

Abstract—In recent years, graph convolutional networks

(GCNs) have gained significant attention for graph embedding
learning. However, the efficacy of GCNs and their variants is
often constrained by the implicit homophily assumption, which
presumes nodes in close proximity to exhibit similar features.
This assumption becomes particularly limiting in the context of
complex heterogeneous graphs, as it restricts GCNs' ability to
aggregate diverse node information. Addressing this, we
propose a novel aggregation mechanism adept at discerning
homophilic from heterophilic neighborhoods, thus achieving
effective “classification aggregation”. More specifically, this
study combines block modeling with the aggregation process,
allowing the GCNs to learn the aggregation rules across
various classes of neighbors automatically. On this basis, a
multi-view module is designed to extract semantic information
from each view, and the final embedding is obtained by
aggregating the information from all views through the
attention module. Experiments indicated that the proposed
method performs optimally across both heterogeneous and
homogeneous graph datasets.

Index Terms—Multi-View Networks, Block Matrix, Graph
Convolutional Networks, Graph Neural Networks.

I. INTRODUCTION

RAPH network data processing traditionally relies on
matrix decomposition methods. However, these

methods struggle to scale with the expanding size and
increasing sparsity of real-world networks. Against this
backdrop, graph representation learning has gained
prominence. It transforms graph nodes into low-dimensional
vectors, allowing adaptable application of these
representations in various data mining tasks. This
adaptability significantly improves the model’s accuracy

Manuscript received November 18, 2023; revised April 11, 2024.
This work was supported in part by the Science Foundation of Fujian

Province (No. 2021J011188), Xiamen Overseas Returnees Program under
Grant (XM202017206), and the XMUT Scientific Research Project (No.
YKJCX2021079).

Kaibiao Lin is a professor and master tutor of Department of Computer
Science and Technology, Xiamen University of Technology, Xiamen
361024, China (e-mail: 2010110706@t.xmut.edu.cn).

Runze Chen is a postgraduate of Department of Computer Science and
Technology, Xiamen University of Technology, Xiamen 361024, China (e-
mail: 2122031199@s.xmut.edu.cn).

Jinpo Chen is a postgraduate of Department of Computer Science and
Technology, Xiamen University of Technology, Xiamen 361024, China
(corresponding author to provide e-mail: 18959237151@163.com).

Ping Lu is an associate professor and master tutor of School of
Economic and Management, Xiamen University of Technology, Xiamen
361024, China (e-mail: 2011990101@t.xmut.edu.cn).

Fan Yang is an associate professor and master tutor of Department of
Automation, Xiamen University, Xiamen 361005, China (corresponding
author to provide e-mail: yang@xmu.edu.cn).

and reliability for different downstream tasks. Currently,
research predominantly focuses on learning representations
for homogeneous networks. Notable methods include
random walk-based graph representations, which gather
topological graph information by traversing neighboring
nodes. Models like DeepWalk [1], LINE [2], and Node2vec
[3] are the most representative of this domain. In more detail,
DeepWalk combined skip-gram and random walk to derive
network node embeddings. Additionally, LINE excelled in
sparse graphs by employing first-order and second-order
neighbor similarities for precise node representation
learning. Meanwhile, Node2vec merged depth-first and
breadth-first sampling to capture local and preserve global
topological information within the embedding space.

In recent years, inspired by recurrent neural networks and
convolutional neural networks, neural network-based graph
representation learning has become a hot research topic. In
this context, GCNs [4] stand out for their effectiveness in
heterogeneous graph representation learning. The essence of
these models lies in feature aggregation. More specifically,
in GCNs, a node's embedding is refined by aggregating
feature information from its neighbors through
convolutional operations, and then tailored for specific
downstream tasks under partial label supervision. The great
success of GCNs can be largely attributed to the integration
of topological structure with node feature information,
facilitating the learning of node embeddings within a
supervised learning framework.

Although widely employed, GCNs and their variants [5,6]
have two main limitations. First, real-world networks, such
as social networks [7,8], physical systems [9,10], traffic
networks [11,12], citation networks [13,14], recommender
systems [15,16,17], and knowledge graphs [18,19] are often
heterogeneous graphs. These networks have diverse nodes
and edges, representing distinct entities and relationships.
Adapting GCNs for such diversity is challenging, as it
demands multi-dimensional information extraction and
fusion for accurate node embeddings. Previous GCN
applications [20] typically process only one view of these
networks or test each one to identify the best fit. These
methods fail to leverage the complete, multifaceted nature of

Multi-View Block Matrix-Based Graph
Convolutional Network

Kaibiao Lin, Runze Chen, Jinpo Chen*, Ping Lu and Fan Yang*

G

Fig. 1. Process of classifying aggregation.

Engineering Letters

Volume 32, Issue 6, June 2024, Pages 1073-1082

__

data in heterogeneous networks. Second, GCNs and their
variants typically assume that neighboring nodes share
similar representations and class affiliations. This
assumption leads GCNs to treat all neighbors equally during
aggregation, which can dilute the quality of the resulting
node representations. Fig. 1 indicates that there are three
types of nodes in the network, and direct aggregation of the
central node v without processing introduces much noise
from blue and yellow nodes, which is unsuitable for learning
node embedding. In this regard, designing aggregation
mechanisms that allow the central node to adaptively
discern between homophilic and heterophilic neighbors is
required, thereby facilitating the node's capability to achieve
classifying aggregation. Such mechanisms are designed to
enhance the influence of homophilic nodes during the
aggregation process while simultaneously reducing noise
from other types of nodes.

To enhance GCNs’ aggregation mechanism, we introduce
the multi-view block matrix-based graph convolution
algorithm, MVGCN. This algorithm incorporates a block
matrix within the GCN framework to implement block-
guided classifying aggregation, which enables the automatic
learning of specific aggregation rules for neighbors
belonging to different classes. By incorporating block
modeling into the aggregation process, GCN can selectively
aggregate information by distinguishing between neighbors
based on homophily degrees. Further, we design a multi-
view module, where each view represents a neighbor graph
under various semantics. Corresponding weighted neighbor
matrices are derived from the block matrix. Then, the final
embedding is obtained by aggregating information from all
views using the attention module. This process not only
merges insights from different views but also selectively
integrates the most relevant information at the node level
based on category proximity. This study has several
contributions:

(1) For heterogeneous graph data with multiple semantic
graph structures, a multi-view fusion method is proposed at
the semantic level, eliminating the drawback that GCNs can
only use a single view.

(2) At the node level, we introduce block matrix-guided
classify aggregation. This approach addresses the
shortcomings of GCNs in directly aggregating neighbors
and tackles the challenges posed by the homophily
assumption.

(3) MVGCN outperforms previous baselines in node
classification, node clustering, visualization, and ablation
experiments on real datasets (both homogeneous and
heterogeneous graph data).

II. RELATED WORKS

A. Homology and Heterology

Homology refers to the fact that interlinked nodes
typically belong to the same class or possess similar
characteristics, e.g., friends who follow each other in a
social network can share similar interests, and papers that
cite each other belong to the same field. However, real-
world networks often exhibit heterogeneity, linking nodes
from diverse classes or with distinct characteristics. For
example, different types of amino acids in protein structures

are more likely to constitute links, and most people in dating
networks prefer to communicate with those of the opposite
sex.

To counter the limitations of the homology assumption,
strategies generally fall into two categories. The first is
higher-order neighbor aggregation. Models like H2GCN [21]
and HAN [22] proposed that first-order neighbors might
exhibit heterogeneity, but aggregating higher-order
neighbors tended to reveal homogeneity. This method
effectively addressed direct neighborhood heterogeneity.
The second category is weighted aggregation. Approaches
such as GPR-GNN [23] and GAT [24] assigned weights to
neighbors based on node similarity or the relevance of
neighbor information. During aggregation, graph neural
networks gave more weight to similar neighbors, enhanced
the relevance of node information and reduced noise from
less similar neighbors.

B. Meta-Paths and Multi-Views

Fig. 2 (a) depicts an example of a heterogeneous graph
network consisting of users, movies, directors, and actors.
Building on this foundation, the concept of a meta-path
emerges as a crucial tool for capturing semantic information
in heterogeneous graphs. Specifically, the interaction
between users and movies represents a dual relationship of
watching and being watched. Similarly, the connection
between directors and movies shows the roles of directing
and being directed, while actors and movies are linked
through participation, with actors taking part in movies and
movies featuring these actors. A meta-path is a concept for
capturing semantic information in heterogeneous graphs.

The meta-path relationship between nodes 1A and 1lA is

defined as 1 2
1 2 1... lRR R

lA A A ,which

describes the complex relationship 1 2 ... lR R R R

between the node types 1A and 1lA . Here, signifies the

relationship composition operator is a compound operator
on the relationship. Meta-path-based methods are the most
widely used methods for heterogeneous graph embedding.
They are used to identify semantically related
neighborhoods. By doing so, these meta-paths, which are
ordered and symmetric, facilitate a deeper understanding of
node connections. For example, in Fig. 2 (b), meta-paths
like User-Movie-User (UMU), User-Movie-Director-Movie-
User (UMDMU), and User-Movie-Actor-Movie-User
(UMAMU) describe different relationships between users.
In more detail, UMU searches for users who watch the same
movie. UMDMU connects users through a director's

Fig. 2. Heterogeneous networks and meta-paths. Here, 'U' stands for
user, 'M' for movie, 'A' for actor, and 'D' for director. 'UMU' indicates
the meta-path user-movie-user.

Engineering Letters

Volume 32, Issue 6, June 2024, Pages 1073-1082

__

filmography. UMAMU aligns users with a preference for
the same actor. Hence, meta-paths effectively serve as
guides to higher-order nearest neighbors, enhancing node
relationship understanding through inherent semantic
significance.

In heterogeneous graphs, a node's local structure varies
with different relationship types. Different meta-paths can
reveal specific structural views of the network, and using
multiple meta-paths simultaneously can decompose the
heterogeneous graph into multi-view subnetworks. Fusing
these multi-view perspectives, which considers diverse
semantic information, can significantly enhance graph
information utilization. graph information utilization. For
instance, SemiGNN [25] developed a hierarchical attention
mechanism. This approach assigned weights to different
views and classified user fraud detection through multi-view

data analysis. MV-GNN [26] proposed a cross-dependent
information transfer scheme. It enhanced the information
channel for atomic and chemically bonded views and
introduced a shared self-attentive readout component and a
divergence loss stabilization training process. Moreover,
MAGCN [27] designed path encoders to capture the
consistency of geometric relationships and probability
distributions across views to find consistent clustered
embedding spaces for multi-view adaptively.

C. Graph Embedding

Graphs play a crucial role in numerous real-world
applications, offering insights into social structures, entity
relationships, and communication patterns. This relevance
has made graphs a focal point of academic research. Graph
embedding learning, which involves distilling graphs’
structural and semantic information into low-dimensional

Fig. 3. The MVGCN model: Panel (a) comprises a block-guided graph convolutional network and a multi-view fusion module. This architecture
distinctively processes diverse views through block matrix-guided graph convolutional networks. The final embedding is attained by integrating the
embedding representations of each view via a view-level attention fusion mechanism. Panel (b) utilizes an MLP to generate soft labels for nodes. These
labels are subsequently integrated with the network's topological structure to ascertain the block matrices. Finally, the weight matrices are calculated
based on the soft labels and the block matrices, culminating in classification aggregation.

Engineering Letters

Volume 32, Issue 6, June 2024, Pages 1073-1082

__

node representations, is increasingly applied to various
downstream tasks [28,29]. The graph embedding is evolving
through integration with advanced technologies, expanding
its application across various fields [30,31]. Several notable
contributions in this domain include: Chen et al. [32] first
designed a conflict detection-based metric, Totoro. It
assessed the topological position of nodes by addressing the
topological imbalance caused by marked nodes' asymmetry
and inhomogeneity. Building on this, the ReNode method
was developed to recalibrate node weights, tackling the
challenges of topological imbalance. Moreover, Zhang et al.
[33] proposed an effective robustness framework called
RoHe. It mitigated perturbation amplification effects and
soft attention mechanism issues by pruning unreliable
neighbors based on topology and features through attention
purifiers. Furthermore, Dou et al. [34] developed a CARE-
GNN model to address feature and relationship camouflage
in fraudulent networks. It leveraged label awareness to
identify information-rich neighbors and reinforcement
learning to determine optimal neighbor thresholds. Besides,
Liu et al. [35] built the GNN framework GraphConsis to
solve the inconsistency problem. It suggests integrating
contextual embedding with node features to tackle
contextual inconsistency and employs consistency scores to
filter neighbors based on feature inconsistency. Additionally,
it learns relational attention weights for sampled nodes to
manage relational inconsistency.

III. MODEL

Fig. 3 illustrates that MVGCN consists of two modules:
the block matrix-guided graph convolutional network, and
the multi-view fusion module. For the block matrix-guided
graph convolutional network module, the process begins
with utilizing Multilayer Perceptron (MLP) to generate the
soft labels of nodes. These labels, in conjunction with the
network’s topology, are used to determine the block matrix.
Subsequently, the weight matrix is computed from the soft
labels and the block matrix. This matrix is then used to
guide the classifying aggregation by assigning different
weights based on the network’s homogeneity and
heterogeneity. For the multi-view fusion module, each view
is distinct due to the changes in graph structure neighbors.
Hence, within each view, a unique weight matrix is
determined to conduct classifying aggregation. The final
embedding is derived by fusing the embedding
representation of each view with view-level attention.

A. Pre-Training

To mitigate the limitations imposed by the homology
assumption on GCNs, this study incorporates a block matrix
into the GCN framework. Given the label matrix Y of the
nodes and the adjacency matrix A of the graph network, the
block matrix [20] is defined as follows:

() ()T TB Y AY Y AE (1)

where E is an all-ones matrix of the same size as Y , and
 is a Hadamard division operation. In this paper, blocks
are the class of labels in the graph. The block matrix models
the probability of linking nodes in any two blocks and

(,)i jB is the probability of linking nodes in classes i and j

at the node level.
The block matrix is a statistical modeling of the structural

rules of the network. In order to obtain the block matrix, it is
necessary to know all node labels. However, GCN is a semi-
supervised learning model, and only a subset of labels is
available. Addressing this, this model leverages known data
to infer unknown labels, thus generating 'soft labels' based
on node attributes. Specifically, MVGCN employs a
multilayer perceptron to transform node attributes into soft
labels.

Here, X is the node attribute, MLP is the multilayer

perceptron, S is the output of MLP and () is the

activation function. A softmax operation is performed on S
to generate soft labels.

 S MLP X (2)

 SS softmax (3)

MVGCN pre-trains the MLP layer with actual labels to

ensure the reliability of the soft labels S . The loss MLPL is

minimized during the training process, making the soft label
S more closely resemble the actual label Y .

Here, iS is the soft label of node iv , iY is the actual label

of node iv , vT denotes all nodes in the training sets,

and ()f is the cross-entropy loss function.

 ,
i v

MLP i i
v T

L f S Y

 (4)

Replacing the true labelsY with the soft labels S in (1),

we obtain (5). where S is the soft label matrix calculated

from MLP , E is the all-ones matrix with the same size
as S , and is the Hadamard division operation.

The block matrix represents the connection pattern
between classes. It is used for quantifying the graph's
homology ratio. Specifically, a higher frequency of
connections between nodes with identical soft labels directly
correlates with an elevated homology ratio in the graph.

 T TB S AS S AE (5)

B. Block Similarity Matrix

The block matrix B describes the likelihood distribution
of node connectivity between any two classes. However,
this matrix cannot directly guide the GCN to classify
aggregation, especially in heterogeneous graphs. In such
graphs, edges often link dissimilar classes more frequently
than they connect similar ones. To address this, it is
necessary to modify the values of elements in the block
matrix B to facilitate the propagation of valuable
information during the graph convolution process. For this
purpose, we introduce the block similarity matrix Q ,

defined as:

 TQ BB (6)

The block similarity matrix Q measures the degree of

similarity between each block in B , indicating that classes
with similar structures will have more information

Engineering Letters

Volume 32, Issue 6, June 2024, Pages 1073-1082

__

dissemination. In addition, nodes in the same class should
have more information exchanges. To achieve this, the

elements on the main diagonal, represented by Diag Q ,

are thus augmented by an enhancement factor .

 Diag Q Diag Q (7)

C. Graph Convolution Propagation

MVGCN can assign different information dissemination
rules for different class combinations based on the block

similarity matrix Q . Meanwhile, soft labels can indicate the

specific class combination to which any pair of nodes
belongs. Thus, the information dissemination process can be
guided by the block similarity matrix Q and the soft label

matrix S . Specifically, for two nodes iV and jV with soft

labels 1 2 }{ , , , c
i i i iS s s s and 1 2 }{ , , , c

j j j jS s s s ,

respectively, where c is the number of classes, the node

pair (,)i jv v has 2c class combinations and the possibility of

each class combination is shown as follows:

 , r t
i r j t i jp v S v S s s (8)

where is the mapping function of the node’s class it

belongs to, and , 1,2, ,r t c .

The block similarity matrix Q represents the information

propagation probability between any two classes. The
greater the similarity between the two classes, the more
information should be propagated. The propagation

probability ijw between node pairs iv and jv can also be

regarded as the propagation expectation of the elements

in Q .

,
1 1

c c
r t

ij r t i j
r t

w q s s

 (9)

Here, ,r tq is an element in Q that represents the

propagation probability between class r and class t .
The propagation weights between node pairs are jointly

guided by the block similarity matrix Q and the soft label

matrix S . The graph’s propagation weights for all node
pairs can then be described as a weight matrix. Equation (10)
is the matrix expression of (9).

TW SQS (10)

Next, the weight matrix W is utilized to optimize the
topology of the graph network.

 A W A I (11)

Here, I is the unit matrix, is the Hadamard

multiplication operation, and A can be viewed as a weighted
adjacency matrix for which a softmax operation is
performed to normalize the weights of the edges. Elements

,ˆi ja in matrix Â can be calculated as:

,

,
,

exp
ˆ

exp
k

i j

i j
i k

v N

a
a

a

 (12)

where ,i ja is an element in A . In MVGCN, the traditional

adjacency matrix A used in the original GCN propagation

is substituted with the normalized adjacency matrix Â . This
alteration enables the graph convolution operation in
MVGCN to perform classify aggregation. Thus, the new

graph convolution propagation is defined as follows. lZ is

the node representation at layer l . 1
lW and 2

lW are the

learning parameters at layer l . Notably, when l is layer 0,
0Z X .

1 1
1 2

ˆl l l l lZ Z W AZ W (13)

D. Multi-View Fusion

The graph structure can be resolved from multiple views
in heterogeneous graphs. For example, in a movie network
consisting of users, movies, directors, and actors, the meta-
path user-movie-user (UMU) and user-movie-director-
movie-user (UMDMU) represent fans of the same movie
and users who adore the same director, respectively. The
structure of the graph network varies when observed under
different views, leading to the computation of distinct block
matrices. These matrices then determine the corresponding
weighted adjacency matrices, and the node embedding
under each view is obtained by graph convolution
propagation. After node-level aggregation, an additional
layer of view-level aggregation is required to obtain the final
node embedding.

Unlike heterogeneous graphs, homogeneous graphs only
have a single view and cannot be fused with multiple views.
In this case, a k-nearest neighbor graph is constructed for the
nodes in all graphs. This graph, along with the original
topological view, forms a feature view to make the proposed
algorithm more inclusive. This approach involves
computing a cosine similarity-based node similarity matrix,
from which the k-nearest nodes are selected as neighbors for
each node.

To determine the importance of each view, the multi-view

fusion module first transforms the node embedding iz of a

particular view i through a layer of MLP exercises. Then,

the importance of the view embedding iw is determined as
its similarity to the view-level attention vector, given as:

 tanhi T
iw q MLP z (14)

Following the determination of each view's importance,
normalization is performed using the softmax function to
derive the view weights, as outlined in (15):

exp

exp

i

i

m

m M

w
a

w

 (15)

where M is the total number of views. The view weights
ia can be interpreted as the degree of contribution of

various views to a particular downstream task, and the larger

Engineering Letters

Volume 32, Issue 6, June 2024, Pages 1073-1082

__

the view weight, the more critical the view. In the final step,

the learned view weights ia are used as coefficients, and

the node embedding representations iZ under different

views are weighted averaged to get the final node

embedding representation Ẑ , as outlined in (16). By doing
so, the final node embedding representation is more aligned
with the views that hold larger weights.

1

ˆ
m

i
i

i

Z a Z

 (16)

Similar to (4), a cross-entropy loss GCNL is calculated

between the final node embedding calculated by (16) and
the actual label.

 ˆ ,
i v

GCN i i
v T

L YZf

 (17)

Finally, the embedding loss GCNL is combined with the

soft label loss MLPL to obtain the final loss function L , as

shown in (18).

 1GCN MLPL L L (18)

Here is the balance parameter (default is 0.5). By

minimizing L , we train all modules end-to-end.

IV. EXPERIMENTS AND ANALYSIS

This section presents the baseline models for comparison
and outlines the parameter settings of each model, alongside
pertinent details about the four datasets used in this paper. In
the following sections, we systematically conduct node
classification, node clustering, model ablation, and
visualization experiments. These tests aim to demonstrate
the superiority and effectiveness of our proposed MVGCN
across different downstream tasks. Notably, beyond its
superior performance in heterogeneous graphs, MVGCN
also results in better performance on two homogeneous
graph datasets, which further illustrates the MVGCN’s
compatibility.

A. Experimental Settings

We test our MVGCN model against established
benchmarks, including various classical graph neural
network models. The baseline models used for comparison
are shown as follows.
 GCN [4]: This model is a scalable semi-supervised

learning method that performs convolutional
operations on graph-structured data. Since the model is
applied to homogeneous graphs, it was evaluated with
each view and the best one was reported.

 GAT [24]: This model is a variant of GNNs designed for

homogeneous graphs. It is a semi-supervised neural
network that introduces an attention mechanism.
Similarly, this experiment evaluated all views and
selected the one with the best performance.

 HAN [22]: This model is a heterogeneous graph neural
network based on hierarchical attention that includes
node-level and semantic-level attention. It fully
considers the importance of nodes and meta-paths.

 BM-GCN [20]: This model is also a variant of GNNs
designed for homogeneous graphs. It introduces block
modeling in the graph convolution operation and
implements block-guided node classification
aggregation.

 MVGCN: The model proposed in this study. It utilizes
block matrix-guided graph convolutional networks for
the node level aggregation to achieve classifying
aggregation. At the semantic level, it implements
multi-view fusion to improve the quality of node
embedding.

For the experiments, we adhere to the default
configurations for the GCN, GAT, HAN, and BM-GCN
models, as these settings have been proven to yield optimal
outcomes. To maintain consistency across models, the
embedding dimension is uniformly set at 64. Regarding the
MVGCN model develops in this research, we employ the
Adam optimizer with key parameters configured as follows:
a learning rate of 0.001, weight decay of 0.0005, a two-layer
GCN architecture, and a dropout and balance parameter both
set at 0.5. To optimize training efficiency, we implement an
early stopping mechanism, ceasing training if no accuracy
improvement is observed after 100 consecutive rounds.

B. Datasets

This study conducted experiments on four real datasets.
Specifically, ACM [36] and DBLP [37] are heterogeneous
graph networks, while Cora [38] and Pubmed [39] are two
different homogeneous graph networks. All models were
consistently trained using the training set nodes. Then the
optimal model was selected using the validation set nodes,
and the model performance was evaluated utilizing the test
set nodes. Table I summarizes the number of nodes, number
of relations, number of categories, number of training sets,
number of validation sets, number of test sets, and feature
dimensions for each dataset.

C. Node Classification

To validate the model’s representational ability, Support
Vector Machines (SVM) was used as the base classifier.
Here, the SVM was chosen for its simplicity, efficiency, and
broad applicability. Notably, the test set nodes were not
involved in the optimization model in the graph neural
network model, which means they were neutral in the model.

TABLE I
STATISTICS OF DATASETS

Dataset Number of nodes Number of relationships Train Test Val Class Feature dimension

ACM 8916 12769 600 2125 300 3 1870

DBLP 27194 122393 200 3057 800 4 334

Cora 2708 10556 1192 497 796 7 1433

Pubmed 19717 88648 9463 3944 6310 6 500

Engineering Letters

Volume 32, Issue 6, June 2024, Pages 1073-1082

__

Therefore, incorporating these nodes as new entities into the
SVM model validates the effectiveness of the graph neural

network model in learning the node embedding. For a
comprehensive evaluation, the test set nodes were re-split,
and randomly selected the training set size to vary between
20% and 80% of the data. This process was repeated ten
times, and the results were averaged to ensure reliability.
We used macro-F1 and micro-F1 scores as our evaluation
metrics.

Figs. 4 to 7 depict the performance comparison of various
models on node classification across all datasets. Overall,
the GCN performed the worst. This was because it treated
all neighboring nodes equally, without differentiating their
contributions from the central node. Such uniform
aggregation of neighbor information resulted in significant
noise. Conversely, GAT outperformed GCN on
homogeneous graphs due to its attention mechanism. This
feature enables selective weighting of neighbors, focusing
on those most likely to improve node representation.
However, its effectiveness was limited on heterogeneous
graphs due to structural complexities. In addition to the
node-level attention mechanisms of GAT, the HAN model
included view-level attention mechanisms. It also features a
two-layer architecture, enhancing compatibility with
heterogeneous graphs. As a result, HAN outperforms both
GCN and GAT. Similar to HAN, MVGCN adopts a two-
layer architecture but goes further by adding a block matrix
for improved classification, akin to BM-GCN. On the ACM
dataset, the results of MVGCN are all more than 2% higher
than the HAN model, which is the second-best result.
However, unlike BM-GCN, which relies only on a block
matrix and underperforms in multi-view scenarios like the
ACM dataset, MVGCN enhances its architecture with multi-
view fusion. This addition allows MVGCN to exceed the
capabilities of BM-GCN, particularly in datasets with a
large number of views. In addition, on the homogeneous
graph PubMed dataset, the results of MVGCN essentially
improve by more than 2% over the BM-GCN model, which
is the second best in terms of results. In general, by
combining a block matrix with multi-view fusion, MVGCN
excels in both homogeneous and heterogeneous graphs,
particularly exhibiting a significant lead over other GNN
models on ACM and PubMed.

Fig. 4. Experiment results on the ACM datasets for the node
classification task.

Fig. 5. Experiment results on the DBLP datasets for the node
classification task.

Fig. 6. Experiment results on the Cora datasets for the node
classification task.

Fig. 7. Experiment results on the Pubmed datasets for the node
classification task.

TABLE II
NODE CLUSTERING TASK

Datasets Metrics GCN GAT HAN BM-GCN MVGCN

DBLP
NMI 75.01 71.43 79.26 75.30 79.39

ARI 80.49 77.15 84.48 81.49 85.18

ACM
NMI 51.40 57.07 61.38 63.06 71.16

ARI 53.01 60.42 64.46 66.15 75.04

Cora
NMI 56.97 70.05 74.87 72.90 75.09

ARI 43.82 69.53 73.73 70.05 75.43

Pubmed
NMI 43.66 45.86 48.36 49.18 50.23

ARI 47.18 48.24 50.67 50.09 52.46

Engineering Letters

Volume 32, Issue 6, June 2024, Pages 1073-1082

__

D. Node Clustering

Similar to node classification, K-means clustering
algorithm was utilized for node clustering analysis. Here, we
set the attributes of cluster centers as the number of
categories in each dataset. Given K-means' sensitivity to
initial center, iterations were repeated ten times to average
the results. Then, NMI and ARI were used as evaluation
metrics. Table II displays the outcomes of experiments
conducted on all datasets. Similar to the node classification
results, GCN and GAT have the worst outcomes because
they only focus on the node level and do not consider that
the graph structure is different in various views. On the
other hand, HAN and BM-GCN introduce multi-view and
block modules respectively, and have shown improved
performance. On the ACM dataset, MVGCN outperforms
the second-place BM-GCN model by over 8%, showing the
good performance of MVGCN. In addition, MVGCN
outperforms across all datasets, further illustrating the
effectiveness of multi-view fusion and the necessity of
classification aggregation.

E. Ablation Experiments

This section presents further experiments with different
variants of MVGCN to verify the effectiveness of the block
similarity matrix and multiple views for the proposed model.
The results were repeated ten times for averaging. Moreover,
NMI, ARI, and F1 were used to determine the clustering and
classification performance. Table III lists the outcomes
across all datasets. In Table III, MVGCN-b indicates that the
original adjacency matrix was utilized for the experiments
rather than the block similarity matrix. Moreover, MVGCN-
mv indicates the absence of the multi-view fusion module,
where the best performing view in heterogeneous graphs
was identified and used. The results in Table III demonstrate
MVGCN's superior performance across all metrics and
datasets, highlighting how the block similarity matrix and
the multi-view fusion module help to improve the

embedding ability of the model nodes. Especially on the
Cora dataset, the MVGCN demonstrated notably superior
performance over the MVGCN-b model, with respective
improvements of 8.2%, 19.75%, and 2.36% in the NMI,
ARI, and F1 metrics. The slightly lower findings of
MVGCN-b compared to MVGCN-mv indicate that it can be
more critical to implement classifying aggregation to
remove excessive noise in node-level aggregation than to
introduce additional views in most cases.

F. Block Similarity Matrix Experiment

This study proposes MVGCN to achieve block-guided
classification aggregation, so that nodes belonging to the
same or similar classes have more information exchange. To
facilitate this, MVGCN introduces a block matrix to model
the relationship between classes. The elements in the block
matrix B represent the possibility of a connection between
various types of nodes. However, in heterogeneous graphs,
where connections more frequently occur between different
classes, the block matrix alone doesn't suffice for guiding
GCN in classification aggregation. To address this,
MVGCN further calculates the block similarity

matrix Q through the block matrix, so that the model

presented in this paper can simultaneously operate on graph

TABLE III
RESULTS OF MVGCN MODEL ABLATION EXPERIMENTS

Datasets Metrics MVGCN-b MVGCN-mv MVGCN

DBLP

NMI 75.02 76.58 79.39

ARI 80.85 82.34 85.18

F1 93.82 93.86 94.02

ACM

NMI 69.55 69.73 71.16

ARI 72.37 72.42 75.04

F1 92.24 92.37 93.01

Cora

NMI 66.89 73.00 75.09

ARI 55.68 71.35 75.43

F1 88.10 88.90 90.46

Pubmed

NMI 49.40 48.34 50.23

ARI 50.46 50.18 52.46

F1 88.09 85.92 88.28

(a) B matrix on Cora dataset (b) B matrix on ACM dataset

Fig. 8. Block matrix calculated based on ground truth.

(a) B matrix on Cora dataset (b) B matrix on ACM dataset

Fig. 9. Block matrix calculated based on the method in this paper.

(a) Q matrix on Cora dataset (b) Q matrix on ACM dataset

Fig. 10. Block similarity matrix calculated based on the method in this
paper.

Engineering Letters

Volume 32, Issue 6, June 2024, Pages 1073-1082

__

networks with homology and heterology. This study uses the
homology graph Cora and the heterology graph ACM to
illustrate the operation of the block similarity matrix.

Fig. 8 depicts the block matrix B of Cora and ACM
calculated based on the ground truth labels. It indicates that
the two matrices have different distribution patterns. In the
homogeneous graph Cora, the connection possibility of
nodes within the same class is relatively high, whereas in the
heterogeneous graph ACM, the connection possibility of
nodes between different classes is relatively high. Fig. 9
shows the block matrix B learned on the Cora and ACM
datasets using the proposed method. Since the label is
unknown in advance, MVGCN determines the soft label

using (3) and then obtains the block matrix B . As illustrated
in Figs. 8 and 9, regardless of the Cora or ACM dataset, the

block matrix B calculated by MVGCN is always close to B ,
demonstrating that the proposed method has a strong
learning ability. In this case, the learned block matrix B can
only be employed to aggregate more information on
homology graphs and cannot be applied to heterology
graphs. In the block matrix of ACM, larger off-diagonal
elements still cause nodes to receive an excessive amount of
noise during graph convolution, resulting in performance
degradation. Therefore, this study uses the (6) to create a
new block similarity matrix Q based on B , which can

accurately measure the relationship between two classes
from a new perspective. Two classes should be more similar
if their graph connections are distributed similarly. As
shown in Fig. 10, the diagonal elements of the block

similarity matrix Q always have a larger value than that of

off-diagonal elements. It successfully achieves classification
aggregation on both homology and heterology graphs while
preserving the original distribution of the block matrix,
ensuring the stability of MVGCN performance across

various datasets.

G. Visualization

A visualization task is performed to compare the
representational abilities of different GNN models by
depicting node embedding distributions in a two-
dimensional space. Using the t-SNE method on the Cora
dataset, Fig. 11 presents node embeddings method for each
model. In more detail, panels (a) and (b) of Fig. 11 present
that GCN and GAT have the worst performances as nodes
of various classes are mixed together in the figure’s lower
left corner. In contrast, HAN and BM-GCN show improved
results, indicating that both multi-view and block matrices
contribute to the ability of node representation. Compared to
the HAN model, MVGCN has tighter intra-class distances.
Additionally, compared to BM-GCN, MVGCN has large
inter-class distances. These highlight the superior efficacy of
MVGCN's multi-view fusion and block similarity matrices
in achieving more accurate categorical aggregation and
leveraging information from multiple views for improved
outcomes.

V. CONCLUSION

In this paper, we propose a novel method called MVGCN,
aiming at refining the aggregation process in GCNs models
by distinguishing among complex neighbor categories.
Specifically, the MVGCN model enhances node-level
aggregation by introducing a block matrix-guided graph
convolutional network. Additionally, MVGCN creates a
novel weighted adjacency matrix from block similarity and
soft label matrices. This new matrix refines the network's
topology, enhancing the model's ability to aggregate and
classify nodes accurately. Moreover, MVGCN adapts to
different graph topologies by calculating unique weight
matrices for each view, leading to specialized node
embeddings through graph convolution. These embeddings

(a) GCN (b) GAT (c) HAN

(d) BM-GCN (e) MVGCN

Fig. 11. Visualization results of different GNN models using t-SNE.

Engineering Letters

Volume 32, Issue 6, June 2024, Pages 1073-1082

__

are integrated using a view-level attention mechanism,
ensuring a cohesive aggregation of multiple perspectives.
Empirical results underscore the robustness of the
algorithms introduced in this study. In tasks such as node
classification, node clustering, ablation analysis, and
visualization experiments, the MVGCN model demonstrates
superior performance. The model's learned representations
are versatile, proving beneficial for a range of downstream
tasks in both heterogeneous and homogeneous graph
contexts.

REFERENCES
[1] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of

social representations,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2014, pp. 701–710.

[2] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the
24th International Conference on World Wide Web, 2015, pp. 1067–
1077.

[3] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp.
855–864.

[4] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” arXiv preprint arXiv:1609.02907,
2016.

[5] D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu, and P. Cui, “Structural deep
clustering network,” in Proceedings of the Web Conference 2020,
2020, pp. 1400–1410.

[6] C. Huang, Y. Zhong, "A network representation learning method
fusing multi-dimensional classification information of nodes," IAENG
International Journal of Computer Science, vol. 50, no.1, pp94-105,
2023.

[7] J. Koskinen and T. A. Snijders, “Multilevel longitudinal analysis of
social networks,” Journal of the Royal Statistical Society Series A:
Statistics in Society, vol. 186, no. 3, pp. 376–400, 2023.

[8] D. K. S. Singh, N. Nithya, L. Rahunathan, P. Sanghavi, R. S. Vaghela,
P. Manoharan, M. Hamdi, and G. B. Tunze, “Social network analysis
for precise friend suggestion for twitter by associating multiple
networks using ml,” International Journal of Information Technology
and Web Engineering (IJITWE), vol. 17, no. 1, pp. 1–11, 2022.

[9] A. Thangamuthu, G. Kumar, S. Bishnoi, R. Bhattoo, N. Krishnan, and
S. Ranu, “Unravelling the performance of physics-informed graph
neural networks for dynamical systems,” Advances in Neural
Information Processing Systems, vol. 35, pp. 3691–3702, 2022.

[10] A. A. Musa, A. Hussaini, W. Liao, F. Liang, and W. Yu, “Deep
neural networks for spatial-temporal cyber-physical systems: A
survey,” Future Internet, vol. 15, no. 6, p. 199, 2023.

[11] W. Weng, J. Fan, H. Wu, Y. Hu, H. Tian, F. Zhu, and J. Wu, “A
decomposition dynamic graph convolutional recurrent network for
traffic forecasting,” Pattern Recognition, vol. 142, p. 109670, 2023.

[12] J. James, “Graph construction for traffic prediction: A data-driven
approach,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 9, pp. 15015–15027, 2022.

[13] L. Kaibiao, J. Chen, C. Ruicong, Y. Fan, Z. Yang, L. Min, and L.
Ping, “Adaptive neighbor graph aggregated graph attention network
for heterogeneous graph embedding,” ACM Transactions on
Knowledge Discovery from Data, vol. 18, no. 1, pp. 1–21, 2023.

[14] Y. Chang, C. Chen, W. Hu, Z. Zheng, X. Zhou, and S. Chen, “Megnn:
Meta-path extracted graph neural network for heterogeneous graph
representation learning,” Knowledge-Based Systems, vol. 235, p.
107611, 2022.

[15] B. Hui, L. Zhang, X. Zhou, X. Wen, and Y. Nian, “Personalized
recommendation system based on knowledge embedding and
historical behavior,” Applied Intelligence, pp. 1–13, 2022.

[16] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks
in recommender systems: A survey,” ACM Computing Surveys, vol.
55, no. 5, pp. 1–37, 2022.

[17] W Pan, K Yang, "Enhanced multi-head self-attention graph neural
networks for session-based recommendation," Engineering Letters,
vol. 30, no.1, pp37-44, 2022.

[18] Z. Li, Y. Zhao, Y. Zhang, and Z. Zhang, “Multi-relational graph
attention networks for knowledge graph completion,” Knowledge-
Based Systems, vol. 251, p.109262, 2022.

[19] B. Koloski, T.S. Perdih, M. Robnik-Šikonja, S. Pollak, B. Škrlj,
“Knowledge graph informed fake news classification via
heterogeneous representation ensembles,” Neurocomputing, vol. 496,
pp. 208–226, 2022.

[20] D. He, C. Liang, H. Liu, M. Wen, P. Jiao, and Z. Feng, “Block
modeling-guided graph convolutional neural networks,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 4, 2022, pp. 4022–4029.

[21] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra,
“Generalizing graph neural networks beyond homophily,” arXiv
preprint arXiv:2006.11468, 2020.

[22] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu,
“Heterogeneous graph attention network,” in The World Wide Web
Conference, 2019, pp. 2022–2032.

[23] E. Chien, J. Peng, P. Li, and O. Milenkovic, “Adaptive universal
generalized pagerank graph neural network,” arXiv preprint
arXiv:2006.07988, 2020.

[24] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y.
Bengio, “Graph attention networks,” in International Conference on
Learning Representations, 2018, pp. 1–12.

[25] D. Wang, J. Lin, P. Cui, Q. Jia, Z. Wang, Y. Fang, Q. Yu, J. Zhou, S.
Yang, and Y. Qi, “A semi-supervised graph attentive network for
financial fraud detection,” in 2019 IEEE International Conference on
Data Mining (ICDM). IEEE, 2019, pp. 598–607.

[26] H. Ma, Y. Bian, Y. Rong, W. Huang, T. Xu, W. Xie, G. Ye, and J.
Huang, “Multi-view graph neural networks for molecular property
prediction,” arXiv preprint arXiv:2005.13607, 2020.

[27] J. Cheng, Q. Wang, Z. Tao, D. Xie, and Q. Gao, “Multi-view attribute
graph convolution networks for clustering,” in Proceedings of the
Twenty-Ninth International Conference on International Joint
Conferences on Artificial Intelligence, 2021, pp. 2973–2979.

[28] X. Wang, D. Bo, C. Shi, S. Fan, Y. Ye, and S. Y. Philip, “A survey on
heterogeneous graph embedding: methods, techniques, applications
and sources,” IEEE Transactions on Big Data, vol. 9, no. 2, pp. 415–
436,2022.

[29] K Wu, H Dai, S Wang and C Liu, "Point cloud classification network
based on dynamic graph convolution," Engineering Letters, vol. 31,
no.4, pp1859-1866, 2023.

[30] H.-C. Yi, Z.-H. You, D.-S. Huang, and C. K. Kwoh, “Graph
representation learning in bioinformatics: trends, methods and
applications,” Briefings in Bioinformatics, vol. 23, no. 1, p. bbab340,
2022.

[31] YH Zhang, JS Wang, and ZH Zhang, "Retinal vessel segmentation
algorithm based on U-NET convolutional neural network,"
Engineering Letters, vol. 31, no.4, pp1837-1846, 2023.

[32] D. Chen, Y. Lin, G. Zhao, X. Ren, P. Li, J. Zhou, and X. Sun,
“Topology-imbalance learning for semi-supervised node
classification,” Advances in Neural Information Processing Systems,
vol. 34, pp. 29885–29897, 2021.

[33] M. Zhang, X. Wang, M. Zhu, C. Shi, Z. Zhang, and J. Zhou, “Robust
heterogeneous graph neural networks against adversarial attacks,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 4, 2022, pp. 4363–4370.

[34] Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu, “Enhancing
graph neural network-based fraud detectors against camouflaged
fraudsters,” in Proceedings of the 29th ACM International Conference
on Information & Knowledge Management, 2020, pp. 315–324.

[35] Z. Liu, Y. Dou, P. S. Yu, Y. Deng, and H. Peng, “Alleviating the
inconsistency problem of applying graph neural network to fraud
detection,” in Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval,
2020, pp. 1569–1572.

[36] X. Kong, P. S. Yu, Y. Ding, and D. J. Wild, “Meta path-based
collective classification in heterogeneous information networks,” in
Proceedings of the 21st ACM International Conference on
Information and Knowledge Management, 2012, pp. 1567–1571.

[37] M. Ji, Y. Sun, M. Danilevsky, J. Han, and J. Gao, “Graph regularized
transductive classification on heterogeneous information networks,”
in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2010, pp. 570–586.

[38] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” AI Magazine, vol. 29,
no. 3, pp. 93–106, 2008.

[39] G. Namata, B. London, L. Getoor, B. Huang, and U. Edu, “Query-
driven active surveying for collective classification,” in 10th
International Workshop on Mining and Learning with Graphs, vol. 8,
2012, p. 1.

Engineering Letters

Volume 32, Issue 6, June 2024, Pages 1073-1082

__

