Engineering Letters

Cauchy Mutation Chaotic Coati Optimization
Algorithm

Yu-Wei Song, Wei-Zhong Sun*, Jie-Sheng Wang, Yu-Liang Qi, Xun Liu, Yuan-Zheng Gao

Abstract—Coati Optimization Algorithm (COA) is a novel
heuristic algorithm that simulates the intricate behavioral
repertoire of coatis manifestations during their pursuit of
iguanas as well as their evasive tactics against predators.
Aiming to elevate the convergence characteristics regarding
speed and precision of the original algorithmic process, and
addressing the issue of susceptibility to local optima, an
enhanced Coati Optimization Algorithm is suggested based on
Cauchy mutation and chaotic maps. Firstly, the Cauchy
mutation is embedded in the process of coatis hunting for
iguanas. Subsequently, each of ten chaotic maps was
incorporated into the probing phase of the COA, generating ten
unique enhanced versions. This augments the algorithm's
precision in optimization, bolsters the equilibrium between
exploration and exploitation and enhances its itinerancy and
non-redundancy. The enhanced optimization algorithm
exhibiting the aggregated optimal performance is selected from
ten types of different enhanced COA and used for subsequent
comparisons with other algorithms for function optimization
and engineering optimization. Thirty benchmark functions
from the CEC-BC-2022 datasets were incorporated for
evaluation on performance metrics of the improved COA with
Cauchy mutation and ten types of chaotic maps, and then the
performance of the Chebyshev map enhanced COA and other
six swarm intelligent algorithms are compared for optimization
purposes. Finally, optimization was performed on four distinct
engineering design problems. The outcomes of the simulation
experiment evidence that the advanced Cauchy mutation
chaotic COA yields satisfactory outcomes in addressing hoth
function optimization and engineering optimization. The
algorithm exhibits superiority in balancing exploration and
exploitation during the iterative procedure of optimization,
thereby enhancing convergence precision.
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I. INTRODUCTION

ptimization problems encompass a category of
mathematical challenges whose underlying goal entails
1s to identify the supremely satisfactory solution within a
given problem context [1]. Generally, optimization problems
require to solve a target function while satisfying a set of
constraints [2]. This involves many different algorithms and
techniques, including heuristic search, stochastic search,
gradient descent, etc. Optimization problems are extensively
employed across a myriad of domains, including machine
learning, artificial intelligence and engineering design. To
cope with the escalating intricacy of optimization problems, a
proliferating set of algorithms for optimization purposes has
been introduced to address those challenging problems. The
optimization algorithm has many advantages, which are
described as follows. (1) Locate the supremely satisfactory
solution within a reasonable time-frame. (2) Address intricate
and multi- dimensional issues. (3) Flexibility and universality.
(4) Provide global optimal solutions and avoid local optimal
solutions [3].

As algorithms for optimization purposes continue to
evolve and develop, heuristic algorithms have gradually
emerged [4]. Heuristic algorithms rely on experience and
intuition, striving to provide a practical resolution for every
occurrence of a combination optimization issue while
ensuring the cost remains reasonable and to discover an
approximate optimal solution within a limited time-frame.
Due to the stochastic of the algorithm, the feasible solutions
are often different each time. Heuristic algorithms are
ordinarily employed in scenarios involving the resolution of
the problems associated with the optimization of combination
structures, such as the traveling salesman problem and graph
coloring problem, etc [5]. The sclution space of such
problems is usually very large, and may even be exponential,
so it is often not practical to use traditional exhaustive
methods to solve such problems. The deployment of a
heuristic approach enables the provision of an approximate
solution to the problem at an acceptable cost, so it has wide
application value in practice. Meta-heuristic algorithms for
optimization purposes rtepresent an enhancement over
heuristic algorithms for optimization purposes, arising from
the concurrent utilization of stochastic methods and partial
searching strategies. These algorithms are typically
constructed with reliance on intuition or experience, and they
are capable of generating a feasible solution to a problem
within a tolerable amount of expenditure, while the degree of
deviation from the supremely satisfactory solution 1s
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notwithstanding its lack of predictability beforehand [6-7]. In
solving the complex optimization problems, these algorithms
usually find a relatively optimal solution within a reasonable
time-frame. Nonetheless, the utilization of heuristic
algorithms does not ensure the attainment of the global
optimum solution, as they might merely provide an
approximation towards the ultimate optimal resolution for the
aforementioned problem. Within the domain of
meta-heuristic  algorithms  specifically  designed  for
optimization objectives, two crucial exploration strategies are
emploved: exploration for enhancing diversity and
exploitation for intensification [8]. Probing refers to the
capacity to traverse the space exploration domain effectively
and globally. The probing phase continues in when the
algorithm aims to uncover as many promising regions in the
space exploration domain as possible [9], which is associated
with avoiding local optima and addressing local optima. In
contrast, exploitation is in the vicinity of probing to enhance
local optimization [10]. The meta-heuristic optimization
algorithm has many advantages when confronted with
intricate and grand-scale optimization dilemmas. It can find
the approximate optimal solution with less computational
cost and deal with non-differentiable, nonlinear, multi-peak,
high-dimensional and complex global optimization
problems.

Across scientific probing and practical implementation,
meta-heuristic algorithms for optimization purposes have
gained prominence as an indispensable tool. Owing to these
distinctive features, many researchers have engineered a
comprehensive collection of meta-heuristic algorithms for
optimization purposes for deployment in the realm of
optimization, such as Tabu Search (TS) [11], Simulated
Annealing (SA), Hill Climbing Algorithm (HCA) [12],
Genetic Algorithm (GA) [13], and so on. Nowadays, the
majority of meta-heuristic  algorithms  designed for
optimization purposes have their roots in bionics, and these
algorithms have gained widespread application in the field of
optimization, such as Mayfly Optimization Algorithm (MOA)
[14], Grasshopper Optimization Algorithm (GOA) [15],
Dwarf Mongoose Optimizer (DMO) [16], Firefly Algorithm
(FA) [17], White Shark Optimizer (WSO) [18], Whale
Optimization Algorithm (WOA) [19], Marine Predators
Algorithm (MPA) [20], Shme Mould Algorithm (SMA) [21],
Reptile Search Algorithm (RSA) [22], Osprey Optimization
Algorithm (OOA) [23], Gravitational Search Algorithm
(GSA) [24], and so on.

Cauchy mutation represents a stochastic perturbation
method dernived from the Cauchy distnbution, which is
utilized in algorithms for optimization purposes to boost
variety within the population and uphold the algorithm's
comprehensive exploitation capacity. In traditional genetic
algorithms, mutation operations are usually implemented by
stochastic changing the binary state of some bits. On the other
hand, the Cauchy mutation based genetic algorithm can
achieve variation by adding a variable of an individual within
a Cauchy distribution stochastic number. The Cauchy
distribution 1s a density function of probability akin to the
normal distribution, albeit with broader tails and slower
convergence. Introducing Cauchy mutation can boost
population diversity, upgrade the algorithm's global
exploitation skills and assist in preventing convergence to the

local optimal solutions. These properties of the Cauchy
mutation can be applied to optimization problems in a clever
way. Chen et al. explored a hybrid artificial bumblebee
algorithm by incorporating elite opposite leaming and
Cauchy mutation for the optimization of spherical curve
shapes [25]. Bao et al. enhanced the teaching-learning-based
optimization algorithm through the implementation of a
chaotic operator and Cauchy distribution, thereby refining its
performance and applicability [26]. Zhang et al. innovated an
adaptive enhancement of the sand cat swarm algorithm by
using an optimal neighborhood disruption strategy and
Cauchy distribution, thereby fostering its computational
efficiency and problem-solving capabilities [27].

A chaotic map generates a stochastic sequence originating
from a straightforward deterministic system. Typical chaotic
sequences are characterized by several key features, such as
nonlinearity, dependence on initial conditions, ergodicity,
stochasticness [28], strange attractors (chaotic attractors),
fractional persistence, global stability, local instability,
long-term unpredictability, orbital instability, bifurcation, as
well as universality. The chaotic map is utilized for
generating chaotic sequences, where a stochastic output 1s
derived from simple deterministic systems [29].

In the realm of optimization, chaotic maps can serve as a
substitute for pseudo-stochastic number generators, creating
chaotic numbers within the range of 0 to 1. Experimental
outcomes verify that the fitness function values obtained by
using chaotic maps for generating stochastic numbers.
Employing chaotic maps instead of conventional uniform
distribution stochastic number generators can lead to superior
outcomes, especially when numerous local optima exist in
the space exploration domain, facilitating global optimal
solution discovery. Indeed, chaos mapping has been utilized
to enhance a multitude of algorithms. Chaotic Particle Swarm
Optimization {CPSO) 1s improve to enhance the search
process by incorporating chaotic mapping, thereby
improving stochastic and global exploration capabilities.
This algorithm exhibits widespread applications in many
fields, such as function optimization, constraint optimization
and dynamic programming [30]. Chaotic Genetic Algorithm
(CGA) combines GA operations, such as crossover and
mutation, with chaotic mapping to enhance global search
capability and convergence speed. In complex engineering
optimization and combination optimization problems, CGA
demonstrates superior performance [31]. The chaotic
Simulated Annealing Algorithm (CSA) incorporates chaotic
mapping into the SA algorithm to accelerate convergence and
enhance global search capability. It exhibits high-quality
solutions for complex optimization problems [32]. Chaotic
Artificial Neural Network (CANN) is a neural network based
on chaotic dvnamics that enhances training speed and
performance by incorporating chaotic mapping. CANN has
achieved significant accomplishments in pattern recognition,
image processing and speech recognition domains [33].

Furthermore, chaos-oriented theories have found
applications in areas like cryptography, DNA computation,
image manipulation, and nonlinear circuits. These collective
efforts manifest that across diverse engineering domains, the
newly developed algorithm exhibits enhanced performance
and superior beneficial precision in comparison to its
fundamental counterpart.
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The Coati Optimization Algorithm (COA), a novel
heuristic algorithm, effectively emulates the inherent
behavior of coatis while they hunt for iguanas and evade
potential threats from predators. This article proposes an
enhanced Coati Optimization Algorithm based on Cauchy
mutation and chaotic maps. First, the Cauchy mutation was
embedded in the process of coatis hunting for iguanas.
Subsequently, each of ten chaotic maps was incorporated into
the probing phase of the COA, generating ten unique
enhanced versions. This augments the algorithm's precision
in optimization, bolsters the equilibrium between exploration
and exploitation, amplifies its itinerant capacity and
minimizes redundancy. In addition, the enhanced COA with
the premier integrated outcome 1s selected from ten types of
different algorithms for optimization purposes formed after
the enhancement, and the subsequent comparison and
engineering optimization with other algorithms for
optimization purposes is carried out. Throughout the process
of enhancing the algorithm, thirty benchmark functions from
the CEC-BC-2022 datasets were incorporated for evaluation.
First, the performance of the enhanced COA with Cauchy
mutation and ten types of chaotic maps 1s tested. After that,
the performance of the Chebyshev map enhanced Coati
Optimization Algorithm, and other six types of algorithms for
optimization purposes, which have the best comprehensive
effect, are tested. Finally, optimization was performed on
four distinct engineering design challenges. The outcomes of
the simulation experiments proved that the advanced Cauchy
mutation chaotic Coati Optimization Algorithm yields
satisfactory outcomes in addressing both function
optimization and engineering optimization problems. The
algorithm exhibits superiority in balancing exploration and
exploitation during the iterative procedure of optimization,
thereby enhancing convergence precision.

II. COATI OPTIMIZATION ALGORITHM

In the realm of computer science and optimization,
single-objective optimization concerns to select the most
favorable solution from all potential alternatives relying on a
particular metric, generally aimed at minimizing or
maximizing the objective function. Conversely, artificial
intelligence algorithms for optimization purposes emulate the
evolutionary processes or individual learning experiences
found in nature. These algorithms quest for optimal solutions
by progressively exploring the solution space through
iterative searches.

The coatis, an avid diurnal mammal, primarily inhabits the
southwestern region of North America, Mexico, Central
America and South America [34]. Being an omnivore, its diet
1s exceedingly diverse, encompassing invertebrates, small
vertebrates and the green iguana. Given the frequent
occurrence of this large iguana in trees, coatis collaborate in
hunting them. Some coatis ascend trees to scare the green
iguanas into jumping to the ground, while others promptly
pounce on them during the ensuing chaos. However, coatis
are still at risk from predators. Jaguars, tigers and foxes are
predators of coatis. Thus, the Coati Optimization Algorithm
(COA) is characterized as a meta-heuristic optimization
algorithm, derived from the mimicry of coatis’ methodologies
for pursuing iguanas and their adaptive reactions to avoid
predators. In the following sections, the algorithm

nitialization process of the COA 1s discussed and two stages
of probing and development and mathematical modeling of
the COA are described.

A. Algorithm Initialization Process

In the Coati Optimization Algorithm (COA), the coatis act
as population constituents. Each coati's location within the
space exploration domain 1s deemed as the significance of the
determinming decision vanable (spatial location). Therefore,
every coati's spatial location symbolizes a potential solution
regarding the optimization issue under consideration. Due to
the stochastic of coati locations, it 1s imperative to imtialize
the population based on the problem's upper and lower
constraints, as shown in Eq. (1).

s =1, +r-(ub —1b,),i=12, . N, j=12,...m (1)

In the COA, the coati's population is mathematically
represented by the following matrix S, which are called as the
population matrix. In this matrix, each row signifies a
potential solution, while the columns thereof depict
suggested parameters for the problem's variables, which is
shown n Eq. (2).
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where, the j-dimensional spatial location of the i-th coatis
individual is denoted with N representing the population
magnitude of the coatis. The variable m refers to the decision
variables' dimension, » denotes a stochastic real number
within the range [0, 1], and represents the upper and lower
bounds of the j-dimensional decision variable.
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where, F' represents the fitness vector of the population of
coatis, which is based on the optimal fitness values obtained
for each coati and 1s used to calculate the suitability.

In the COA, the quality metric for the candidate solution is
equivalent to the importance Iguana,,,, of the optimal
fitness value of s(j) . In effect, in a population, the
individual that causes the objective function to evaluate the
optimal worth is called the best population individual.
Because candidate solutions are updated during algorithmic
iterations, the optimal population of individuals is updated
with each iteration.

B. Mathematical Model of COA

The COA is an iterative procedure for refining the spatial
location. These two inherent behaviors are exhibited by the
coatis. These behaviors include:

(1) Strategies for coatis to attack iguanas.

(2) Strategies used by coatis to escape predators.

Thus, the population of COA 1s updated in two distinct

Volume 32, Issue 6, June 2024, Pages 1114-1131



Engineering Letters

stages.

(1) Probing phase (Phase 1) : strategies for hunting and
attacking iguanas

In Phase 1, the mathematical model for updating the coatis
population is derived from the simulation of their behavioral
patterns when attacking iguanas. In this behavioral pattern, a
collective of coatis ascend trees near the iguana and drive it
away, while other coatis wait below the tree until the iguana
descends to the ground. Upon landing, the coatis attack and
kill it. This strategy enables the COA to transition to various
locations within the space exploration domain, showcasing
its comprehensive probing capability in the problem domain.

Upon designing the COA, assume the spatial location of
the optimal individual S; .+ Within the current population to
represent the location of the iguana. Suppose half the coatis
climb trees to hunt for iguana, and the other half await the
iguana's descent to the ground. Hence, Eq. (4) is employed to
numerically represent the coatis' location within the tree.

S =D+ (Sl DTS 1512 g @

Upon the iguana's descent to a stochastic location on the
ground within the search space, the coatis on the ground
initiate movement within the search space with the stochastic
spatial location serving as the central point of their trajectory,
and update the location by using Eq. (5)-(6).

Iguanaigmwd(j)=lbj +r(ub, —Ib ), j=12, . m (5
Sx'i (.]) +#. (Iguana;round (.]) 1. S: (J)))

s ()= if Fllguand,,,,) < F(s;)

i - £ . : . (6)
s, (+r-(s5(f)—Iguana,,,., (7). else
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where, ¢ denotes the current iteration count, » represents a
stochastic number within the range [0, 1], and T sigmfies a
stochastic integer chosen between 1 and 2. So the
Iguaﬂa;mm stands for the updated spatial location of the
iguana following its descent to the ground. s7(J) signifies
the j-dimensional atiribute value of the i-th entity in the
present iteration.

If the computed updated location of the present coatis
enhances the performance of the target function, it is
considered as satisfactory. Otherwise, the coatis remain in
their previous spatial location. That is to perform a greedy
choice, as shown in Eq. (7).

ST FGT)<FGs)
s = )
st,  else
(2) Development stage (Phase 2) : strategies for coatis to
attack iguanas

In Phase 2, The mathematical model underlying the
procedure of refining the coatis' spatial locations within the
search domain, represents a simulation of the natural

behavior of these creatures as they evade predators. Upon a
predator's assault on a coatis' entity, the coati flees from its
current location. The coatis' maneuvers are spatial locations
them 1in a secure proximity to their present site, which is the
development capability of COA in partial searching. In order
to replicate these behavioral patterns, a stochastic spatial
location is computed near each coati's site, as illustrated by

Eq. (8)-(9).

2 ub
lbjocai _ Tj,ubjam; _ Tj’t: 1,2,....T (8)
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9
i=12, N 2

where, r signifies a stochastic digit ranging from [0, 1], while
T represents the uppermost limit of iterations. It can be

observed that ubjm{ and fbf,om serve as the upper and lower

bounds for the updating of the j-th dimension variable with
respect to the iteration count. If the recently computed spatial
location bolster the prominence of the objective function, it is
deemed appropriate, and simulation proceeds with the
execution of greedy selection once more, as shown in Eq. (7).
Otherwise, the coati remains in its previous spatial location.

III. CAUCHY MUTATION AND CHAOTIC COATIS
OPTIMIZATION ALGORITHM

A. Cauchy Mutation

In response to the tendency of the COA to converge to the
local optima, a novel approach relying on Cauchy mutation is
further proposed. The Cauchy mutation draws from the
continuous probability distribution known as the Cauchy
distribution, characterized by a re

latively small peak at the origin and a gradual decline from
the peak to zero, resulting in a more uniform mutation range.
Introducing cauchy mutation during the update of the optimal
individual location in the population enhances the
heterogeneity of the population, improve the universal search
capacity and expand the space-searchable domain of the
algorithm. The mutation formula 1s defined as:

Carchy s =bxtan(x-(randn[l,d]-0.5)),6 = 0.01 (10)

where, stochastic number generator randn(1,d) is used to
generate stochastic vectors with Normal distribution, which
enhances the stochastic of the generated cauchy distribution.
By adding tan function to map the stochastic variables of
Normal distribution to the interval (-m,m), the resulting
cauchy distribution has a wider range of angles. By adjusting
the parameter 4 in the tan function (here i1s 0.01), it can
control the scale of the generated Cauchy distribution.
During the probing phase, the spatial location of the
optimal individual S;m in the population 1s hypothetically
assigned as the spatial location of the iguana, as the iguana's
location where it falls from the tree due to being frightened by
the coatis is prone to reaching local optima. To enable
individuals to find optimal solutions more effectively,
Cauchy mutation is incorporated into the probing phase
algorithm. Similarly, in the exploitation phase, the spatial
location of the optimal individual Sém in the population is
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assumed to be the location of the coati pursued by the
predator. During the procedure of evading the predator, the
coati tends to choose sale locations that lead to local optima.
Therefore, cauchy mutation is also integrated into the
exploitation phase algorithm. The method of ncorporating
cauchy mutation is identical in both phases, and its
mathematical representation is provided below.

hy =8, +8,  xCauchy(d)

new _bast best best

(11)

Upon testing, the convergence curve of the COA with the
incorporation  of  Cauchy mutation demonstrates a
significantly superior performance compared to the original
COA, so COA with Cauchy mutation is embedded in the
following algorithm enhancement.

B. Chaotic Maps Expressions and Visualized Graphics

Ten most prevalent chaotic maps are employed to enhance
the COA based on Cauchy mutation. The map expressions of
these ten most prevalent chaotic maps can be seen in Eq. (12)
to Eq. (21), and their visualized graphics are shown in Fig. 1.

(1) Chebyshev map (CH)

(5) Logistic map (LO)
Spp = as,(1-5,)

(16)

where, X, is the k& -th chaotic number, &£ is the number of
iterations, x<(0,1), x, €(0,0.250.5,0.75,1), a=4.

(6) Piecewise map (PI)

S—k,OSSk<p
Sy — P 1
JPES, =
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—p—5 1
CE L e
05 p 2
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where, p=(0.1) , x=(01).
(7) Sine map (SI)
a .
Sen = Zsm(ﬂs}c) (18)

Sy = cos(cos ' (s,) (12)  where, 2 (0,4].
{(2) Circle map (CI) (8) Singer map (3G)
S0 = (5, +b—(2i)sin(2;'zsk))mod(l) (13) Spu = H(7.865, —23.31s57 +28.755, —13.302875s5)) (19)
7T
where, a=05, 5=02. where, 4= (0.9.1.08).
(3) Gauss map (GA) (9) Sinusoidal map (SO)
0.5, S, = as? sin(7s,) (20)
Spw1 — o _otherwise where, & =23
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Fig. 1 Ten chaos visualizations.
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C. Flowchart of Cauchy Mutation Chaotic COA

To enhance the searching precision of the algorithm,
chaotic maps are mntroduced in the probing phase of COA.
Ten distinct chaotic mappings are incorporated into Eq. (6) to

replace the original stochastic numbers within the range [0, 1].

Whilst preserving the unchanged value range, these ten
chaotic mappings possess unique variation curves, which
alters the respective step sizes. This serves to enhance the
traversal capability and non-repeatability of COA, thereby its
convergence velocity and precision are amplified. The
Chebyshev map serves as a prototype to update the spatial
location of coatis. Eq. (6) after adding chaos map becomes:

5. () + Cs - (Tguana ey () =15, ()))
5T = i Fguana ., )< F(s))(22)

5, ())+ Cs - (5(j)— Iguana ,,,, (j)), else

Cs=((s,,, + DxValue)/2 (23)
S = cos(k Cosil(s;c )] (24)
L
Value:[C—Her Jﬁ (25)
M Iter

where, [ is the present iterative cycle, 5 (0,1),5(1)=0.7
The algorithm flow of the enhanced COA based on
Cauchy mutation and chaotic maps is shown in Fig. 2.

IV. EMULATION EXPERIMENTS AND RESULT
INTERPRETATIONS

A. CEC2022 Function Optimization

Twelve test functions in the CEC-BC-2022 are adopted.
To ensure the faimess of the experimental tests, the
maximum iteration numbers for both the original COA and
the enhanced Cauchy mutation chaotic COA for optimization
purposes are set to 1000, with a population magnitude of 30.
The optimization outcomes of these test functions are utilized
to comprehensively demonstrate the superiority of the
enhanced COA.

(1) CEC2022 test functions

These twelve functions chosen from the CEC-BC-2022
test suite in Ref [1] utilized in this article all possess a
10-dimensional configuration. The test functions span a same
range, which is uniformly [-100, 100]. The selected functions
encompass four categories: Unimodal function f, ; Basic
functions £, —f; ; Hybrid functions f; —f; ; Composition
functions /5 ~ /5.

(2) Cauchy mutation chaotic COA to solve CEC-BC-2022
test functions

This article chooses twelve test functions in the
CEC-BC-2022 to compare the output of the enhanced COA
with the original algorithm. Here, Cauchy mutation based
employ and ten types of chaotic maps to enhance the COA,
with each function having a dimension of 10 and the
maximum iteration number 1000 for each algorithm. The
experiments tun for 30 iterations, recording the optimal

solutions obtained in each of the 30 runs. Subsequently,
mathematical statistics are conducted on the experimental
outcomes to demonstrate the superiority of the enhanced
COA over the original algorithm in subsequent proof. The
mathematical statistical tests primarily utilize average values
and variances for statistical analysis, facilitating a
comprehensive evaluation of the experimental outcomes.
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Fig. 2 Flow chart of enhanced Cauchy mutation chaotic COA.
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The experimental outcomes have been organized in Table I,
which displays the outcomes of the best solutions, average
values and variances. To visually understand these outcomes,
convergence curve plots were also created, as shown in Fig. 3.
The graph observes that the convergence output of COA after
improvement is superior to that of the original algorithm for
the majority of functions. Overall, these experimental
outcomes demonstrate the potential of the enhanced COA in
practical applications and provide evidence for its suitability
for a more extensive array of optimization issues.

By examining the graphs in Fig. 3 and the statistics in
Table L, the following conclusions can be summarized. The
enhanced CHCOA achieves the smallest optimal values for
functions f,.fi. /s — o . the smallest average values for
functions f;— fs..f5 — fio- Sz, and the smallest variances for
functions f;, . The enhanced CICOA achieves the smallest
optimal value for function /5, the smallest average value for

enhanced ITCOA achieves the smallest optimal value for
functions f:, and the smallest variance for functions f-. The
enhanced LOCOA achieves the smallest average value for
function £, . and the smallest variances for function
foofon fiv . The enhanced SICOA achieves the smallest
optimal value for function f,, and the smallest variances for
function f. f;. The enhanced SGCOA achieves the smallest
optimal values for function £, /), the smallest variance for
functions 7, . The enhanced SOCOA achieves the smallest
average value for function f; , the smallest variances for
functions f;./s. The enhanced TECOA achieves the smallest
optimal value for functions 7., and the smallest variance for
functions ;. Reliance on the outcomes obtained in Table I, it
can be ascertained that the COA enhanced by introducing the
Chebyshevy map has the best effect. Therefore, in the
following comparison with other algorithms for optimization
purposes, the COA enhanced by introducing the Chebyshev

function 7, and the smallest variance for function #,. The map 1is selected for further algorithm performance
enhanced GACOA achieves the smallest optimal value for  verification.
function f, the smallest average value for function f;. The
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Fig. 3 The convergence graph of CEC-BC-2022 test functions solved by enhanced ten chaotic maps COA.
TABLE I. PERFORMANCE COMPARISON OUTCOMES OF CEC-2022 FUNCTION OPTIMIZATION
Function COA CHCOA  CICOA  GACTOA ITCOA  LOCOA  PICCA SICOA SGCOA  SOCOA  TECOA
Best 8.69E+03 196E+03 4.15E+02 3.76E+02 443E+02 397E+02 4.89E+02 4.18E+02 522E+02 465E+02 1.22E+03
A Ave 7.34E+03  836E+02 S5.85E+02 6.92E+02 7.13E+02 6.72E+02 8.73E+02 632E+02 S8.8E+02 TA49E+02 6.83E+02
Std  1.86E+03  954E+02 7.25E+02 6.98E+02 7.68E+02 7.71E+02 8.02E+02 7.20E+02 1.02E+03 1.00E+03 4.82E+02
Best 1.77E+03 4.00E+02 411E+02 4.04E+02 4.00E+02 4.09E+02 4.74E+02 4.01E+02 4.09E+02 451E+02 4.71E+02
£ Ave 1.51E+03  425E+02 4.26E+02 4.18E+02 4.29E+02 421E+02 4.29E+02 423E+02 423E+02 4.25E+02 4.24E+02
Std  6.72E+02  297E+01  3.58BE+01 2.76E+01 3.18E+01 289E+01 3.82E+01 2.75E+01 3.04E+01 2.93E+01 2.80E+01
Best 647E+02 6.13E+02 6.0YE+02 6.13E+02 6.19E+02 6.03E+02 6.05E+02 6.03E+02 6.02E+02 6.03E+02 6.28E+02
£ Ave 649E+02 6.08E+02 6.13E+02 6.09E+02 6.11E+02 6.13E+02 6.12E+02 6.08E+02 6.08E+02 6.10E+02 6.11E+02
Std  8.51E+00 7.66E+00 9.99E+00 6.55E+00 7.52E+00 848E+00 7.59E+00 6.63E+00 7.01E+00 838E+00 8A46E+00
Best 848E+02 813E+02 8§.1I8E+02 8.14E+02 8.26E+02 §26E+02 8§.23E+02 823E+02 8.18E+02 829E+02 8.12E+02
L Ave 8.50E+02 821E+02 8.22E+02 821E+02 8.23E+02 8.25E+02 8.24E+02 823E+02 824E+02 824E+02 821E+02
Std  748E+00 649E+00 8.38E+00 7A48E+00 35.75E+00 6.73E+00 8.05E+00 5.61E+00  S49E+00 6.00E+00  7.23E+00
Best 1.59E+03 1.17E+03 1.10E+03 122E+03 1.15E+03 1.19E+03 1.30E+03 1.10E+03 132E+03 1.22E+03 1.16E+03
£ Ave 144E+03 LI1SE+03 1.19E+03 1.24E+03 1.23E+03 1.19E+03 1.26E+03 120E+03 122E+03 1.26E+03 1.24E+03
Std  1.55E+02 996E+01  1.14E+02 1.18E+02 1.20E+02 9.43E+01 1.43E+02 141E+02 1.31E+02 1.22E+02 1.28E+02
Best 552E+05 2.53E+03 6.74E+03 522E+03 4.65E+03 290E+03 443E+03 5.25E+03 9.56E+03 739E+03 3.60E+03
t; Ave 8.14E+06 6.20E+03 6.22E+03 6.79E+03 6.41E+03 6.07E+03 5.72E+03 6.69E+03 6.63E+03 S.30E+03 6.01E+03
Std  1.11E+07 241E+03  4.38E+03 3.14E+03 281E+03 327E+03 3.45E+03 3.71E+03 349E+03 2.17E+03 2.85E+03
Best 2.07E+03  2.03E+03  2.03E+03 2.03E+03 2.02E+03 2.03E+03 2.03E+03 2.03E+03 2.04E+03 2.03E+03 2.02E+03
£ Ave 2.09E+03  2.03E+03 2.03E+03 2.03E+03 2.03E+03 2.03E+03 2.03E+03 2.03E+03 2.03E+03 2.03E+03 2.03E+03
Std  1.84E+01 896E+00 1.03E+01 1.23E+01 $8.03E+00 1.30E+01 1.07E+01 1.07E+01 1.04E+01 1.16E+01 1.22E+01
Best 2.24E+03 222E+03 2.23E+03 2.22E+03 223E+03 222E+03 2.22E+03 222E+03 222E+03 223E+03 222E+03
£ Ave 2.24E+03  222E+03 2.22E+03 222E+03 222E+03 223E+03 2.23E+03 222E+03 222E+03 223E+03 222E+03
Std  8.31E+00 3.92E+00 5.73E+00 348E+00 3.11E+00 1.81E+00 1.82E+00 5.16E+00 5.54E+00 2.02E+00 4.08E+00
Best 2.78E+03 2.33E+03 2.57E+03 2354E+03 2.53E+03 257E+03 2.60E+03 2.60E+03 256E+03 263E+03 257E+03
S Ave 2.75E+03  2.56E+03 2.58E+03 2.56E+03 2.57E+03 2.57E+03 2.57E+03 2.57E+03  257E+03  2.57E+03  2.57E+03
Std  3.59E+01  290E+01  3.64E+01 2.28E+01 4.05E+01 429E+01 3.14E+01 2.26E+01 3.74E+01 2.24E+01 3.95E+01
Best 2.55E+03  2.50E+03 2.50E+03 2.65E+03  2.50E+03 2.50E+03  2.63E+03 251E+03  2.50E+03  2.61E+03  2.63E+03
o Ave 270E+03 2.30E+03 2.51E+03 255E+03 2.53E+03 255E+03 2.55E+03 252E+03  253E+03  2.53E+03  2.53E+03
Std  1.25E+02 5.69E+01 2.86E+01 6.32E+01 5.38E+0l 6.17E+01 6.09E+01 498E+01 5.05E+01 497E+01 535E+01
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Best 341E+03 261E+03 2.61E+03 261E+03 2.61E+03
i Ave 3.67E+03  2.72E+03 2.71E+03 2.69E+03 2.73E+03
Std  4.11E+02  141E+02 1.22E+02 1.20E+02 1.43E+02
Best 297E+03 287E+03 2.8YE+03 287E+03 2.87E+03
S Ave 2.97E+03 287E+03 2.87E+03 287E+03 2.87E+03
Std  5.99E+01  427E+00 7.73E+00 1.51E+01  5.23E+00

2.61E+03 2.61E+03 261E+03 2.60E+03 261E+03 292E+03
2.67E+03  2.69E+03 2.76E+03 2.69E+03 268E+03 2.72E+03
8.45E+01 1.39E+02 1.70E+02 1.26E+02 1.05E+02 1.65E+02
287E+03 2.88E+03 2.86E+03 287E+03 287E+03 287E+03
2.87E+03 2.87E+03 287E+03 2.87E+03 287E+03 2.87E+03
T15E+00  7.52E+00 S530E+00  4.96E+00 S5.07E+00  7.13E+00

B. Comparison with Other Intelligent Algorithms for
Optimization Purposes

By utilizing the chosen twelve test functions in the
CEC-BC-2022, the output of the COA enhanced by Cauchy
mutation and the chaotic map is compared with other
intelligent optimization algorithms. The present study
employs the COA with Chebyshev mapping improvement,
alongside six other intelligent optimization algorithms,
namely GOA, IDMO, RSA, OOA, WOA and W3O. Each of
the chosen functions possesses a dimension of 10, with a
maximum iteration number of 1000 generations for each
algorithm. Each algorithm is executed in a loop for 30
iterations, and the optimal solution obtained in each loop is
recorded. Experimental outcomes undergo mathematical
statistical analyses to demonstrate the dominance of the
improved COA compared to other intelligent optimization
algorithms in terms of efficacy. The use of average and
variance in statistical testing is beneficial for analyzing
experimental results. The optimal values, average values and
variances obtained from the experiments are shown in Table
. The convergence curves obtained from the experiments
have been organized in Fig. 4, from which can be illustrated
that the improved CHCOA outperforms the other six
intelligent optimization algorithms for most of the functions.

By examining the graphs in Fig. 4 and the statistics in
Table TI, the following conclusions can be summarized.
Through the experimental outcomes of CEC-2022 function
optimization, it can be found that the CHCOA exhibits
superior output in terms of the optimal and average values,
compared to the other six intelligent optimization algorithms.
Furthermore, its relatively small variance demonstrates better
stability. By comparing the optimization outcomes of the six
algorithms in Table II, the following conclusions can be

———CIICOA | 4
—©—-GOA
—— IDMO
—f—- RSA
00A

10° ¢ coA B3A =— WSO

Best score obtained so far

o0 200 300 400 500 700 800

Tteration

m fi

G0

achieved. The enhanced CHCOA achieves the smallest
optimal values for functions f,— /. /s /i /12, the smallest
average values for functions f./:—/f./o—/f2 , and the
smallest variances for functions f., /.. f5 — fi-Ju— fia . From
the above outcomes, 1t can be observed that the improved
Cauchy mutation chaotic COA with the introduction of the
Chebyshev map performs better in terms of overall
performance and approaches the comprehensive optimization
results of the majority of functions. Similarly, comparing the
outcomes of optimization algorithms enhanced by
incorporating other chaotic maps in Table I with those in
Table I can also lead to the same conclusion The enhanced
CICOA obtains the optimal wvalues from optimization
functions /i f5- - fiz are 4.11E+02,  6.07E+02,
2.03E+03, 2.50E+03 and 2.87E+03, which are the minimum
compared with the optimal values of other six types of
algorithms such as GOA and IDMO in Table II. The
enhanced GACOA obtains the average values from
optimizing functions £/, and f, are 2.22E+03, 2.55¢ +03
and 2.69E+03 respectively, which are the mimimum
compared with the average values obtained by the other six
types of algorithms in Table II. The enhanced LOCOA
obtains the variances from optimization functions f.f; and
S are 9.43e +01, 1.81E4+00 and 8.45E+01 respectively,
which are also the minimum values compared with the
variances obtained by other six types of algorithms in Table
[. Therefore, it can be concluded that the enhanced COA for
optimization purposes reliance on Cauchy mutation and ten
types of chaotic maps have better optimization effects than
other algorithms, and the enhancement of the enhanced
algorithm is deemed feasible.
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Fig. 4 The convergence graph of CEC-BC-2022 test function solved by enhanced Chebyshev map COA and other intelligent algorithms.
TABLE II. PERFORMANCE COMPARISON OUTCOMES OF CEC-2022 FUNCTION OPTIMIZATION
Function CHCOA GOA IDMO RSA O0A WOA WSO
Best 2.82E+03 3.00E+02 2.33E+03 7.37E+03 8.16E+03 3.59E+04 4.64E+03
A Ave 7.28E+02 2.93E+03 2.79E+03 8.61E+03 8.51E+03 2.14E+04 7.11E+03
Std 8.70E+02 6.51E+03 1.32E+03 2.81E+03 1.63E+03 1.30E+04 2.72E+03
Best 4.01E+02 4.12E+02 4.52E+02 6.23E+02 3.35E+03 4.73E+02 4 91E+02
5 Ave 4.19E+02 4.17E+02 5.70E+02 1.02E+03 1.72E+03 4 49E+02 8 48E+02
Std 4.02E+01 2.39E+01 1.99E+02 5.23E+02 8.32E+02 5.57E+01 5.62E+02
Best 6.03E+02 6.27E+02 6.14E+02 6.48E+02 646E+02 6.52E+02 6.53E+02
£ i Ave 6.10E+02 6.22E+02 6.35E+02 6 47E+02 6.44E+02 6.38E+02 6 40E+02
Std 8.89E+00 1.51E+01 1.49E+01 7.33E+00 1.01E+01 1.36E+01 1.15E+01
Best 8.21E+02 8.37E+02 8.25E+02 8.52E+02 849E+02 845E+02 8.55E+02
L Ave 8.23E+02 844E+02 8.29E+02 8.50E+02 848E+02 8.34E+02 8 49E+02
Std 6. 79E+00 1.77E+01 7.39E+00 7.22E+00 1.02E+01 1.39E+01 1.27E+01
Best 1.17E+03 9.00E+02 1.13E+03 1.68E+03 1.11E+03 1.32E+03 1.17E+03
% Ave 1.18E+03 1.60E+03 1.29E+03 1.50E+03 1.42E+03 1.45E+03 1.39E+03
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Std 1.30E+02 7.98E+02 1.97E+02
Best 8.65E+03 2.01E+03 1.83E+04
S Ave 6.09E+03 3.83E+03 9.52F+03
Std 2.01E+03 2.35E+03 7.80E+03
Best 2.03E+03 2.04E+03 2.07E+03
£ Ave 2.03E-+03 2.11E+03 2.08E+03
Std 9.06E-+00 6.32E+01 3.29E+01
Best 2.22E+03 2.22E+03 2.23E+03
5 Ave 2.22E-+03 2.27E+03 2.24E+03
Std 4.39E+00 5.33E+01 4 89E+01
Best 2.68E+03 2.53E+03 2.67E+03
£’ Ave 2.55E-+03 2.56E+03 2.67E+03
Std 451E+01 5.18E+01 3.44E+01
Best 2.62E+03 2.63E+03 2.51E+03
fo Ave 2.53E-+03 3.03E+03 2.63E+03
Std 531E+01 5.10E+02 2.22E+02
Best 2.61E+03 2.60E+03 2.80E+03
£ Ave 2.68E-+03 2.79E+03 3.02E+03
Std 1.02E+02 1.96E+02 4.15E+02
Best 2.85E+03 2 88E+03 2.93E+03
f, Ave 2.87E-+03 2.87E+03 2.92E+03
Std 3.48E+00 149E+01 3.78E+01

1.13E+02 1.86E+02 4.09E+02 2.25E+02
5.92E+07 1.23E+04 8.09E+03 5.52E+03
7.53E+07 3.33E+06 4.32E+03 4 .59E+03
4.32E+07 5.54E+06 1.97E+03 2.27E+03
2.09E+03 2.09E+03 2.04E+03 2.09E+03
2.12E+03 2.09E+03 2.07E+03 2.08E+03
2.53E+01 2.63E+01 2.39E+01 3 37E+01
5.26E+03 2.26E+03 2.23E+03 2.23E+03
2.35E+03 2.23E+03 2.24E+03 2.24E+03
5.51E+02 9A8E+00 1.21E+01 2. 69E+01
2.67E+03 2.80E+03 2.63E+03 2.67E+03
2.73E+03 2.75E+03 2.58E+03 2. 66E+03
4.79E+01 349E+01 5.04E+01 4 .22E+01
2.71E+03 2.59E+03 2.65E+03 2.76E+03
2.66E+03 2.68E+03 2.63E+03 2.79E+03
1.18E+02 1.61E+02 2.11E+02 4.61E+02
291E+03 331E+03 2.66E+03 2.94E+03
3.32E+03 3.57E+03 2.84E+03 3.18E+03
4.30E+02 4.76E+02 1.57E+02 3.75E+02
2 .89E+03 2.97E+03 2.97E+03 2.92E+03
2.95E+03 3.07E+03 2.90E+03 2. 95E+03
1.12E+02 7.59E+01 4.96E+01 4 96E+01

C. Engineering Optimization Design Problems
{1) Three-bar truss design problem

Three-bar truss design problem refers to the optimization
of the structure under constraints to achieve minimal weight
while satisfying specific performance requirements, thereby
ensuring high mechanical performance and stability. A
three-bar truss consists of three members and 1s commonly
used in engineering structures such as bridges and towers.
The model diagram of the three-bar truss design problem is
depicted in Fig. 5.

Objective function: /(X )= (2\5)(1 +X, ) *]

. Vax +x
Constraints: g (X)= #P —o<0
DX, +2X,X,
X
X )=——=——"——P-0=0
() J2X, 42X X,
! P-oc=0

&) V2x, + X,
where, 0= X . X, <1, =100 cm, P=2 KN/em, =2
KN/em.

Owing to the difference in the output of the enhanced
COA reliance on ten chaotic maps to solve the three-bar
truss design problem is minimal among each other, a
comparison was conducted between the aforementioned
enhanced CHCOA, which extubited the finest overall
efficacy in solving twelve test functions in the
CEC-BC-2022, and six other intelligent optimization
algorithms, namely GOA, IDMO, RSA, O0A, WOA and
WSO. The experimental outcomes of optimizing the most

excellent solution to the three-bar truss design problem by
using these selected algorithms are presented. For the sake
of facilitating the observation of experimental outcomes, the
upper limit of iterations for each algorithm was fixed at 100
generations. The optimal values, mean values and variances
from 30 experimental runs were compiled in Table III, with
the outstanding experimental data being highlighted in bold.
The convergence graphs of the algorithms for enhancing the
efficacy of addressing the truss design problem are depicted
in Fig. 6. According to Table TV, the optimal and average
values obtained by the enhanced CHCOA for optimizing the
three-bar truss design problem are 2.64E+02 and 2.64E+02,
respectively, which are the smallest among the optimal and
average values obtained by other intelligent optimization
algorithms in Table IV. From Fig. 6 and Table IV, it can be
illustrated that the overall performance of the enhanced
CHCOA for the three-bar truss design problem is the best.

(2) Cantilever beam design problem

The cantilever beam design problem involves achieving
economic optimization while satisfying specific conditions
and regulations, ensuring good performance and stability
under various loads. The primary objectives are to enhance
the beam's flexural and shear capacity while minimizing
material usage and meeting predetermined design
requirements. The model diagram of the cantilever beam
design problem is depicted in Fig. 7.

Objective function:

F(X)=1.1047X2X, + 0.04811X,X,(14.0+ X, )

Constraints: g (X)=7(X)-z,, <0
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F

where, (X )= (r')2+2r’r"%+(r”)2 J = Gy,
f":@ M—P{L+£] = }(22+[X1+X3J2
J’ 2 ) 4 2 ’

2y 8

6P 4.013E,[—=—2
- X [E
EXIX,  P(X)=— % 30 |1 /7 ’
L 2LV 4G

P=60001b, L=14in, &,,. =025 in, E=30x1° psi,
G=12x10° psi, T =13600 psi, ... = 30000 psi,
Oy &2 OllzXy =10, OdwX, 10 Olwly =2

Owing to the difference in the dominance of the enhanced
COA reliance on ten chaotic maps to solve the cantilever
beam design problem is minimal among each other, a
comparison was conducted between the aforementioned
enhanced CHCOA, which exhibited the finest overall
efficacy in solving twelve test functions in the
CEC-BC-2022, and six other intelligent optimization
algorithms, namely GOA, IDMO, RSA, OOA, WOA and
WSO. The experimental outcomes of optimizing the optimal
solution of the cantilever beam design problem by using
these selected algorithms. For the sake of facilitating the
observation of experimental outcomes, the upper limit of
iterations for each algorithm was fixed at 100 generations.
The optimal values, mean values and variances from 30
experimental runs were compiled in Table V, with the
outstanding experimental data being highlighted in bold.
The convergence graphs of the algorithms for enhancing the
efficacy of addressing the cantilever beam design problem
are depicted in Fig. 8. According to Table VI, the average
value and variance obtained by the enhanced CHCOA for
the cantilever beam design problem is 2.42E+00 and
4.92E-01, which is the smallest among the average values
and variances obtained by other intelligent optimization
algorithms in Table VI From Fig. 8 and Table VI, it can be
illustrated that the enhanced CHCOA has achieved
satisfactory outcomes for the cantilever beam design
problem.

=
=
|

(3) Pressure vessel problem

A pressure vessel 1s a closed equipment capable of
withstanding internal pressures, commonly used for storing
and transporting gases, liquids and other media. Pressure
vessel problem primarily involves the design, fabrication,
operation, nspection and maintenance of these vessels. The
model diagram of the pressure vessel problem is presented in
Fig. 9.

Objective function:

J(X)=0.6224X, X, X, +1.778LX, X7 +3.166 LY X, +19.84X7 X,

)

Fig. 5 A model drawing of a three-bar truss.
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Fig. 6 The convergence diagram of the three-bar truss optimized by the
enhanced CHCOA and other intelligent algorithms.

X

Fig. 7 A model drawing of a cantilever beam problem model drawing of a
cantilever beam problem.
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Fig. 8 The convergence diagram of the cantilever beam problem optimized
by the enhanced CHCOA and other intelligent algorithms.
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Constraints: g, (X) =0.0193X,-X <0
g, (X)=0.00954X, - X, <0
g (X)=1296000—zX3X, - 4, #X7 <0
g, (X)=X,—240<0

where, 0.0625<X, X, <61875,

Owing to the difference in the dominance of the enhanced
COA reliance on ten chaotic maps for solving the pressure
vessel problem is minimal among each other, a comparison
was conducted between the aforementioned enhanced
CHCOA, which exhibited the finest overall efficacy in
solving twelve test functions in the CEC-BC-2022, and six
other intelligent optimization algorithms, namely GOA,
IDMO, RSA, OOA, WOA and WSO. The experimental
results of enhancing the efficacy of addressing the optimal
solution of the pressure vessel problem by using these
selected algorithms. For the sake of facilitating the
observation of experimental outcomes, the upper limit of
iterations for each algorithm was fixed at 100 generations.
The optimal values, mean values and variances from 30
experimental runs were compiled in Table VII, with the
outstanding experimental data being highlighted in bold.
The convergence graphs of the algorithms for enhancing the
efficacy of addressing the pressure vessel problem are
depicted in Fig. 10. According to Table VIII , the average
value and variance obtained by the enhanced CHCOA for
optimizing the pressure vessel problem are 6.58E+03 and
3.45E+02, respectively, which are the smallest among the
average values and variances obtained by other intelligent
optimization algorithms in Table VII. From Fig. 10 and
Table VIII, it can be illustrated that the overall performance
of the enhanced CHCOA for the pressure vessel design
problem is the best.

{4) Tension spring problem

The tension spring problem primarily concerns the design,
fabrication, application and upkeep of springs. A tension
spring is an elastic element that can undergo tensile
deformation under external force, widely employed in
various mechanical and electronic devices for force
transmission, vibration dampening and compensation. The
model diagram of the tension spring design problem is
presented in Fig. 11.

Objective function: /(X)=(X, +2)X, X}

: XX
Constraints; g, (X )=1-——2-2,<0
71785X,
4X]-X X
g(X)=— = dXy 1
12566( X, X - X'} 5108X,
140.45X
X)=1-——-1L=0
ga( ) X22X3
X +X
g4(X):%71£0

where, 0.05<X, <200 025<X,<130, 200=X, <150,

Owing to the difference in the dominance of the enhanced
COA reliance on ten chaotic maps for solving the tension
spring problem is minimal among each other, a comparison
was conducted between the aforementioned enhanced
CHCOA, which exhibited the finest overall efficacy in

solving twelve test functions in the CEC-BC-2022, and six
other intelligent optimization algorithms, namely GOA,
IDMO, RSA, O0A, WOA and WSO. The experimental
results of optimizing the optimal solution of the tension
spring problem by using these selected algorithms. For the
sake of facilitating the observation of experimental
outcomes, the upper limit of iterations for each algorithm
was fixed at 100 generations. The optimal values, mean
values and variances from 30 experimental runs were
compiled in Table IX, with the outstanding experimental
data being highlighted in bold. The convergence graphs of
the algorithms for enhancing the efficacy of addressing the
tension spring problem are depicted in Fig. 12. According to
Table X, the optimal value, average value and variance
obtained by the enhanced CHCOA for the design of tension
springs are 1.20E-02, 1.21E-02 and 1.08E-04, respectively,
which are the smallest among the optimal values, average
values and wvariances obtained by other intelligent
optimization algorithms in Table X. From Fig. 12 and Table
X, it can be illustrated that the overall optimization effect of
the CHCOA for the tension spring problem is the best.

Xﬂ

@X:(Xﬂ ¢

Fig. 9 A model drawing of a pressure vessel problem.
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Fig. 10 The convergence diagram of the pressure vessel problem optimized
by the enhanced CHCOA and other intelligent algorithms.
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X

Fig. 11 A model drawing of a tension spring problem.
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V. CONCLUSION

The experimental outcomes of four distinct categories of
engineering optimization design problems demonstrate the
good optimization effects of the Cauchy mutation chaotic
COA. Compared with other introduced chaotic maps, the
Cauchy mutation chaotic COA with Chebyshev map and
Circle map have a good effect on optimal value. Among the
thirty running outcomes, the Cauchy mutation chaotic COA
enhanced by the Chebyshev map achieves the best average
optimization. The variance effect of the Cauchy mutation
chaotic COA enhanced by introducing the Chebyshev map,
[terative map, Singer map and Tent map are pretty good. The
convergence effect of the Cauchy mutation chaotic COA
enhanced by the Chebyshev map is pretty good, and the
optimal values and average values of enhanced the efficacy
of addressing the three-bar truss design problem and the
tension spring problem obtained by the enhanced CHCOA
are the best. For the three-bar truss design problem and
tension spring problem, the optimal values obtained by the

enhanced CHCOA are the best.

m———C|COA
—0—-GoA
—E—TOMO
Goa — k== RSA
O0A
= WSO

Besscore oblained so [ar

10 20 30 40 30 60 70 84 90 100
Iteration
Fig. 12 The convergence diagram of the tension spring problem optimized
by the enhanced CHCOA and other intelligent algorithms.

TABLE III. THE BEST SOLUTION OBTAINED FROM THE THREE-BAR TRUSS DESIGN PROBLEM

CHCOA GOA IDMO RSA 00A WOA WSO
flX) 2.64E+02 2.64E+02 2.64E+02 2.64E+02 2.70E+02 2.66E+02 2.65E+02
X, 7.80E-01 7.69E-01 7.86E-01 7.88E-01 7.35E-01 7.52E-01 7.65E-01
X, 4.34E-01 4.72E-01 4.17E-01 4 57E-01 5.95E-01 5 44E-01 4.85E-01

TABLE IV. THE OUTCOMES OBTAINED FROM THE THREE-BAR TRUSS DESIGN PROBLEM

CHCOA GOA IDMO RSA 00A WOA WSO
Best 2.64E+02 2 64E+02 2.64E+02 2.64E+02 2 64E+02 2.64E+02 2.64E+02
Ave 2.64E+02 2.65E+02 2.64E+02 2.69E+02 2.68E+02 2.67E+02 2.65E+02
std 2.24E-01 1 37E+00 1.26E-01 3.92E+00 2.53E+00 4.39E+00 1.79E+00

TABIE V. THE BEST $OLUTION OBTAINED FROM THE CANTILEVER BEAM PROBLEM

CHCOA GOA IDMO RSA QO0A WOA WSO
J(X) 3.23E+00 6.78E+04 2.40E+00 4.17E+00 5.12E+00 3.74E+00 221E+00
X, 3.27E-01 5.69E-01 3.20E-01 2.72E-01 4 69E-01 381E-01 2.80E-01
X, 3.10E+00 2.34E+00 3.19E+00 4.79E+00 3.66E+00 4 34E+00 4.40E+00
X 6.82E+00 5.30E+00 7.36E+00 8.39E+00 5.34E+00 6.20E+00 6.70E+00
X, 4.05E-01 7A8E-01 4.01E-01 3.69E-01 6.60E-01 5.85E-01 4.59E-01

TABLE VI. THE OUTCOMES OBTAINED FROM THE CANTILEVER BEAM PROBLEM

CHCOA GOA IDMO RSA 00A WOA WSO
Best 1.82E+00 1.95E+00 1. 87E+00 1.95E+00 1.99E+00 1.95E+00 1.7SE+00
Ave 2.42E+00 1.04E+06 2.50E+00 2.65E+00 6.71E+02 3.37E+00 2.71E+00
Std 4.92E-01 3 43E+06 6.13E-01 5.89E-01 3.65E+03 1.09E+00 6.18E-01

TABLE VII. THE BEST SOLUTION OBTAINED FROM THE PRESSURE VESSEL PROBLEM

CHCOA GOA MO RSA 00A WOA WSO
J(X) 6.99E+03 2.04E+05 6.84E+03 7.27E+03 3.04E+05 3.68E+04 7.40E+04
X, 1.07E+00 8.16E-01 1.06E+00 1.27E+00 7.32E+00 1.14E+00 1.56E+00
X, 5.14E-01 6.69E+00 7.26E-01 2.06E+00 1 .86E+01 1.29E+00 6.81E-+00
X, 5.66E+01 4.37E+01 5.30E+01 4.86E+01 5.65E+01 5.27E+01 5.40E+01
X, 5.79E+01 1 86E+02 9.19E+01 1.25E+02 5.66E+01 9.01E+01 7.94E+01
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TABLE VIII. THE OUTCOMES OBTAINED FROM THE PRESSURE VESSEL PROBLEM

CHCOA GOA IDMO RSA O0A WOA W30
Best 5.91E+03 5. 74E+03 6.36E+03 6.60E+03 1.02E+04 6.23E+03 6.29E+03
Ave 6.38E+03 2 41E+04 $.08E+03 3.41E+04 2.04E+05 2 40E+04 4.08E+04
Std 3. 45E+02 4. 72E+04 1.15E+03 4.61E+04 1.48E+05 3. 76E+04 8.70E+04
TABLE IX. THE BEST SOLUTION OBTAINED FROM THE TENSION SPRING PROBLEM
CHCOA GOA IDMO RSA Q0A WOA WSO
f(X) 1.22E-02 1.45E-02 1.25E-02 1.92E-02 4 .80E-02 1.20E-02 2.31E-02
X 5.65E-02 1.02E-01 6.09E-02 6.55E-02 5.73E-02 5.79E-02 6.01E-02
X, 3.13E-01 6.08E-01 4.11E-01 4 .84E-01 3.24E-01 348E-01 3.94E-01
X, 7. 40E+00 6.96E+00 5.22E+00 545E+00 4.15E+00 6.92E+00 4 89E+00
TABLE X. THE OUTCOMES OBTAINED FROM THE TENSION SPRING PROBLEM
CHCOA GOA IDMO RSA 00A WOA WSO
Best 1.20E-02 1.37E-02 1.21E-02 1.25E-02 1.22E-02 1.20E-02 1.20E-02
Ave 1.21E-02 8.63E-02 1.31E-02 1.53E-02 2.55E-02 1.24E-02 1.70E-02
Std 1.08E-04 8.36E-02 7.83E-04 1.63E-03 1 47E-02 6.66E-04 7.78E-03
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