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Abstract—In recent years, graph convolutional networks 

(GCNs) have gained significant attention for graph embedding 
learning. However, the efficacy of GCNs and their variants is 
often constrained by the implicit homophily assumption, which 
presumes nodes in close proximity to exhibit similar features. 
This assumption becomes particularly limiting in the context of 
complex heterogeneous graphs, as it restricts GCNs' ability to 
aggregate diverse node information. Addressing this, we 
propose a novel aggregation mechanism adept at discerning 
homophilic from heterophilic neighborhoods, thus achieving 
effective “classification aggregation”. More specifically, this 
study combines block modeling with the aggregation process, 
allowing the GCNs to learn the aggregation rules across 
various classes of neighbors automatically. On this basis, a 
multi-view module is designed to extract semantic information 
from each view, and the final embedding is obtained by 
aggregating the information from all views through the 
attention module. Experiments indicated that the proposed 
method performs optimally across both heterogeneous and 
homogeneous graph datasets.  
 

Index Terms—Multi-View Networks, Block Matrix, Graph 
Convolutional Networks, Graph Neural Networks. 
 

I. INTRODUCTION 

RAPH network data processing traditionally relies on 
matrix decomposition methods. However, these 

methods struggle to scale with the expanding size and 
increasing sparsity of real-world networks. Against this 
backdrop, graph representation learning has gained 
prominence. It transforms graph nodes into low-dimensional 
vectors, allowing adaptable application of these 
representations in various data mining tasks. This 
adaptability significantly improves the model’s accuracy 
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and reliability for different downstream tasks. Currently, 
research predominantly focuses on learning representations 
for homogeneous networks. Notable methods include 
random walk-based graph representations, which gather 
topological graph information by traversing neighboring 
nodes. Models like DeepWalk [1], LINE [2], and Node2vec 
[3] are the most representative of this domain. In more detail, 
DeepWalk combined skip-gram and random walk to derive 
network node embeddings. Additionally, LINE excelled in 
sparse graphs by employing first-order and second-order 
neighbor similarities for precise node representation 
learning. Meanwhile, Node2vec merged depth-first and 
breadth-first sampling to capture local and preserve global 
topological information within the embedding space. 

In recent years, inspired by recurrent neural networks and 
convolutional neural networks, neural network-based graph 
representation learning has become a hot research topic. In 
this context, GCNs [4] stand out for their effectiveness in 
heterogeneous graph representation learning. The essence of 
these models lies in feature aggregation. More specifically, 
in GCNs, a node's embedding is refined by aggregating 
feature information from its neighbors through 
convolutional operations, and then tailored for specific 
downstream tasks under partial label supervision. The great 
success of GCNs can be largely attributed to the integration 
of topological structure with node feature information, 
facilitating the learning of node embeddings within a 
supervised learning framework. 

Although widely employed, GCNs and their variants [5,6] 
have two main limitations. First, real-world networks, such 
as social networks [7,8], physical systems [9,10], traffic 
networks [11,12], citation networks [13,14], recommender 
systems [15,16,17], and knowledge graphs [18,19] are often 
heterogeneous graphs. These networks have diverse nodes 
and edges, representing distinct entities and relationships. 
Adapting GCNs for such diversity is challenging, as it 
demands multi-dimensional information extraction and 
fusion for accurate node embeddings. Previous GCN 
applications [20] typically process only one view of these 
networks or test each one to identify the best fit. These 
methods fail to leverage the complete, multifaceted nature of 
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Fig. 1.  Process of classifying aggregation. 
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data in heterogeneous networks. Second, GCNs and their 
variants typically assume that neighboring nodes share 
similar representations and class affiliations. This 
assumption leads GCNs to treat all neighbors equally during 
aggregation, which can dilute the quality of the resulting 
node representations. Fig. 1 indicates that there are three 
types of nodes in the network, and direct aggregation of the 
central node v  without processing introduces much noise 
from blue and yellow nodes, which is unsuitable for learning 
node embedding. In this regard, designing aggregation 
mechanisms that allow the central node to adaptively 
discern between homophilic and heterophilic neighbors is 
required, thereby facilitating the node's capability to achieve 
classifying aggregation. Such mechanisms are designed to 
enhance the influence of homophilic nodes during the 
aggregation process while simultaneously reducing noise 
from other types of nodes. 

To enhance GCNs’ aggregation mechanism, we introduce 
the multi-view block matrix-based graph convolution 
algorithm, MVGCN. This algorithm incorporates a block 
matrix within the GCN framework to implement block-
guided classifying aggregation, which enables the automatic 
learning of specific aggregation rules for neighbors 
belonging to different classes. By incorporating block 
modeling into the aggregation process, GCN can selectively 
aggregate information by distinguishing between neighbors 
based on homophily degrees. Further, we design a multi-
view module, where each view represents a neighbor graph 
under various semantics. Corresponding weighted neighbor 
matrices are derived from the block matrix. Then, the final 
embedding is obtained by aggregating information from all 
views using the attention module. This process not only 
merges insights from different views but also selectively 
integrates the most relevant information at the node level 
based on category proximity. This study has several 
contributions: 

(1) For heterogeneous graph data with multiple semantic 
graph structures, a multi-view fusion method is proposed at 
the semantic level, eliminating the drawback that GCNs can 
only use a single view. 

(2) At the node level, we introduce block matrix-guided 
classify aggregation. This approach addresses the 
shortcomings of GCNs in directly aggregating neighbors 
and tackles the challenges posed by the homophily 
assumption. 

(3) MVGCN outperforms previous baselines in node 
classification, node clustering, visualization, and ablation 
experiments on real datasets (both homogeneous and 
heterogeneous graph data). 

II. RELATED WORKS 

A. Homology and Heterology 

Homology refers to the fact that interlinked nodes 
typically belong to the same class or possess similar 
characteristics, e.g., friends who follow each other in a 
social network can share similar interests, and papers that 
cite each other belong to the same field. However, real-
world networks often exhibit heterogeneity, linking nodes 
from diverse classes or with distinct characteristics. For 
example, different types of amino acids in protein structures 

are more likely to constitute links, and most people in dating 
networks prefer to communicate with those of the opposite 
sex.  

To counter the limitations of the homology assumption, 
strategies generally fall into two categories. The first is 
higher-order neighbor aggregation. Models like H2GCN [21] 
and HAN [22] proposed that first-order neighbors might 
exhibit heterogeneity, but aggregating higher-order 
neighbors tended to reveal homogeneity. This method 
effectively addressed direct neighborhood heterogeneity. 
The second category is weighted aggregation. Approaches 
such as GPR-GNN [23] and GAT [24] assigned weights to 
neighbors based on node similarity or the relevance of 
neighbor information. During aggregation, graph neural 
networks gave more weight to similar neighbors, enhanced 
the relevance of node information and reduced noise from 
less similar neighbors. 

B. Meta-Paths and Multi-Views 

Fig. 2 (a) depicts an example of a heterogeneous graph 
network consisting of users, movies, directors, and actors. 
Building on this foundation, the concept of a meta-path 
emerges as a crucial tool for capturing semantic information 
in heterogeneous graphs. Specifically, the interaction 
between users and movies represents a dual relationship of 
watching and being watched. Similarly, the connection 
between directors and movies shows the roles of directing 
and being directed, while actors and movies are linked 
through participation, with actors taking part in movies and 
movies featuring these actors. A meta-path is a concept for 
capturing semantic information in heterogeneous graphs. 

The meta-path relationship between nodes 1A and 1lA   is 

defined as 1 2
1 2 1... lRR R

lA A A    ,which 

describes the complex relationship 1 2 ... lR R R R     

between the node types 1A  and 1lA  . Here,   signifies the 

relationship composition operator is a compound operator 
on the relationship. Meta-path-based methods are the most 
widely used methods for heterogeneous graph embedding. 
They are used to identify semantically related 
neighborhoods. By doing so, these meta-paths, which are 
ordered and symmetric, facilitate a deeper understanding of 
node connections. For example, in Fig. 2 (b), meta-paths 
like User-Movie-User (UMU), User-Movie-Director-Movie-
User (UMDMU), and User-Movie-Actor-Movie-User 
(UMAMU) describe different relationships between users. 
In more detail, UMU searches for users who watch the same 
movie. UMDMU connects users through a director's 

Fig. 2.  Heterogeneous networks and meta-paths. Here, 'U' stands for 
user, 'M' for movie, 'A' for actor, and 'D' for director. 'UMU' indicates 
the meta-path user-movie-user. 
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filmography. UMAMU aligns users with a preference for 
the same actor. Hence, meta-paths effectively serve as 
guides to higher-order nearest neighbors, enhancing node 
relationship understanding through inherent semantic 
significance. 

In heterogeneous graphs, a node's local structure varies 
with different relationship types. Different meta-paths can 
reveal specific structural views of the network, and using 
multiple meta-paths simultaneously can decompose the 
heterogeneous graph into multi-view subnetworks. Fusing 
these multi-view perspectives, which considers diverse 
semantic information, can significantly enhance graph 
information utilization. graph information utilization. For 
instance, SemiGNN [25] developed a hierarchical attention 
mechanism. This approach assigned weights to different 
views and classified user fraud detection through multi-view 

data analysis. MV-GNN [26] proposed a cross-dependent 
information transfer scheme. It enhanced the information 
channel for atomic and chemically bonded views and 
introduced a shared self-attentive readout component and a 
divergence loss stabilization training process. Moreover, 
MAGCN [27] designed path encoders to capture the 
consistency of geometric relationships and probability 
distributions across views to find consistent clustered 
embedding spaces for multi-view adaptively. 

C. Graph Embedding 

Graphs play a crucial role in numerous real-world 
applications, offering insights into social structures, entity 
relationships, and communication patterns. This relevance 
has made graphs a focal point of academic research. Graph 
embedding learning, which involves distilling graphs’ 
structural and semantic information into low-dimensional 

 
Fig. 3.  The MVGCN model: Panel (a) comprises a block-guided graph convolutional network and a multi-view fusion module. This architecture 
distinctively processes diverse views through block matrix-guided graph convolutional networks. The final embedding is attained by integrating the 
embedding representations of each view via a view-level attention fusion mechanism. Panel (b) utilizes an MLP to generate soft labels for nodes. These 
labels are subsequently integrated with the network's topological structure to ascertain the block matrices. Finally, the weight matrices are calculated 
based on the soft labels and the block matrices, culminating in classification aggregation. 
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node representations, is increasingly applied to various 
downstream tasks [28,29]. The graph embedding is evolving 
through integration with advanced technologies, expanding 
its application across various fields [30,31]. Several notable 
contributions in this domain include: Chen et al. [32] first 
designed a conflict detection-based metric, Totoro. It 
assessed the topological position of nodes by addressing the 
topological imbalance caused by marked nodes' asymmetry 
and inhomogeneity. Building on this, the ReNode method 
was developed to recalibrate node weights, tackling the 
challenges of topological imbalance. Moreover, Zhang et al. 
[33] proposed an effective robustness framework called 
RoHe. It mitigated perturbation amplification effects and 
soft attention mechanism issues by pruning unreliable 
neighbors based on topology and features through attention 
purifiers. Furthermore, Dou et al. [34] developed a CARE-
GNN model to address feature and relationship camouflage 
in fraudulent networks. It leveraged label awareness to 
identify information-rich neighbors and reinforcement 
learning to determine optimal neighbor thresholds. Besides, 
Liu et al. [35] built the GNN framework GraphConsis to 
solve the inconsistency problem. It suggests integrating 
contextual embedding with node features to tackle 
contextual inconsistency and employs consistency scores to 
filter neighbors based on feature inconsistency. Additionally, 
it learns relational attention weights for sampled nodes to 
manage relational inconsistency. 

III. MODEL 

Fig. 3 illustrates that MVGCN consists of two modules: 
the block matrix-guided graph convolutional network, and 
the multi-view fusion module. For the block matrix-guided 
graph convolutional network module, the process begins 
with utilizing Multilayer Perceptron (MLP) to generate the 
soft labels of nodes. These labels, in conjunction with the 
network’s topology, are used to determine the block matrix. 
Subsequently, the weight matrix is computed from the soft 
labels and the block matrix. This matrix is then used to 
guide the classifying aggregation by assigning different 
weights based on the network’s homogeneity and 
heterogeneity. For the multi-view fusion module, each view 
is distinct due to the changes in graph structure neighbors. 
Hence, within each view, a unique weight matrix is 
determined to conduct classifying aggregation. The final 
embedding is derived by fusing the embedding 
representation of each view with view-level attention. 

A. Pre-Training 

To mitigate the limitations imposed by the homology 
assumption on GCNs, this study incorporates a block matrix 
into the GCN framework. Given the label matrix Y of the 
nodes and the adjacency matrix A of the graph network, the 
block matrix [20] is defined as follows: 

( ) ( )T TB Y AY Y AE                        (1) 

where E  is an all-ones matrix of the same size as Y , and 
  is a Hadamard division operation. In this paper, blocks 
are the class of labels in the graph. The block matrix models 
the probability of linking nodes in any two blocks and 

( , )i jB is the probability of linking nodes in classes i  and j  

at the node level. 
The block matrix is a statistical modeling of the structural 

rules of the network. In order to obtain the block matrix, it is 
necessary to know all node labels. However, GCN is a semi-
supervised learning model, and only a subset of labels is 
available. Addressing this, this model leverages known data 
to infer unknown labels, thus generating 'soft labels' based 
on node attributes. Specifically, MVGCN employs a 
multilayer perceptron to transform node attributes into soft 
labels. 

Here, X is the node attribute, MLP is the multilayer 

perceptron, S is the output of MLP  and ( )  is the 

activation function. A softmax operation is performed on S  
to generate soft labels. 

    S MLP X                       (2) 

 SS softmax                            (3) 

MVGCN pre-trains the MLP layer with actual labels to 

ensure the reliability of the soft labels S . The loss MLPL is 

minimized during the training process, making the soft label 
S more closely resemble the actual label Y . 

Here, iS is the soft label of node iv , iY  is the actual label 

of node iv , vT  denotes all nodes in the training sets, 

and ( )f  is the cross-entropy loss function. 

 ,
i v

MLP i i
v T

L f S Y


                       (4) 

Replacing the true labelsY with the soft labels S in (1), 

we obtain (5). where S is the soft label matrix calculated 

from MLP , E is the all-ones matrix with the same size 
as S , and is the Hadamard division operation. 

The block matrix represents the connection pattern 
between classes. It is used for quantifying the graph's 
homology ratio. Specifically, a higher frequency of 
connections between nodes with identical soft labels directly 
correlates with an elevated homology ratio in the graph.  

   T TB S AS S AE                      (5) 

B. Block Similarity Matrix 

The block matrix B describes the likelihood distribution 
of node connectivity between any two classes. However, 
this matrix cannot directly guide the GCN to classify 
aggregation, especially in heterogeneous graphs. In such 
graphs, edges often link dissimilar classes more frequently 
than they connect similar ones. To address this, it is 
necessary to modify the values of elements in the block 
matrix B to facilitate the propagation of valuable 
information during the graph convolution process. For this 
purpose, we introduce the block similarity matrix Q , 

defined as: 

 TQ BB                                   (6) 

The block similarity matrix Q measures the degree of 

similarity between each block in B , indicating that classes 
with similar structures will have more information 
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dissemination. In addition, nodes in the same class should 
have more information exchanges. To achieve this, the 

elements on the main diagonal, represented by  Diag Q , 

are thus augmented by an enhancement factor . 

   Diag Q Diag Q                   (7) 

C. Graph Convolution Propagation 

MVGCN can assign different information dissemination 
rules for different class combinations based on the block 

similarity matrix Q . Meanwhile, soft labels can indicate the 

specific class combination to which any pair of nodes 
belongs. Thus, the information dissemination process can be 
guided by the block similarity matrix Q and the soft label 

matrix S . Specifically, for two nodes iV and jV with soft 

labels 1 2 }{ , , , c
i i i iS s s s  and 1 2 }{ , , , c

j j j jS s s s  , 

respectively, where c is the number of classes, the node 

pair ( , )i jv v has 2c class combinations and the possibility of 

each class combination is shown as follows: 

    , r t
i r j t i jp v S v S s s             (8) 

where    is the mapping function of the node’s class it 

belongs to, and  , 1,2, ,r t c  . 

The block similarity matrix Q represents the information 

propagation probability between any two classes. The 
greater the similarity between the two classes, the more 
information should be propagated. The propagation 

probability ijw  between node pairs iv and jv can also be 

regarded as the propagation expectation of the elements 

in Q . 

,
1 1

c c
r t

ij r t i j
r t

w q s s
 

                         (9) 

Here, ,r tq is an element in Q that represents the 

propagation probability between class r and class t . 
The propagation weights between node pairs are jointly 

guided by the block similarity matrix Q and the soft label 

matrix S . The graph’s propagation weights for all node 
pairs can then be described as a weight matrix. Equation (10) 
is the matrix expression of (9).  

TW SQS                               (10) 

Next, the weight matrix W is utilized to optimize the 
topology of the graph network. 

 
  A W A I                           (11) 

Here, I is the unit matrix,   is the Hadamard 

multiplication operation, and A can be viewed as a weighted 
adjacency matrix for which a softmax operation is 
performed to normalize the weights of the edges. Elements 

,ˆi ja  in matrix Â  can be calculated as: 

 
 
,

,
,

exp
ˆ

exp
k

i j

i j
i k

v N

a
a

a





                      (12) 

where  ,i ja is an element in A . In MVGCN, the traditional 

adjacency matrix A  used in the original GCN propagation 

is substituted with the normalized adjacency matrix Â . This 
alteration enables the graph convolution operation in 
MVGCN to perform classify aggregation. Thus, the new 

graph convolution propagation is defined as follows. lZ is 

the node representation at layer l . 1
lW and 2

lW are the 

learning parameters at layer l . Notably, when l  is layer 0, 
0Z X . 

1 1
1 2

ˆl l l l lZ Z W AZ W                      (13) 

D. Multi-View Fusion 

The graph structure can be resolved from multiple views 
in heterogeneous graphs. For example, in a movie network 
consisting of users, movies, directors, and actors, the meta-
path user-movie-user (UMU) and user-movie-director- 
movie-user (UMDMU) represent fans of the same movie 
and users who adore the same director, respectively. The 
structure of the graph network varies when observed under 
different views, leading to the computation of distinct block 
matrices. These matrices then determine the corresponding 
weighted adjacency matrices, and the node embedding 
under each view is obtained by graph convolution 
propagation. After node-level aggregation, an additional 
layer of view-level aggregation is required to obtain the final 
node embedding. 

Unlike heterogeneous graphs, homogeneous graphs only 
have a single view and cannot be fused with multiple views. 
In this case, a k-nearest neighbor graph is constructed for the 
nodes in all graphs. This graph, along with the original 
topological view, forms a feature view to make the proposed 
algorithm more inclusive. This approach involves 
computing a cosine similarity-based node similarity matrix, 
from which the k-nearest nodes are selected as neighbors for 
each node. 

To determine the importance of each view, the multi-view 

fusion module first transforms the node embedding iz  of a 

particular view i  through a layer of MLP  exercises. Then, 

the importance of the view embedding iw  is determined as 
its similarity to the view-level attention vector, given as: 

   tanhi T
iw q MLP z              (14) 

Following the determination of each view's importance, 
normalization is performed using the softmax function to 
derive the view weights, as outlined in (15): 

 
 

exp

exp

i

i

m

m M

w
a

w





                      (15) 

where M  is the total number of views. The view weights 
ia  can be interpreted as the degree of contribution of 

various views to a particular downstream task, and the larger 
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the view weight, the more critical the view. In the final step, 

the learned view weights ia  are used as coefficients, and 

the node embedding representations iZ  under different 

views are weighted averaged to get the final node 

embedding representation Ẑ , as outlined in (16). By doing 
so, the final node embedding representation is more aligned 
with the views that hold larger weights. 

1

ˆ
m

i
i

i

Z a Z


                          (16) 

Similar to (4), a cross-entropy loss GCNL  is calculated 

between the final node embedding calculated by (16) and 
the actual label. 

 ˆ ,
i v

GCN i i
v T

L YZf


                      (17) 

Finally, the embedding loss GCNL  is combined with the 

soft label loss MLPL  to obtain the final loss function L , as 

shown in (18).  

  1GCN MLPL L L                     (18) 

Here   is the balance parameter (default is 0.5). By 

minimizing L , we train all modules end-to-end. 

IV. EXPERIMENTS AND ANALYSIS 

This section presents the baseline models for comparison 
and outlines the parameter settings of each model, alongside 
pertinent details about the four datasets used in this paper. In 
the following sections, we systematically conduct node 
classification, node clustering, model ablation, and 
visualization experiments. These tests aim to demonstrate 
the superiority and effectiveness of our proposed MVGCN 
across different downstream tasks. Notably, beyond its 
superior performance in heterogeneous graphs, MVGCN 
also results in better performance on two homogeneous 
graph datasets, which further illustrates the MVGCN’s 
compatibility. 

A. Experimental Settings 

We test our MVGCN model against established 
benchmarks, including various classical graph neural 
network models. The baseline models used for comparison 
are shown as follows. 
 GCN [4]: This model is a scalable semi-supervised 

learning method that performs convolutional 
operations on graph-structured data. Since the model is 
applied to homogeneous graphs, it was evaluated with 
each view and the best one was reported. 

 GAT [24]: This model is a variant of GNNs designed for 

homogeneous graphs. It is a semi-supervised neural 
network that introduces an attention mechanism. 
Similarly, this experiment evaluated all views and 
selected the one with the best performance. 

 HAN [22]: This model is a heterogeneous graph neural 
network based on hierarchical attention that includes 
node-level and semantic-level attention. It fully 
considers the importance of nodes and meta-paths. 

 BM-GCN [20]: This model is also a variant of GNNs 
designed for homogeneous graphs. It introduces block 
modeling in the graph convolution operation and 
implements block-guided node classification 
aggregation. 

 MVGCN: The model proposed in this study. It utilizes 
block matrix-guided graph convolutional networks for 
the node level aggregation to achieve classifying 
aggregation. At the semantic level, it implements 
multi-view fusion to improve the quality of node 
embedding. 

For the experiments, we adhere to the default 
configurations for the GCN, GAT, HAN, and BM-GCN 
models, as these settings have been proven to yield optimal 
outcomes.  To maintain consistency across models, the 
embedding dimension is uniformly set at 64. Regarding the 
MVGCN model develops in this research, we employ the 
Adam optimizer with key parameters configured as follows: 
a learning rate of 0.001, weight decay of 0.0005, a two-layer 
GCN architecture, and a dropout and balance parameter both 
set at 0.5. To optimize training efficiency, we implement an 
early stopping mechanism, ceasing training if no accuracy 
improvement is observed after 100 consecutive rounds. 

B. Datasets 

This study conducted experiments on four real datasets. 
Specifically, ACM [36] and DBLP [37] are heterogeneous 
graph networks, while Cora [38] and Pubmed [39] are two 
different homogeneous graph networks. All models were 
consistently trained using the training set nodes. Then the 
optimal model was selected using the validation set nodes, 
and the model performance was evaluated utilizing the test 
set nodes. Table I summarizes the number of nodes, number 
of relations, number of categories, number of training sets, 
number of validation sets, number of test sets, and feature 
dimensions for each dataset. 

C. Node Classification 

To validate the model’s representational ability, Support 
Vector Machines (SVM) was used as the base classifier. 
Here, the SVM was chosen for its simplicity, efficiency, and 
broad applicability. Notably, the test set nodes were not 
involved in the optimization model in the graph neural 
network model, which means they were neutral in the model. 

TABLE I 
STATISTICS OF DATASETS 

Dataset Number of nodes Number of relationships Train Test Val Class Feature dimension 

ACM 8916 12769 600 2125 300 3 1870 

DBLP 27194 122393 200 3057 800 4 334 

Cora 2708 10556 1192 497 796 7 1433 

Pubmed 19717 88648 9463 3944 6310 6 500 
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Therefore, incorporating these nodes as new entities into the 
SVM model validates the effectiveness of the graph neural 

network model in learning the node embedding. For a 
comprehensive evaluation, the test set nodes were re-split, 
and randomly selected the training set size to vary between 
20% and 80% of the data. This process was repeated ten 
times, and the results were averaged to ensure reliability. 
We used macro-F1 and micro-F1 scores as our evaluation 
metrics.  

Figs. 4 to 7 depict the performance comparison of various 
models on node classification across all datasets. Overall, 
the GCN performed the worst. This was because it treated 
all neighboring nodes equally, without differentiating their 
contributions from the central node. Such uniform 
aggregation of neighbor information resulted in significant 
noise. Conversely, GAT outperformed GCN on 
homogeneous graphs due to its attention mechanism. This 
feature enables selective weighting of neighbors, focusing 
on those most likely to improve node representation. 
However, its effectiveness was limited on heterogeneous 
graphs due to structural complexities. In addition to the 
node-level attention mechanisms of GAT, the HAN model 
included view-level attention mechanisms. It also features a 
two-layer architecture, enhancing compatibility with 
heterogeneous graphs. As a result, HAN outperforms both 
GCN and GAT. Similar to HAN, MVGCN adopts a two-
layer architecture but goes further by adding a block matrix 
for improved classification, akin to BM-GCN. On the ACM 
dataset, the results of MVGCN are all more than 2% higher 
than the HAN model, which is the second-best result. 
However, unlike BM-GCN, which relies only on a block 
matrix and underperforms in multi-view scenarios like the 
ACM dataset, MVGCN enhances its architecture with multi-
view fusion. This addition allows MVGCN to exceed the 
capabilities of BM-GCN, particularly in datasets with a 
large number of views. In addition, on the homogeneous 
graph PubMed dataset, the results of MVGCN essentially 
improve by more than 2% over the BM-GCN model, which 
is the second best in terms of results. In general, by 
combining a block matrix with multi-view fusion, MVGCN 
excels in both homogeneous and heterogeneous graphs, 
particularly exhibiting a significant lead over other GNN 
models on ACM and PubMed. 

 
Fig. 4.  Experiment results on the ACM datasets for the node 
classification task. 

 
Fig. 5.  Experiment results on the DBLP datasets for the node 
classification task. 

 
Fig. 6.  Experiment results on the Cora datasets for the node 
classification task. 

 
Fig. 7.  Experiment results on the Pubmed datasets for the node 
classification task. 

TABLE II 
NODE CLUSTERING TASK 

 

Datasets Metrics GCN GAT HAN BM-GCN MVGCN 

DBLP 
NMI 75.01 71.43 79.26 75.30 79.39 

ARI 80.49 77.15 84.48 81.49 85.18 

ACM 
NMI 51.40 57.07 61.38 63.06 71.16 

ARI 53.01 60.42 64.46 66.15 75.04 

Cora 
NMI 56.97 70.05 74.87 72.90 75.09 

ARI 43.82 69.53 73.73 70.05 75.43 

Pubmed 
NMI 43.66 45.86 48.36 49.18 50.23 

ARI 47.18 48.24 50.67 50.09 52.46 
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D. Node Clustering 

Similar to node classification, K-means clustering 
algorithm was utilized for node clustering analysis. Here, we 
set the attributes of cluster centers as the number of 
categories in each dataset. Given K-means' sensitivity to 
initial center, iterations were repeated ten times to average 
the results. Then, NMI and ARI were used as evaluation 
metrics. Table II displays the outcomes of experiments 
conducted on all datasets. Similar to the node classification 
results, GCN and GAT have the worst outcomes because 
they only focus on the node level and do not consider that 
the graph structure is different in various views. On the 
other hand, HAN and BM-GCN introduce multi-view and 
block modules respectively, and have shown improved 
performance. On the ACM dataset, MVGCN outperforms 
the second-place BM-GCN model by over 8%, showing the 
good performance of MVGCN. In addition, MVGCN 
outperforms across all datasets, further illustrating the 
effectiveness of multi-view fusion and the necessity of 
classification aggregation. 

E. Ablation Experiments 

This section presents further experiments with different 
variants of MVGCN to verify the effectiveness of the block 
similarity matrix and multiple views for the proposed model. 
The results were repeated ten times for averaging. Moreover, 
NMI, ARI, and F1 were used to determine the clustering and 
classification performance. Table III lists the outcomes 
across all datasets. In Table III, MVGCN-b indicates that the 
original adjacency matrix was utilized for the experiments 
rather than the block similarity matrix. Moreover, MVGCN-
mv indicates the absence of the multi-view fusion module, 
where the best performing view in heterogeneous graphs 
was identified and used. The results in Table III demonstrate 
MVGCN's superior performance across all metrics and 
datasets, highlighting how the block similarity matrix and 
the multi-view fusion module help to improve the 

embedding ability of the model nodes. Especially on the 
Cora dataset, the MVGCN demonstrated notably superior 
performance over the MVGCN-b model, with respective 
improvements of 8.2%, 19.75%, and 2.36% in the NMI, 
ARI, and F1 metrics. The slightly lower findings of 
MVGCN-b compared to MVGCN-mv indicate that it can be 
more critical to implement classifying aggregation to 
remove excessive noise in node-level aggregation than to 
introduce additional views in most cases. 

F. Block Similarity Matrix Experiment 

This study proposes MVGCN to achieve block-guided 
classification aggregation, so that nodes belonging to the 
same or similar classes have more information exchange. To 
facilitate this, MVGCN introduces a block matrix to model 
the relationship between classes. The elements in the block 
matrix B represent the possibility of a connection between 
various types of nodes. However, in heterogeneous graphs, 
where connections more frequently occur between different 
classes, the block matrix alone doesn't suffice for guiding 
GCN in classification aggregation. To address this, 
MVGCN further calculates the block similarity 

matrix Q through the block matrix, so that the model 

presented in this paper can simultaneously operate on graph 

TABLE III 
RESULTS OF MVGCN MODEL ABLATION EXPERIMENTS 

 

Datasets Metrics MVGCN-b MVGCN-mv MVGCN 

DBLP 

NMI 75.02 76.58 79.39 

ARI 80.85 82.34 85.18 

F1 93.82 93.86 94.02 

ACM 

NMI 69.55 69.73 71.16 

ARI 72.37 72.42 75.04 

F1 92.24 92.37 93.01 

Cora 

NMI 66.89 73.00 75.09 

ARI 55.68 71.35 75.43 

F1 88.10 88.90 90.46 

Pubmed 

NMI 49.40 48.34 50.23 

ARI 50.46 50.18 52.46 

F1 88.09 85.92 88.28 

 

 
(a) B  matrix on Cora dataset         (b) B matrix on ACM dataset 

 
Fig. 8. Block matrix calculated based on ground truth. 
 

 
(a) B matrix on Cora dataset          (b) B matrix on ACM dataset 

 
Fig. 9. Block matrix calculated based on the method in this paper. 
 

 
(a) Q matrix on Cora dataset           (b) Q matrix on ACM dataset 

 
Fig. 10. Block similarity matrix calculated based on the method in this 
paper. 
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networks with homology and heterology. This study uses the 
homology graph Cora and the heterology graph ACM to 
illustrate the operation of the block similarity matrix. 

Fig. 8 depicts the block matrix B of Cora and ACM 
calculated based on the ground truth labels. It indicates that 
the two matrices have different distribution patterns. In the 
homogeneous graph Cora, the connection possibility of 
nodes within the same class is relatively high, whereas in the 
heterogeneous graph ACM, the connection possibility of 
nodes between different classes is relatively high. Fig. 9 
shows the block matrix B learned on the Cora and ACM 
datasets using the proposed method. Since the label is 
unknown in advance, MVGCN determines the soft label 

using (3) and then obtains the block matrix B . As illustrated 
in Figs. 8 and 9, regardless of the Cora or ACM dataset, the 

block matrix B calculated by MVGCN is always close to B , 
demonstrating that the proposed method has a strong 
learning ability. In this case, the learned block matrix B can 
only be employed to aggregate more information on 
homology graphs and cannot be applied to heterology 
graphs. In the block matrix of ACM, larger off-diagonal 
elements still cause nodes to receive an excessive amount of 
noise during graph convolution, resulting in performance 
degradation. Therefore, this study uses the (6) to create a 
new block similarity matrix Q based on B , which can 

accurately measure the relationship between two classes 
from a new perspective. Two classes should be more similar 
if their graph connections are distributed similarly. As 
shown in Fig. 10, the diagonal elements of the block 

similarity matrix Q always have a larger value than that of 

off-diagonal elements. It successfully achieves classification 
aggregation on both homology and heterology graphs while 
preserving the original distribution of the block matrix, 
ensuring the stability of MVGCN performance across 

various datasets. 

G. Visualization 

A visualization task is performed to compare the 
representational abilities of different GNN models by 
depicting node embedding distributions in a two-
dimensional space. Using the t-SNE method on the Cora 
dataset, Fig. 11 presents node embeddings method for each 
model. In more detail, panels (a) and (b) of Fig. 11 present 
that GCN and GAT have the worst performances as nodes 
of various classes are mixed together in the figure’s lower 
left corner. In contrast, HAN and BM-GCN show improved 
results, indicating that both multi-view and block matrices 
contribute to the ability of node representation. Compared to 
the HAN model, MVGCN has tighter intra-class distances. 
Additionally, compared to BM-GCN, MVGCN has large 
inter-class distances. These highlight the superior efficacy of 
MVGCN's multi-view fusion and block similarity matrices 
in achieving more accurate categorical aggregation and 
leveraging information from multiple views for improved 
outcomes. 

V. CONCLUSION 

In this paper, we propose a novel method called MVGCN, 
aiming at refining the aggregation process in GCNs models 
by distinguishing among complex neighbor categories. 
Specifically, the MVGCN model enhances node-level 
aggregation by introducing a block matrix-guided graph 
convolutional network. Additionally, MVGCN creates a 
novel weighted adjacency matrix from block similarity and 
soft label matrices. This new matrix refines the network's 
topology, enhancing the model's ability to aggregate and 
classify nodes accurately. Moreover, MVGCN adapts to 
different graph topologies by calculating unique weight 
matrices for each view, leading to specialized node 
embeddings through graph convolution. These embeddings 

 
(a) GCN                                                                  (b) GAT                                                                   (c) HAN      

 

  
(d) BM-GCN                                                       (e) MVGCN 

 
Fig. 11. Visualization results of different GNN models using t-SNE. 
 

Engineering Letters

Volume 32, Issue 6, June 2024, Pages 1073-1082

 
______________________________________________________________________________________ 



 

are integrated using a view-level attention mechanism, 
ensuring a cohesive aggregation of multiple perspectives. 
Empirical results underscore the robustness of the 
algorithms introduced in this study. In tasks such as node 
classification, node clustering, ablation analysis, and 
visualization experiments, the MVGCN model demonstrates 
superior performance. The model's learned representations 
are versatile, proving beneficial for a range of downstream 
tasks in both heterogeneous and homogeneous graph 
contexts. 
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