

=

n0∑
j=1

{
F
(n2j)
2,2

Ks2

K
α2/α1

s1

[
K

(N0+n0+1−j)
1

]α2/α1

−F
(n2j)
1,2

[
α2

(
K

(N0+n0+1−j)
1 − Ks2

K
α2/α1

s1

×
[
K

(N0+n0+1−j)
1

]α2/α1
)

−α2

α1
K̄

(N0+n0+1−j)
1

]}
+

N2∑
j=n0+1

(
F
(n2j)
2,2 K

(j)
2 − F

(n2j)
1,2 K̄

(j)
2

)

+α2

n0∑
j=1

µ(n2j)

[
N2+M2∑
m=1

ρ̄
(jm)
Z

(
n0∑
i=1

ω
(mi)
2

Ks2

K
α2/α1

s1

×
[
K

(N0+n0+1−i)
1

]α2/α1
)]

,

+α2

N2+M2∑
j=n0+1

µ(n2j)

×

[
N2+M2∑
m=1

ρ̄
(jm)
Z

(
N2+M2∑
i=n0+1

ω
(mi)
2 K

(i)
2

)]
,

for n2 = 1, 2, · · · , N2 +M2. (37)

It can be seen that (37) is not a system of linear algebraic
equations. Here

κ(n2) =

{
K∗
[
K

(N0+n0+1−n2)
1

]α
, for n2 = 1, 2, ..., n0

K
(n2)
2 , for n2 = n0 + 1, n0 + 2, ..., N2 +M2

,

where α = α2/α1 and K∗ = Ks2/(Ks1)
α.

Now, the number of unknowns in system of linear alge-
braic equations (35) and system of algebraic equations (37)
is N1+N2+M1+M2, as well as the number of equations.
Hence, solutions may be obtained by solving these system
of algebraic equations simultaneously. Since the system of
algebraic equations (37) is not a system of linear algebraic
equation, hence we need to transform (37) into a system of
linear algebraic equations using the iterative steps as those
in [28].

IV. RESULTS AND DISCUSSION

In this section, the DRM described in Subsection III-B is
applied to solve steady infiltration problems from periodic
trapezoidal channels in two-layered soils with root-water
uptake. As that in the previous study, the fluxes on the surface

of the channels are assumed to be constant, v0. We set the
constant v0 as

v0 = 0.75× 0.099 m/day, (38)

where 0.099 m/day is the saturated hydraulic conductivity of
Pima Clay Loam. This value of v0 is chosen in a similar way
as that in [44]. We set ε = 10−4. There are three different
types of soil involved in this study, Pima Clay Loam (PCL),
Guelph Loam (GL), and Touchet Silt Loam (TSL). Values
of Ks and α of the soils are summarized in Table I.

TABLE I: Soil’s parameters.

PCL GL TSL
Ks (m/day) 0.099 0.3171 0.4199
α (m−1) 1.4 3.4 1.56

The values of the saturated hydraulic conductivity, Ks,
and the soil parameter, α, used in this paper are as those
reported by Amozegar-Fard et al. [45], and Bresler [46]. For
the root-water uptake function, the depth and the width of
the root zone, and other parameters are adopted from one of
those proposed in [47], sumarized in Table II.

TABLE II: Parameters of root-water uptake function.

Xm (m) Zm (m) Lt (m) Tpot (m/day)
0.5 1.0 0.5 0.004
PZ PX Z∗ (m) X∗ (m)
1.0 1.0 0.2 1.0

The numerical method described is then implemented to
solve four different cases. The four different cases are PCL-
GL, GL-PCL, PCL-TSL, and TSL-GL, with the depth of the
upper and the lower layer are 2 m and 3 m, respectively.
To obtain numerical results, the numbers of elements for
the upper and the lower layer are N1 = 67 and N2 = 89,
respectively. For the number of interior points in the upper
layer is M1 = 361 and that in the lower layer is the same,
M2 = 361.

Using the parameters, elements and interior points de-
scribed above, numerical results are obtained employing
the IDRM presented in the preceding section. To obtain
the numerical results, the number of iteration for all of
the four cases is 2. There are variations in the values of
d for the four different cases. Here, d is the maximum
distance between numerical values of K obtained from two
consecutive iterations. The criterion for stopping iteration is
when the value of d less than ϵ = 10−4. For the case of
GL-PCL, the value of d is 0.000015. The value of d for
PCL-GL case is 0.000075. The values of d for the cases
of PCL-TSL and TSL-PCL are, respectively, 0.000028 and
0.000026, respectively. Some of the results are presented in
Figure 2 - Figure 7.

Figure 2 shows soil water potential or suction potential
profiles for four different cases, at selected values of X . For
more specifically, Figure 2(a) displays the suction potential
profile for PCL-GL. In Figure 2(b), the suction potential
profile for GL-PCL is presented. The suction potential profile
for PCL-TSL is illustrated in Figure 2(c), while Figure 2(d)
showcases the suction potential profile for TSL-PCL.
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(a) PCL-GL

(b) GL-PCL

(c) PCL-TSL

(d) TSL-PCL

Fig. 2: Distribution of suction potential (ψ) at selected values
of X .

(a) PCL-GL

(b) GL-PCL

(c) PCL-TSL

(d) TSL-PCL

Fig. 3: Distribution of hydraulic conductivity (K) at selected
values of X .
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(a) PCL-GL

(b) GL-PCL

(c) PCL-TSL

(d) TSL-PCL

Fig. 4: Suction potential (ψ) decrease due to root-water
uptake.

(a) PCL-GL

(b) GL-PCL

(c) PCL-TSL

(d) TSL-PCL

Fig. 5: Hydraulic conductivity (K) decrease due to root-water
uptake.
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(a) PCL-GL

(b) GL-PCL

(c) PCL-TSL

(d) TSL-PCL

Fig. 6: Mesh plots of suction potential over the root zone.

(a) PCL-GL

(b) GL-PCL

(c) PCL-TSL

(d) TSL-PCL

Fig. 7: Mesh plots of root-water uptake over the root zone.
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As can be seen in Figure 2, variations in the values of
ψ are observed in the upper layer. Values of ψ vary from
about -1.4 m to -0.5 m at the surface of the upper layer,
for PCL-GL and GL-PCL. For PCL-TSL, values of ψ at the
surface of the soil are in a range between about -1.4 m and
-0.7 m. Values of ψ at the surface of soil fall within a range
of between -2.1 m to -1.35 m for TSL-PCL. These results
indicate that the soil water potential at the surface of soil is
influenced by the soil type of the upper layer. It can also be
seen that the suction potential or soil water potential in the
upper layer goes to and attain the soil water potential of the
lower layer at ψ = 2 m, which is about a constant value.

In the lower layer, for any fixed values of Z, variations in
ψ are almost unobserved. The cases of GL-PCL and TSL-
PCL have similar distribution of ψ. Values of ψ are in a
range of between about -0.9 m and 0. For the case of PCL-
GL, ψ is ranged between -0.7 m and 0. Values of ψ for case
PCL-TSL are between -1.7 m and 0. These results show that
values of ψ in the lower layer depend on the type of the soil
in the lower.

Figure 3 shows that the values of K at the surface of soil
are determined by the type of soil in the upper layer. For
PCL-GL and PCL-TSL, distribution of K at the surface of
soil are in similar fashion and ranged between about 0.015
m/day to 0.06 m/day. Values of hydraulic conductivity are
in a range of between about 0.01 m/day to 0.07 m/day
and 0.02 m/day to 0.065 m/day for GL-PCL and GL-TSL,
respectively.

In the lower layer, the distributions of K are driven by the
lower layer’s soil type. For GL-TSL and PCL-TSL, values of
K are between about 0.04 m/day to 0.42 m/day. The range of
K is between 0.03 m/day and 0.32 m/day for PCL-GL and
TSL-GL, and between 0.03 m/day to 0.1 m/day for GL-PCL
and TSL-PCL. On the interface, at Z = 2 m, there are jumps
in values of K. These results are due to the differences in soil
type in the upper layer and the lower layer and the condition
of the soil water potential equality at Z = 2 m.

Furthermore, the reduction in hydraulic conductivity and
suction potential values caused by root-water uptake are
presented. The reductions are obtained by subtracting the
hydraulic conductivity and the suction potential in this study
with the corresponding values of the hydraulic conductivity
and the suction potential in [28]. The results are displayed
in Figure 4 and Figure 5, respectively.

Figure 4 shows the suction potential decrease due to root-
water uptake at the same values of X’s in Figure 2. The
results show that there are variations in the reduction of ψ,
especially at the surface of soil. As can be observed, the
highest reduction occurs at X = 0.9. This result is expected,
as the highest water uptake is at this value of X .

Among the four cases, the highest decrease in ψ occurs in
the case of TSL-PCL. The biggest decrease is about 0.08 m.
For the case of PCL-TSL, the highest value is about 0.075 m.
The highest decrease in ψ for the cases of PCL-GL and GL-
PCL are about 0.063 m and 0.053 m, respectively. These
results imply that layered soil with TSL results in higher
value of the decrease in ψ. This is because when PCL is
combined with TSL, the value of ψ at the surface of soil
(see Figure 2) lies in the interval -2.1 to -1.3 for TSL-PCL,
and -1.4 to -0.6 for PCL-TSL, so that the amount of water
uptake is higher than in the other two cases.

Figure 5 shows the decrease in the values of hydraulic
conductivity, K, at selected values of X , X = 0.1, 0.35, 0.65
and X = 0.9, for the four cases considered. As can be seen,
the case of TSL-PCL contributes the highest decrease in K.
The highest decrease is about 0.0094 m/day, at the surface of
soil. The highest decreases for three other cases, PCL-TSL,
PCL-GL, and GL-PCL are 0.0037 m/day, 0.0028 m/day, and
0.0025 m/day, respectively. As before, this result is related
to the amount of water uptake by the roots, so the order of
decreasing of the values of K is the same as the order of
decreasing the values of ψ.

Figure 6 shows mesh plots of numerical values of suction
potential in the root zone for four different types two-layered
soils. Corresponding mesh plots of root uptake are displayed
in Figure 7. From Figure 6, it can be seen that for the PCL-
GL and TSL-PCL cases, the changes in the value of ψ within
the root zone in two cases, namely PCL-GL and TSL-PCL,
are not as significant as in the other two cases, namely GL-
PCL and PCL-TSL. In the case of PCL-GL, the ψ values
are in the range of -1.0 m to -0.9 m. Meanwhile, in the case
of TSL-PCL, the ψ values are between -1.47 m and -1.37
m. On the other hand, for the other two cases, significant
changes occur in the ψ values. For PCL-TSL, the ψ values
are in the range of -1.46 m to -1.1 m, while for GL-PCL,
the ψ values are in the range of -1.47 m to -0.8 m.

Based on the ψ distributions in Figure 6 and water stress
response function (Equation (4)), the highest root uptake
occurs in the GL-PCL and PCL-TSL cases because the ψ
values around the point (1.0, 0.2) for both cases reach the
highest values. Thus, the distributions of root uptake in these
two cases are more or less the same. For the TSL-PCL
case, the root uptake distribution is slightly lower compared
to the two cases mentioned earlier, and the distribution of
root uptake is also more or less the same as those two
cases. Meanwhile, for the PCL-GL case, because the ψ
distribution is higher than the other three cases, its root
uptake distribution is lower than the three previous cases.

Furthermore, the total water uptake (TWU ) is numerically
calculated. The root zone is subdivided into 50 × 50 equal
regions. Let (Xij , Zij) denote the coordinates of the top-
right corner of the region in the i-th row and j-th column.
The TWU is computed using the following formula.

TWU =
50∑
i=1

50∑
j=1

S(Xij , Zij , ψij). (39)

Here ψij represents the suction potential at the top-right
corner of the i-th row and j-th column. The results obtained
using Equation (39) are summarized in Table III.

TABLE III: Total water uptake from different types of
layered soils.

PCL-GL GL-PCL PCL-TSL TSL-PCL
Total uptake
(cm3/day)

1140.12 1320.69 1553.42 1660.79

From Table III, it can be seen that TSL-PCL results in
highest value of TWU compared to other two-layered soils.
This result is due to the fact that the values of ψ in this case
lies between -1.4 and -1.5, which is the smallest compared
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to the other cases, as shown in Figure 6. From Equation (4),
these values of ψ result in the highest values of γ(ψ). As
a consequence, they also yield the highest values of TWU .
Using the same reasoning, the other results in Table III can
be obtained from the results in Figure 6.

V. CONCLUDING REMARKS

A mathematical model has been developed to describe the
steady infiltration process from periodic trapezoidal chan-
nels into soils with two distinct layers, taking into account
root-water uptake. This model has been effectively solved
through numerical techniques, employing an Iterative Dual
Reciprocity Method (IDRM). Using the IDRM, we have
obtained numerical solutions for hydraulic conductivity and
computed numerical values for soil water potential. To assess
the method’s performance, we have conducted tests on four
different problems.

The findings from our analysis reveal that the hydraulic
conductivity and soil water potential in the lower layer are
primarily influenced by the properties of the soil in that lower
layer. Conversely, at the surface of the upper soil layer, these
parameter values are predominantly influenced by the type of
soil in this layer. Furthermore, the values of these parameters
go towards the values of the corresponding parameters at
the top of the lower layer. Furthermore, the smallest suction
potential at the soil surface leads to the highest total water
uptake.
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