
 

  

Abstract—To address the problem of high false 

positive/negative rate and low accuracy in protein complex 

detection, we propose the Dual-population Firefly Algorithm 

Based on Gender Differences (DFAGD) based on the unique 

core-attachment structure of protein complexes and the 

biological properties of fireflies. This method divides the 

detection of protein complexes into two phases. Firstly, a global 

search of the male population is used to detect the core proteins, 

and then a local search of the female population is used to detect 

the attachment proteins, which improves the accuracy of 

detection. In the male population strategy, the population 

diversity is redefined, and when the diversity falls below the 

threshold, a spring model is introduced to bring the population 

into the repulsion phase so that it does not fall into a local 

optimum. The female population selects elite and excellent 

individuals from the detection results of the male population to 

perform guided neighborhood searches, which can effectively 

improve detection accuracy. Finally, the effectiveness of the 

protein complex detection method is tested by comparing it to 

eight classical detection methods using four datasets of 

Saccharomyces cerevisiae proteins. 

 
Index Terms—protein complex, firefly algorithm, 

dual-population, core-attachment structure, spring model 

 

I. INTRODUCTION 

rotein complexes play a critical role in a multitude of 

intracellular biological processes [1]. Examining these 

complexes provides insights into cell function and 

organization, aiding in the identification of disease-related 

genes and establishing connections between drugs and 

diseases [2]. Nevertheless, traditional techniques for 

uncovering protein complexes, like 

co-immunoprecipitation and mass spectrometry [3], are 

costly in terms of reagents and demand significant time 

and labor. 

With the rise of high-throughput technologies, a 

substantial volume of data on protein-protein interactions 
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(PPI) has been generated [4]. In 2001, Legrain et al. [5] 

depicted PPI as an undirected graph by transforming 

extensive PPI data into a network structure, thus initiating 

protein complex detection through computational methods. 

While these computational approaches can identify some 

protein complexes, they may be prone to false 

positives/negatives and might not detect sparsely 

connected protein complexes within the network. In 2006, 

Gavin et al. [6] conducted a comprehensive examination 

of protein complex structure and revealed that a protein 

complex comprises a core-attachment model, where the 

core represents a densely interconnected subgraph, and the 

attachment consists of proteins with sparse connections to 

the core. Subsequently, various detection methods based 

on the core-attachment structure have been introduced. 

For example, methodologies like COACH [7], WPNCA 

[8], and NRAGE-WPN [9] extract the core of protein 

complexes from neighboring protein structures, then 

identify the attachment proteins, and ultimately combine 

certain protein complexes with significant overlap to 

derive final detection outcomes. 

In recent years, optimization algorithms have garnered 

significant attention from researchers both domestically and 

internationally due to their straightforward structure and ease 

of implementation [10-11]. Protein complexes are commonly 

identified using assays centered around the core-attachment 

structure. To address complex protein-related challenges, 

researchers have integrated swarm intelligence optimization 

algorithms with the core-attachment framework. This 

integration taps into the adaptability and optimization 

capabilities offered by swarm intelligence algorithms. In 

2019, Lei et al. [12] introduced the MFOC algorithm, which 

employs layered concepts to delineate the core of a protein 

complex and identifies auxiliary roles of protein nodes 

through the moth-flame optimization algorithm. Similarly, in 

the same year, the IFPA algorithm [13] was developed, 

determining protein complex cores based on core set density 

and mimicking the process of pollen landing on compatible 

flowers. It identifies the nearest core proteins for attachment 

proteins using the enhanced flower pollination algorithm 

(FPA). In 2022, Wang et al. [14] presented the MP-AHSA 

method to detect protein complexes with multiple properties 

(MP) by recognizing the core of protein complexes with 

MCL, formulating strategies for protein complex assembly to 

detect attachment proteins, and ultimately creating an 

adaptive and acoustic search algorithm to optimize the 

parameters of the MP algorithm. 

Swarm intelligence optimization algorithms have made 

significant strides in detecting protein complexes. 
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Nonetheless, these methods have not fully leveraged 

complex structures, and inherent algorithmic limitations 

impact detection accuracy. To address these challenges, we 

introduce a pioneering methodology known as the 

Dual-Population Firefly Algorithm based on Gender 

Differences for Detecting Protein Complexes 

(DFAGD-DPC). This innovative approach aims to boost the 

precision of protein complex identification by surmounting 

current method constraints. The key advancements 

encompass three core components: (1) Seed proteins 

initialization: leveraging the concept of topological potential 

to weigh the PPI network and select seed proteins. (2) Male 

population strategy: reintroducing population diversity when 

faced with diminishing male population diversity that tends 

towards local optima; upon reaching a predetermined 

threshold, the spring model is introduced to transition the 

population into the repulsion phase, thereby determining the 

core of the protein complex. (3) Female population strategy: 

utilizing the optimal region established by the male 

population strategy as the female population's vicinity, 

employing elite male individuals to guide female 

counterparts towards optimal solutions. The female 

population strategy is instrumental in characterizing the 

attachment of protein complexes. 

The remaining sections of this article are organized as 

follows: Section 2 provides an overview of pertinent 

foundational works; Section 3 improves the firefly algorithm 

for protein complex detection; Section 4 showcases and 

evaluates the experimental outcomes; and lastly, the article 

concludes by summarizing key findings and outlining future 

research directions. 

II. RELATED WORKS 

A. Protein-protein Interaction Network 

The PPI network is depicted through undirected graphs 

( ),G V E= , where V  and E  are the set of nodes and the set 

of edges of the graphs G , respectively [15]. 

Definition 1 (Weighted degree ( ( )d v )): The weighted 

degree of a node v  is the sum of the edge weights of the 

neighbor nodes directly connected to it. The formula is 

shown in (1): 

( )
( )

( , )
u N v

d v u v 


=                                           (1) 

(Average weighted degree ( ( )_avgd v )): The average 

weighted degree is defined as: 

( )

( )
( )

_

,
u N v

avg

u v

d v
n






=


                                    (2) 

Where ( ),u v  is the weight of the interaction edge 

between the node v and its neighbor u , and n  is the total 

number of nodes. 

Definition 2 (Core cluster density ( dens )): The density of 

a core cluster is defined as formula (3): 

( )
( )

2

1

E
dens cc

V V


=

 −
                                    (3) 

Where E  is the number of edges in the core cluster and 

V  is the number of nodes in the core cluster. 

Definition 3 (Adhesion ( ds )): A measure of whether a 

node v  can be added to the core cluster as an attachment 

protein. The formula is defined as follows: 

2 1in out in

( v ,CSS )

in out in out

E E E
ds

E E E E

−
= = −

+ +
                    (4) 

Where inE  is the number of edges that node v  interacts 

with nodes in the core cluster, and outE  is the number of 

edges that node v  interacts with nodes outside the core 

cluster. 

B. Firefly Algorithm 

The Firefly Algorithm (FA) is a computational method that 

refines solutions by mimicking the light-emission behavior 

observed in fireflies in nature [16]. The mathematical model 

for the FA is established based on three key criteria. Initially, 

all fireflies within the algorithm are regarded as 

gender-neutral. Secondly, the attraction and luminosity 

between fireflies are directly correlated. Lastly, the 

brightness of fireflies is intricately linked to the objective 

function being optimized. 

Definition 4 (Attraction): The attraction of firefly j  to 

firefly i  is defined as formula (5): 

( )
2

0
ijr

ij ijr e


 
−

=                                      (5) 

Where 0  is the maximum attraction, i.e., the attraction of 

the firefly at the light source ( 0r = );   is the light 

absorption coefficient; ijr  is the Cartesian distance between 

the firefly i  and the firefly j : 

( )
2

, ,

1

d

ij i j i k j k

k

r x x x x
=

= − = −                            (6) 

Definition 5 (Position update): As the firefly i  is attracted 

to the firefly j , the firefly i  moves towards it and updates 

its position, with the update formula as follows (7): 

( ) ( ) ( ) ( )( )
2

01 ijr

i i j i ix t x t e x t x t


 
−

+ = + − +                 (7) 

Where t  is the number of iterations of the algorithm,   is 

the coefficient of the random term, and i  is the random 

number that comes from a uniform distribution. 

III. IMPROVED FIREFLY ALGORITHM FOR DETECTING 

PROTEIN COMPLEXES 

A. Constructing Weighted PPI Network 

PPI data can originate from various experimental 

techniques, occasionally accompanied by false positive or 

negative noise within the dataset [17]. To mitigate the effects 

of such noise, weights are assigned to the PPI network. In this 

network, interactions between nodes are depicted as a 

topological potential field, where nodes exert influence on 

one another. Within networks demonstrating modular 

characteristics, nodes' influence is confined to specific 

regions. As the distance separating nodes expands, their 

influence diminishes accordingly. 
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Following the concept of topological potential, the PPI 

network incorporates this attribute in its weighting, with the 

weight formula outlined as follows: 

2uvd
( )

u( u,v ) m e 
−

=                                     (8) 

Where um  denotes the quality of the node u , uvd  

describes the shortest path between node u  and node v , and 

  controls the influence range of each node. Typically, the 

shortest path between protein functional modules is less than 

or equal to 2, so to ensure that the effect between proteins is 

not greater than 2, the   takes a value of 0.9428 [18]. 

When calculating the topological potential, the value of 

um  is usually 1. To remove noise from the data and create a 

more realistic network, um  is redefined using the Pearson 

correlation coefficient, GO annotations, and subcellular 

localization information: 

( ) ( ) ( )
u

3

PCC u,v CGO u,v CSL u,v
m

+ +
=                   (9) 

Where ( ),PCC u v  is the Pearson correlation coefficient, 

which measures the co-expression characteristics of protein 

pairs [19]. The greater the correlation between two adjacent 

proteins, the greater the PCC  value corresponding to their 

interaction edges, iu  and iv  are the expression values of 

proteins u  and a v  at a time point i , respectively. u  and 

v  are the mean values of gene expression of protein u  and 

v , respectively. The formula is shown in (10): 
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       (10) 

( ),CGO u v  is GO annotations that evaluate the similarity 

between two interacting proteins [20]. The larger the number 

of common GO annotations, the stronger the interaction 

between protein pairs. uGO  and vGO  are two sets of GO 

terms annotating protein u  and protein v , respectively, and 

denote the set of common GO annotations between them. The 

formula is shown in (11): 

2

0 0

0

u v

u vu v
CGO( u,v )

otherw

GO GO
,
GO and GOGO

e

GO

is,

 


= 



    (11) 

( ),CSL u v  the information about subcellular localization, 

and if two interacting proteins have the same subcellular 

localization, the interaction between them is more reliable 

[20]. uSL  and vSL  represents the subcellular localization set 

of protein u  and protein v , respectively, and u vSL SL  

denotes the set of common subcellular localizations between 

them. The formula is shown in (12): 
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           (12) 

B. DFAGD-DPC 

In both humans and animals, notable differences exist 

between the sexes. This distinction extends to fireflies, where 

distinct male and female populations are present. Typically, 

male fireflies possess wings and tend to soar higher in the sky 

to survey their surroundings, while female fireflies, lacking 

wings, remain closer to the ground [21]. Consequently, two 

separate subpopulations emerge, each constituting half of the 

total population. The male population serves as the primary 

reservoir of core proteins, whereas the female population acts 

as the primary source of attachment proteins. Core proteins 

are readily identified within the male population through a 

comprehensive search, while attachment proteins are more 

commonly located within the female population through a 

refined search conducted locally. The behavioral 

characteristics of fireflies correspond to the features of 

DFAGD-DPC, as illustrated in Table 1: 

 

TABLE 1. THE BEHAVIORAL CHARACTERISTICS OF FIREFLIES CORRESPOND 

TO THE FEATURES OF DFAGD-DPC. 

Behavioral characteristics of 
fireflies 

DFAGD-DPC 

Fireflies Protein nodes in the PPI network 

The movement of the firefly Detection of protein complexes 

The movement of male firefly Search for core proteins 

The movement of female firefly Search for attachment proteins 

 

(1)  Initialize Seed Proteins 

To initialize the positions of fireflies, we leverage the node 

weight data from the PPI network. Nodes with a weighted 

degree surpassing the average weighted degree are 

designated as seed proteins, with each seed protein 

representing an individual firefly. 

(2) Male Population Strategy for Extended Core Clusters 

When employing the swarm intelligence optimization 

algorithm to detect protein complexes, firefly entities 

gravitate towards the optimal individual under its guidance, 

causing a gradual contraction of the exploration space. This 

phenomenon results in a dense clustering of individuals 

around the optimal entity, leading to a swift reduction in 

diversity. Consequently, the algorithm often converges 

towards a local optimum, neglecting crucial regions within 

the search space and failing to accurately pinpoint the protein 

complex core. To surmount this challenge, population 

diversity is redefined based on the spatial data of individuals, 

and a spring model is introduced to disperse firefly entities 

from densely clustered areas. This approach augments 

population diversity, facilitating the algorithm's escape from 

local optima. 

a) Population diversity 

Assessing the level of aggregation within a population can 

be accomplished by evaluating diversity. A diminished 

diversity value signifies heightened aggregation, whereas an 

elevated diversity value suggests wider dispersion among 

individuals. Through factoring in the spatial positioning of 

individuals, we have recalibrated population diversity and 

established specific quantitative benchmarks. Formula (13) 

delineates the concept of diversity. 
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Where N  is the population size, D  is the dimensionality 

of the problem, ( )j

ip t  is the value after linear normalization 

in the j  th dimension, ( )max

jx t  and ( )min

jx t  are the 

maximum and minimum values in the j th dimension, and 

( )jp t  is the average value of all fireflies after linear 

normalization in the j th dimension. 

b) Spring model 

A spring model is established between the optimal 

individual and other particles. And if we assume that there are 

N  firefly individuals, then they are 1N −  spring models. 

When the population's diversity falls below a certain 

threshold, the spring model is implemented to increase the 

distribution of individuals and promote diversity. 

According to Hooke’s law, spring force is defined as: 

sF k x=                                     (14) 

Where sk  is the stiffness coefficient of the spring. 

Considering that the spring force increases with the increase 

of the stiffness coefficient, the interaction between two nodes 

in the PPI network increases with the increase of the number 

of public neighbors. If a spring model is established between 

node i  (current particle) and node j  (optimal particle) in the 

network, then the product 
i jk k  of the degrees of node i  and 

node j  can be considered as the stiffness coefficient of the 

spring. x  is the compression of the spring. In the t  

iteration, the individual firefly moves towards the optimal 

individual, the distance traveled is the compression of the 

spring, then the spring compression is: ( ) ( )|| 1 ||x x t x t = − − . 

Here the F  is treated as a scalar, considering only the size 

and not the direction, and the F  is defined as: 

i jF k k x=                                   (15) 

When the level of diversity decreases to a certain point, 

individual fireflies tend to move away from optimal 

individuals. This means that the male population's iterative 

process can be divided into two phases: attraction and 

repulsion. The rebound coefficient is determined based on the 

concepts of diversity and spring force, as described in 

formula (16): 

( )diversity t F
e =                                 (16) 

c) Male population strategy based on the spring model 

When the population diversity is above the threshold lowd , 

the positional movement of individuals follows the basic 

firefly algorithm, this phase is the attraction phase. The 

position update is defined by the formula (17): 

( ) ( ) ( ) ( )( )
2

0 i1 + + ,ijr

i i j i lowx t x t e x t x t diversity d


 
−

+ = − 

 (17) 

When the population diversity is below the threshold lowd , 

the individuals near the optimal individual bounce in the 

opposite direction of compression, and the distance of 

bouncing is affected by the rebound coefficient, this phase is 

the repulsion phase. The position of the rebounded individual 

is according to the formula (18): 

( ) ( ) ( ) ( )( ) i1 1 +i i i i lowx t x t x t x t ,diversity d + = + − −        

 (18) 

d) Male population strategy for extended core clusters 

For each male firefly, the position of the neighboring node 

with the highest PCC  value in the corresponding core 

cluster is chosen as the optimal position. If the PCC  value at 

the optimal position is greater than 0, the firefly moves to the 

optimal position, this node is clustered to the core cluster, 

otherwise, the iteration of this firefly is terminated. Repeat 

the above process, and update the firefly position, until the 

density of core cluster is less than the given threshold, which 

means the end of this iteration phase. The threshold controls 

the number of iterations and the size of the core cluster, 

which is fixed at 0.7 [22].  

The pseudo code for determining core proteins in male 

populations is shown in Algorithm 1. 

 
Algorithm 1. The pseudocode for determining core proteins in male 

populations. 
Input: weighted PPI network 
Output: detected core clusters 

a) for each firefly c do 

b)       if ( )dens cc threshold  

c)             
neibx =  neighbor nodes of the core cluster 

corresponding to firefly c 

d)             for each node 
ix  in 

neibx  

e)                   calculated PCC  according to formula (10)  

f)             end for 

g)             
bestx =  the node with the largest PCC  

h)             if ( ), 0bestPCC x c   

i)                   add 
bestx  to the core cluster 

j)                   update the position of firefly c according to 

formula (17) or (18) 

k)             else 

l)                   end the search for male firefly c 

m)             end if 

n)       end if 

o) end for 
 

(3) Female Population Strategy to Identify Attachment 

Proteins 

By conducting a thorough exploration within the male 

population, we can identify an approximate optimal region. 

However, optimizing the precision of this solution is 

imperative. Upon locating a near-optimal solution, 

investigating the neighborhood of the individual reaching the 

local optimum could potentially reveal the global optimal 

solution. Given that female individuals lack wings, their 

search capabilities are confined to their immediate vicinity. 

To enhance the algorithm's accuracy, the optimal region 

identified through the male population search strategy serves 

as the neighborhood for the female population. Elite and 

outstanding individuals from the male population provide 
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guidance to the female counterparts as they navigate towards 

the optimal solution. 

a) Position update 

The search equation for the female population strategy is 

explicitly depicted in formula (19) as part of the algorithm 

design. 

( ) ( ) ( ) ( )( )

( ) ( )( )

2

2

1 0

2 0

1 ij

ij

r

i i elite i

r

excellent i

y t y t e x t y t

e x t y t





 

 

−

−

+ = + −

+ −
  (19) 

Where ( )iy t  is the position vector of the last iteration of 

the female i . ( )elitex t  is an elite individual, ( )excellentx t  is an 

excellent individual. This means that female fireflies can 

learn useful information from high-quality solutions to 

update their location. 1  and 2  are random numbers with a 

uniform distribution between [0, 1], satisfying 1 2 1 + = . 

b) Female population strategy to identify attachment 

proteins 

 

Algorithm 2. The pseudocode for determining the attachment 
proteins for female populations. 

Input: weighted PPI Network 
Output: detected protein complex 

p) for each firefly c do 

q)       
elites → sort nodes of core cluster corresponding to 

firefly c according to the ds  

r)       
excellents → sort the neighbor nodes of the core cluster 

corresponding to female firefly c according to the ds  

s)       elitex =  the largest ds  in 
elites  

t)       excellentx =  the largest ds  in 
excellents  

u)       center excellentx x=  

v)        if ( ), 0centerds x c   

w)              add 
centerx  as an attachment protein to the core 

cluster 

x)              update the position of firefly c according to formula 

(19)  

y)        else 

z)              end the search for firefly c 

aa)        end if 

bb) end for 
 

The nodes in the core cluster corresponding to each female 

firefly and the neighboring nodes of the corresponding core 

cluster are ranked by the size of the ds . The nodes with the 

largest ds  are selected as the elite individual elitex  and the 

excellent individual excellentx , respectively. The excellent 

individual excellentx  is used as the position of the central firefly, 

and if the ds  of the central firefly is greater than 0, the firefly 

position is updated and added to the core cluster as an 

attachment protein, iterated to update the central firefly 

position and other firefly positions, and if the ds  at the 

central firefly position is less than 0, the iteration of the 

firefly ends, and the corresponding core cluster of the firefly 

is a protein complex.  

The final protein complex is formed when the female 

firefly goes through the above steps and deletes the protein 

complex with less than three nodes. The pseudocode for 

determining the attachment proteins for female populations is 

shown in Algorithm 2. 

IV. SIMULATION EXPERIMENT AND RESULT ANALYSIS 

The simulation experiment was conducted in the following 

operating environment: Windows 10 operating system, Intel 

(R) Core (TM) i5-11300H @ 3.10GHz processor, with 16GB 

of physical memory. The algorithms were executed using 

PyCharm Professional 2022 and implemented in Python 2.7. 

A. Parameter Setting 

Parameter settings play a crucial role in determining the 

performance of an algorithm. In the DFAGD algorithm, the 

diversity threshold is a key parameter that needs to be 

established. The selection of the diversity threshold directly 

impacts the algorithm's search scope and efficiency in 

problem-solving, necessitating rational adjustments based on 

specific characteristics and requirements of the problem at 

hand. By setting the diversity threshold lowd , one can strike a 

balance between the algorithm's exploration and exploitation 

capabilities, thereby optimizing performance and enhancing 

solution quality. During the algorithm's iterative process, 

when the population diversity declines below the predefined 

threshold, the algorithm introduces a spring model to boost 

diversity within the population. This operation is akin to the 

“mutation” operation in evolutionary algorithms and aids in 

steering the algorithm away from local optima to explore 

broader solution spaces. Therefore, the diversity threshold is 

typically set to a small value to ensure timely adjustments to 

population diversity. To determine the optimal diversity 

threshold, this study employed the Friedman test method, 

considering a range of potential threshold options, including 

{0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12}. Four representative 

benchmark functions were chosen for testing, evaluating 

convergence performance under different thresholds to 

derive corresponding mean ranking. A lower mean ranking 

indicates superior overall optimization performance of the 

algorithm. Experimental comparisons revealed that when the 

diversity threshold lowd  was set to 0.08, the mean ranking 

across the tested functions were minimized. Thus, to 

maximize the performance of the DFAGD algorithm, the 

diversity threshold lowd  was set at 0.08. This critical 

configuration ensures the algorithm maintains population 

diversity while efficiently conducting global searches and 

effectively avoiding the pitfalls of local optima. 

 

TABLE 2. THE RESULTS OF THE FRIDMAN TEST AT DIFFERENT THRESHOLDS 

WERE ANALYZED 

lowd
 

BEST FITNESS MEAN 
RANKING f5 f11 f15 F18 

0.06 7.31E+02 5.95E-01 8.00E-04 3.00E+00 2.38 

0.07 1.76E+03 4.35E-01 8.00E-04 3.02E+00 2.38 

0.08 1.08E+03 3.15E-01 1.40E-03 3.00E+00 2.25 

0.09 1.97E+03 5.61E-01 3.60E-03 3.00E+00 3.50 

0.10 3.74E+03 8.21E-01 1.80E-03 4.81E+00 6.00 

0.11 4.20E+03 6.90E-01 1.20E-02 1.11E+01 6.50 

0.12 1.91E+03 6.58E-01 1.37E-02 3.18E+00 5.00 
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  (a) f3 
    

(b) f8 

  (c) f15 
    

(d) f27  
Fig. 1 the comparison of population diversity between FA and DFAGD across four distinct test functions 

 

B. Population Diversity Analysis 

To validate the effectiveness of the improved DFAGD 

algorithm, standard FA is compared with the enhanced 

DFAGD on four different test functions. When evaluating 

population diversity, the ( )diversity t  is employed as a 

metric that effectively reflects the distribution status of 

individuals within the population. A smaller value of 

( )diversity t  indicates a higher tendency for individuals to 

cluster within a specific region, implying lower population 

diversity. Conversely, a larger ( )diversity t  value suggests 

that individuals are more widely spread across the search 

space, indicating higher population diversity. By contrasting 

the variations in ( )diversity t  values between FA and 

DFAGD on the same test functions, one can visually assess 

the algorithms' search capabilities and optimization effects. 

Fig. 1 illustrates the comparison of population diversity 

between FA and DFAGD across four distinct test functions. 

The experimental results reveal that, compared to FA, 

DFAGD significantly enhances population diversity during 

the iterative process. This enhancement not only allows 

DFAGD to thoroughly explore the search space and discover 

more potential optimal solutions but also effectively 

mitigates the risk of the population getting trapped in local 

optima. 

C. Algorithm Convergence Analysis 

To further validate the significant advantage of the 

improved DFAGD algorithm in terms of convergence speed, 

an in-depth experimental study was conducted using four 

widely representative test functions. As shown in Fig. 2, the 

graph provides a detailed comparison of the convergence 

characteristics between FA and DFAGD across the four 

different test functions. In the graph, the convergence curve 

of FA is depicted by a blue line, while the convergence curve 

of DFAGD is represented by an orange line. By comparing 

the convergence curves of both algorithms, it is evident that 

the enhanced DFAGD algorithm exhibits outstanding 

convergence performance across all four test functions 

compared to the standard FA. Specifically, whether in the 

early or later stages of iteration, DFAGD consistently 

approaches the optimal solution at a faster rate. This indicates 

that under the same number of iterations, the DFAGD 

algorithm can efficiently find an approximate optimal 

solution to the problem, significantly enhancing the overall 

execution efficiency of the algorithm. These experimental 

results not only further confirm the effectiveness and 

superiority of the DFAGD algorithm improvements, but also 

provide strong support for its application in the detection of 

protein complexes. 
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(d) f27 
Fig. 2 the comparison of the convergence characteristics between FA and DFAGD across the four different test functions 

 

D. Experimental Data and Evaluation Metrics 

In this paper, we tested several datasets for Saccharomyces 

cerevisiae, including DIP [23], Gavin [24], Krogan [25], and 

MIPS [26]. We also used the standard dataset, CYC2008 [27], 

which consists of 408 protein complexes. 

To assess how well the protein complexes have been 

detected, three commonly used statistical evaluation metrics 

are employed, namely precision, recall, and F-measure [28]. 

These metrics are measured on a scale of 0.0 to 1.0, with 

higher values indicating better detection methods and better 

performance of the complexes. The formulas used to 

calculate these evaluation metrics are given below: 

TP
Precision

TP FP
=

+
                                 (20) 

TP
Recall

TP FN
=

+
                                  (21) 

( )2 Precision Recall
F measure

Precision Recall


− =

+
             (22) 

Where TP  is the number of protein complexes detected by 

the algorithm that matches the standard protein complex, and 

FP  is the number of protein complexes detected by the 

algorithm that do not match the standard protein complex, 

FN  is the number of undetected protein complexes in the 

standard protein complex. F-measure is the harmonic mean 

of precision and recall. 

E. Performance Comparison 

To comprehensively evaluate the performance and 

effectiveness of the DFAGD-DPC method, a rigorous 

analysis was conducted using four diverse datasets. These 

datasets were chosen to represent a wide range of 

biological conditions and protein interactions, ensuring 

the reliability and generality of the results. To benchmark 

DFAGD-DPC against existing methods, ten established 

protein complex detection algorithms were selected for 

comparison. These included MCL [29], MCODE [30], 

ClusterONE [31], CSO [32], CORE [33], COACH [7], 

EWCA [34], MP-AHSA [14], NLPGE-WPN [35] and 

LCDA [36]. 
To better compare the results of protein complex detection, 

Table 3 compares the performance of DFAGD-DPC with ten 

classical methods on four datasets. The table highlights the 

top three experimental results in bold font, with the ranking 

indicated in the superscript, providing a clear and concise 

visualization of the method's superiority. This allows readers 

to quickly identify the most effective methods and gain a 

deeper understanding of the relative performance of each 

algorithm. The results show that DFAGD-DPC is a better 

protein complex detection method in terms of precision, 

recall, and F-measure in the MIPS dataset as compared to 

other methods. For the Gavin dataset, precision and recall are 

better than other methods, but the F-measure is even better.  
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TABLE 3. COMPARES THE PERFORMANCE OF DFAGD-DPC WITH EIGHT CLASSICAL METHODS ON FOUR DATASETS. 

datasets algorithm precision recall F-measure 

DIP MCL 0.185 0.517 0.272 

MCODE 0.618 0.232 0.337 

CORE 0.277 0.7381 0.403 

COACH 0.517 0.542 0.529 

ClusterONE 0.339 0.609
 

0.435 

CSO 0.6263 0.440 0.517 

EWCA 0.499 0.7012 0.5833 

MP-AHSA 0.7991 0.473 0.5942 

NLPGE-WPN 0.488 0.6693 0.564 

LCDA 0.608 0.552 0.578 

DFAGD-DPC 0.6702 0.548
 

0.6031 

Gavin MCL 0.642 0.441 0.523 

MCODE 0.7271 0.142 0.238 

CORE 0.574 0.434 0.494 

COACH 0.525 0.331 0.406 

ClusterONE 0.641 0.4803 0.549 

CSO 0.6453 0.302 0.411 

EWCA 0.607 0.402 0.484 

MP-AHSA 0.556 0.440 0.491 

NLPGE-WPN 0.632 0.50421 0.5601 

LCDA 0.631 0.49732 0.5563 

DFAGD-DPC 0.7002 0.465 0.5592 

Krogan MCL 0.456 0.5661 0.5053 

MCODE 0.7242 0.157 0.258 

CORE 0.412 0.5422 0.468 

COACH 0.617 0.343 0.441 

ClusterONE 0.463 0.523 0.491 

CSO 0.7261 0.331 0.445 

EWCA 0.7053 0.368 0.483 

MP-AHSA 0.555 0.461 0.5043 

NLPGE-WPN 0.578 0.5313 0.5531 

LCDA 0.589 0.520 0.5522 

DFAGD-DPC 0.645 0.483 0.5522 

MIPS MCL 0.202 0.545 0.295 

MCODE 0.447 0.115 0.183 

CORE 0.249 0.6243 0.356 

COACH 0.301 0.289 0.295 

ClusterONE 0.280 0.448 0.344 

CSO 0.4952 0.289 0.365 

EWCA 0.412 0.338 0.412 

MP-AHSA 0.401 0.6422 0.4932 

NLPGE-WPN 0.4853 0.599 0.5362 

LCDA 0.468 0.518 0.492 

DFAGD-DPC 0.5001 0.6441 0.5631 

 

Although the values of precision and recall in the DIP and 

Krogan datasets are slightly lower than other methods, the  

F-measure is higher. Ultimately, the DFAGD-DPC method 

proves to be more effective in detecting protein complexes 

than other methods. 

F. Comparison with Known Protein Complexes 

To clearly demonstrate the algorithm's performance and 

the accuracy of our results. we conducted a thorough analysis 

to compare the accuracy of the DFAGD-DPC detection 

results with four other methods on the Krogan dataset. 

Specifically, we focused on the 265th protein complex from 

the CYC2008 standard protein complex. This complex 

consists of 12 protein nodes, including YNL232W, 

YOL021C, YHR081W, YGR158C, YHR069C, YOL142W, 

YDL111C, YCR035C, YDR280W, YGR095C, YOR001W, 

and YGR195W.  

As shown in Fig. 3, a visual analysis of the results of the 

assays for known protein complexes and DFAGD-DPC and 

four other methods is shown. The blue nodes indicate the 

correctly detected proteins, the green nodes represent 

undetected proteins, and the pink nodes signify incorrectly 

detected proteins. As shown in the figure, the CORE method 

is less efficient, detecting only 2 standard proteins correctly. 

However, the MCODE and ClusterONE methods have 

shown improved detection efficiency by identifying 6 and 9 

standard proteins correctly, respectively. The EWCA method 

has better detection results than the previous methods, 

detecting 11 standard proteins correctly but also incorrectly 

detecting 2 other proteins. The DFAGD-DPC method, on the 

other hand, detects all 12 standard proteins but also detects 2 

proteins (YOR076C and YNR024W) incorrectly. This is 

mainly due to their stronger interactions and connections 

with more protein nodes in the complex. Ultimately, the  
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(a) known protein complexes        

(b) MCODE 

     
(c) CORE   

(d) ClusterONE 

   
(e) EWCA 

       
(f) DFAGD-DPC 

Fig. 3 A visual analysis of the results of the assays for known protein complexes and DFAGD-DPC and four other methods 

 
DFAGD-DPC method achieves the best performance in 

detecting protein complexes. 

In order to determine which proteins in the protein 

complexes detected by the DFAGD-DPC method are correct 

or incorrect, the detected results are compared with known 

protein complexes from a standard library. Table 4 provides a 

comparison of some complexes with reference classes in the 

Krogan dataset. Upon examination of Table 4, it is evident 

that the DFAGD-DPC method has successfully identified 

protein complexes with serial numbers “1”, “2”, “4”, and “5”. 

However, in the test results for serial numbers “3” and “6”, 

YDR416W and YLR145W were incorrectly detected, and in 

the complex with serial number “6”, YBL018C was not 

detected at all. Based on these experimental findings, we can 

conclude that the DFAGD-DPC method is able to correctly 

identify most protein complexes, despite the presence of 

some individual complexes that may contain incorrect or 

missing proteins. However, the proteins within the standard 

protein complexes are detected correctly. 

Fig. 4 visualizes the protein complex with serial number 

“6” in Table 4. Fig. 4(a) shows the interaction network of the 

standard protein complexes in the Krogan dataset. The green 

node represents undetected proteins, primarily because they 

do not interact with the other protein nodes in the complex. 

Fig. 4(b) displays the protein complex detected by the 

DFAGD-DPC method. The blue nodes indicate correctly 

detected proteins, while the pink node represents an 

incorrectly detected protein. Unfortunately, YLR145W is 

mistakenly detected due to its weak interaction with the 

complex, only having an association with the node 

YHR062C, leading to its incorrect detection. 
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(a) the interaction network of a standard protein complex in the 

Krogan dataset 

 
(b) the protein complex detected by the DFAGD-DPC method 

Fig. 4 Visualizes the protein complex with serial number “6” in Table 4 
 

TABLE 4. COMPARISON OF SOME COMPLEXES WITH REFERENCE CLASSES IN THE KROGAN DATASET. 

Num Standard protein complex Correct protein complexes Incorrect protein complexes 

1 YGR206W YLR119W 

YCL008C YPL065W 

YCL008C YGR206W 

YLR119W YPL065W 

 

2 YKL052C YDR016C YKR083C 

YBR233W-A YDR320C-A 

YGR113W YGL061C 

YKL138C-A YDR201W 

YKR037C 

YDR016C YDR320C-A 

YKR037C YDR201W 

YGL061C YGR113W 

YKL052C YKR083C 

YKL138C-A YBR233W-A 

 

3 YBR126C YDR074W 

YMR261C YML100W 

YDR074W YBR126C 

YDR416W YML100W 

YMR261C 

YDR416W 

4 YGL223C YGR120C 

YER157W YPR105C 

YNL051W YNL041C 

YGL005C YML071C 

YGL223C YER157W YPR105C 

YML071C YNL051W 

YNL041C YGR120C YGL005C 

 

5 YIL062C YLR370C YKL013C 

YNR035C YBR234C 

YDL029W YJR065C 

YDL029W YJR065C YLR370C 

YIL062C YKL013C YBR234C 

YNR035C 

 

6 YNL221C YNL282W 

YBR257W YAL033W 

YGR030C YBR167C YBL018C 

YIR015W YHR062C 

YHR062C YGR030C 

YLR145W YNL282W 

YBR257W YBR167C 

YAL033W YIR015W 

YNL221C 

YLR145W 

 

V. CONCLUSIONS 

In this study, we present a novel method, called 

DFAGD-DPC, for detecting protein complexes. Our 

approach leverages the unique biological characteristics of 

fireflies and their inherent capacity to self-organize protein 

complexes. Initially, the method identifies seed nodes by 

assigning weights to the PPI network. Subsequently, the 

firefly population is segregated based on gender, with male 

fireflies being used to identify core proteins. This is achieved 

by redefining population diversity to assess individual 

aggregation levels and introducing a spring model that aids 

the algorithm in overcoming local optima. Simultaneously, 

female fireflies are employed to detect attachment proteins. 

Our methodology utilizes the optimal region highlighted by 

the male population strategy to guide the female population 

in the search for superiority. Experimental findings 

demonstrate the effectiveness of the DFAGD-DPC method in 

detecting protein complexes; however, the method detects 

more overlapping protein complexes, and this issue will be a 

crucial area of focus for future research. 
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