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Abstract—This paper proposes a novel cloud computing-
based parallel deep reinforcement learning (DRL) energy man-
agement strategy (EMS) for connected plug-in hybrid vehicles.
First, a proximal policy optimization (PPO) algorithm is devel-
oped. Since the cloud computing can reduce the computational
burden of the connected vehicles, the PPO is deployed in the
proposed cloud computing-based EMS. In order to improve
the strategy adaptation, a parallel mechanism is proposed
to achieve the information interaction with multiple vehicles.
Considering the real-time control requirements, thread pool is
proposed and applied in the cloud computing based parallel
EMS. The thread pool-based strategy provides an efficient
real-time control ability and strategy improvement solution.
To verify the PPO based EMS, the dynamic programming,
deep Q-network and double deep Q-network strategies are
developed for comparison. It is found that the PPO can
achieve similar fuel efficiency improvement with the DP strategy
among the three DRL algorithms. For parallel training of
multiple connected vehicles, the cloud computing-based parallel
EMS improves fuel economy by approximately 7.7%. Thread-
pool based parallel real-time EMS reduces average time for
computational interactions by 20% and further improves the
fuel efficiency. The proposed strategy has the advantages of real-
time control, adaptability and continuous learning for improved
fuel efficiency.

Index Terms—Deep Reinforcement Learning, Cloud Com-
puting, Connected Vehicle, Asynchronous Mechanism, Thread
Pool, Energy Management Strategy.

I. INTRODUCTION

W ITH the increasing severity of energy issues and
environmental pollution, the electrification of auto-

mobiles has emerged as an inexorable trend in the evolution
of the automotive industry [1, 2]. Plug-in hybrid vehicles
(PHEVs) represent a promising solution [3]. The EMS plays
a pivotal role in the efficient operation of PHEVs [4]. How-
ever, due to the structural complexity of the powertrain and
the uncertainty of driving scenarios, the design of an efficient
and adaptive EMS is a challenging task [5]. There exist
three primary categories of EMSs for PHEVs [6]. Rule-based
methods are commonly utilized to accomplish real-time
control, however, the efficacy is contingent upon the expertise
of the engineers [7]. To minimize reliance on professionals,
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optimization-based methods have been developed [8]. The
optimization-based methods include dynamic programming
(DP) [9, 10], linear programming (LP) [11], model predictive
control (MPC) [12–14], equivalent fuel consumption mini-
mization strategy (ECMS) [15, 16], game theory [17], etc.
However, the current well-established strategies entail heavy
computational burdens and are less adaptable to complex
driving conditions [18, 19].

DRL-based EMSs are highly capable of learning and
adapting under complex driving cycles [20–22]. Wu et al.
proposed a deep Q-network algorithm based EMS, The tables
utilized in conventional Q-learning were substituted with
deep neural networks (DNN), which can better handle the
multidimensional state space in EMS problems [23]. Qi
et al. implemented DQN with dueling networks to further
accelerate the learning or convergence process [24]. Lian
et al. embedded expert knowledge into deep deterministic
policy gradient (DDPG) strategy and obtained better fuel
economy [25]. Additionally, a PPO based EMS incorporating
the thermal characteristics of batteries was proposed, achiev-
ing the optimal balance among multiple objectives through
intelligent weight adjustments during the training phase [26].
While DRL-based EMSs have demonstrated exceptional the-
oretical performance, they encounter substantial challenges
in real-world vehicle applications. Frequent real-time update
policies require the controller to have strong computational
power, which is not allowed in many scenarios [27].

The utilization of technologies related to internet of ve-
hicles (IOV) and cloud computing can increase computing
power [28]. Liu et al. proposed an event-triggered EMS based
on vehicle cloud optimization to significantly improve the
fuel economy of plug-in hybrid buses [29]. Hu et al. proposed
a cloud-based schedule training framework that reduces the
computational burden on edge devices [30]. Zhang et al.
developed a two-layer EMS using cloud computing and IOV
technologies for globally optimizing energy consumption and
battery state of health [31].

Most current DRL-based research has focused on training
and implementing EMS for individual vehicles, with limited
exploration of the concurrent capabilities and benefits of
cloud computing. Thus, this study innovatively develops a
cloud computing based parallel DRL EMS. An asynchronous
mechanism in the cloud is utilized to provide parallel control
for multiple connected vehicles. Furthermore, the thread
pool is employed to facilitate real-time strategy updates
and improvements by utilizing data from multiple connected
vehicles.

This paper is structured as follows: Section 2 introduces
the PHEV powertrain model. The PPO based EMS is pro-
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posed in Section 3. The cloud computing-based parallel EMS
is designed, which includes parallel EMS training framework
and parallel real-time EMS in Section 4. Simulation results
and test results analysis, are discussed in Section 5. Section
6 concludes the paper.

II. DYNAMIC MODELING AND CONTROL OF PHEV
A. Configuration of PHEV

This study selects the power-split PHEV as the research
subject. The powertrain configuration is illustrated in Fig-
ure 1, which includes traction motor (Motor1), generator
(Motor2), engine, planetary gear set and battery. Specifically,
the engine is linked to the planetary carrier, the sun gear is
linked to Motor2, Motor1 is linked to the ring gear, and the
speed of Motor1 is synchronized with the vehicle speed. The
primary parameters of PHEV are illustrated in Table I.

 

Ring

Planet carrier

Sun

Planet carrier

Ring

Engine

Final drive

Electric connection

Mechanical connection

Gear enagement

Motor2 

Motor1 Battery

Fig. 1. Configuration of the PHEV powertrain.

TABLE I
VEHICLE PARAMETERS

Parameters Value Unit

Full mass 1801 kg

Motor1 rated/peak power 25/50 kW

Motor2 rated/peak power 15/30 kW

Maximum engine power 57 kW

Battery rated voltage 237 V

Battery capacity 39 Ah

Final gear ratio 4.05 -

Number of ring gear 78 -

Number of sun gear 30 -

B. The power demand Model

In this study, only the impacts of vehicle longitudinal
dynamics are taken into account. The power required by the
vehicle for a specific driving cycle is calculated as depicted
in Equation 1.

Pdem = (Ff + Fw + Fi + Fj)v

Ff = mg cos θ

Fw = 1
2CdAρv

2

Fi = mg sin θ

Fj = δmdv
dt

(1)

where Pdem is demand power, Ff , Fi, Fw and Fj rep-
resent rolling resistance, slope resistance, air resistance and
acceleration resistance respectively, f is rolling resistance
coefficient, g is acceleration of gravity, ρ is air density, θ
is road slope, a is longitudinal acceleration, Cd is the air
resistance coefficient, δ is rotating mass conversion factor,
m is vehicle mass, A is windward area.

The power-split powertrain system utilizes a planetary gear
mechanism as the power coupling device. The torque-speed
relationship of the planetary gear set can be expressed as:{

Ts : Tr : Tc = 1 : α : −(1 + α)

ωs + αωr = (1 + α)ωc

(2)

where α represents the gear ratio of sun and ring gear,
Ts, Tr and Tc represent their respective torques. ωs, ωr and
ωc represent the speed of sun gear, ring gear and planetary
carrier.

C. Powertrain system model

Without any mechanical coupling between the engine
and the wheels, the engine can be operated at the optimal
efficiency point corresponding to any power demand. The
fuel consumption of the engine can be calculated based on
the real-time torque and speed. The fuel consumption is
represented by Equation 3:{

ṁf = f(Te, ωe)

Fuel =
∫ T

0
ṁfdt

(3)

where ṁf represents the engine fuel consumption rate, Te

denotes the engine output torque, ωe is the engine speed.
In the motor model, the numerical model of motor effi-

ciency is a function of speed and torque, given by:

ηmot = f(Tmot, ωmot) (4)

where ηmot is motor efficiency, Tmot is the motor torque,
ωmot is the motor speed.

In this study, the fluctuations in battery temperature and
battery degradation are not taken into account. A simplified
battery is developed and the corresponding equations are
shown as follows:

Pbatt(t) = Voc(t) · Ibat(t)−R0 · I2(t)

Ibat(t) =
Voc(t)−

√
V 2
oc(t)−4·R0·Pbatt(t)

2·R0

SȮC = − Ibat(t)
Qbat

(5)

where Ibat is the battery current and Qbat is the battery
capacity. R0 is the internal resistance, Voc denotes the open-
circuit voltage, Pbatt is the the battery output power.

III. DRL BASED EMS FOR PHEV

A. The PPO algorithm

The PPO algorithm adopts actor-critic architecture which
is a DRL algorithm based on policy gradient. The PPO
algorithm is insensitive to changes in hyperparameters and
has the advantages of training stability and strong robustness
[32]. In contrast to other reinforcement learning algorithms,
PPO exhibits faster convergence and reduced time costs [33].
Therefore, the PPO algorithm is applied to the EMS of the
target PEHV.
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Typically, PPO uses two policy networks to represent the
old and new policies separately. To simplify the process of
synchronizing the parameters of two policy networks, this
study adopts an alternative scheme where PPO uses one
policy network. The experience pool stores the logarithmic
probability density of each action (the old strategy) in
addition to the state, action, and reward. This single-policy
network scheme makes the overall framework structure sim-
pler and facilitates subsequent framework construction. The
specific flow of algorithmic interactions and updates is shown
in Algorithm 1.

Algorithm 1 PPO
1: Initialize policy network π(st, at) with network param-

eters θ
2: Initialize iteration count M , action collection a, state

collection s, discount factor γ, ϵ, step length α
3: Set experience pool ep with capacity Ne, batch size B
4: for e from 1 to M do
5: State: s=s0
6: for t from 1 to T do
7: Feed st into the policy network
8: Select the action at and obtain aprob
9: Execute action at, the obtain st+1 and reward rt

10: Store the experience data (st, at, aprob, rt, st+1)
in ep

11: end for
12: for k from 1 to Kepochs do:
13: Value network computes the value function
14: Update network parameters of policy network by

L(θ)
15: end for
16: end for
17: Output the final policy

The PPO algorithm uses the clip method to limit the range
of policy updates to make the learning process smoother and
more stable [34]. The specific loss function of PPO algorithm
is constructed as follows:

L(θ) = Êt

[
min

(
πθ(at, st)

πθold
(at, st)

Ât, clip

(
πθ(at, st)

πθold
(at, st)

, 1 − ε, 1 + ε

)
Ât

)]
(6)

where πθ and πθold represent new and old policies. ε is
a hyperparameter employed to regulate the magnitude of
variances between the policy distribution before and after the
update, ε is 0.2. Ât denotes the advantage value, which is
calculated using the generalized advantage estimation (GAE)
algorithm. The GAE algorithm is an improved advantage
function estimation method can effectively reduce the vari-
ance of gradient estimation [35]. The specific algorithm is
shown in Equation 7.{

δt = rt + γV (st+1)− V (st)

Ât = δt + (γλ)δt+1 + · · ·+ · · ·+ (γλ)T−t+1δT−1

(7)
where γ is discount factor, V is the current value function,

rt is the reward at timestep t, λ is used to control the
weighting of historical experience in the update process. δt
is the advantage function at timestep t.

B. PPO-based EMS

This study develops a PPO-based EMS for PHEV. In
order to effectively describe the EMS for the PHEV using
the PPO algorithm, the fundamental components of the
algorithm, namely state, action, and reward function, are
initially defined.

The environment state is characterized by the SOC,
vehicle speed (v), and acceleration (a). The state can be
represented as:

S = {SOC, v, a} (8)

The action is defined as the engine power output, as shown
in Equation 9. To reduce the exploration space of actions, the
operating point of the engine is chosen along the optimal
operating line [36].

A = {Peng} (9)

where Peng represents real-time engine power output.
In order to guide the agent to learn an effective energy

management strategy, a suitable reward function should be
designed to evaluate the effectiveness of the action. For
the EMS of PHEV, both fuel consumption and electrical
consumption should be considered. The reward function is
formulated as:

Reward = f (mef , SOC)

=

{
−ṁef SOCt < SOC < SOCm

−
(
αṁef + β (SOCt − SOC)

2
)
− λ SOC ≤ SOCt

(10)
where ṁef represents the instantaneous equivalent fuel

consumption per time step, which is the sum of the ac-
tual fuel consumption and the equivalent fuel dissipation
converted from electricity. SOCm is the maximum SOC
and SOCt is expected terminal SOC. α is the weight of
equivalent total fuel consumption, β is the penalty coefficient
employed to constrain the significant fluctuation of SOC, λ
is penalty compensation coefficient.

The PPO-based EMS framework is illustrated in Figure 2.
The interactive environment is the process of driving the
PHEV in a specified driving cycle. The policy network
outputs a probability distribution (aprob) over the action
space and samples actions based on the current environment
state (St): velocity, acceleration, and SOC. The sampled
action (engine output power at) is used to interact with
the environment to obtain the next state and reward. The
interaction data is stored in an experience pool for sampling
by the value networks and policy network. The policy loss
function Lθ updates the network parameters θ based on
the πθ(at, st) generated by current policy and πθold(at, st)
(aprob), as well as the advantage function Ât generated by
the value network. The strategy is progressively optimized
through multiple iterations such that the reward converges to
a maximum value.

IV. CLOUD COMPUTING-BASED PARALLEL DRL EMS

In this section, the PPO-based EMS is deployed on a cloud
server considering the limitation of the computing power
of the connected vehicles. Then a cloud computing based
parallel EMS training framework is proposed. The cloud
computing-based EMS interacts with multiple connected
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Fig. 2. PPO interactive process.

vehicles in parallel through the asynchronous mechanism,
which can fully utilize the high-performance computing
power of the cloud and the large amount of data resources of
multiple connected vehicles. To better meet the requirements
for real-time operation, a cloud computing-based parallel
real-time EMS is developed, integrating the parallel EMS
training framework with a thread pool mechanism.

A. Asynchronous mechanism

1) Event-driven asynchronous model: The cloud server
operating system kernel provides asynchronous mechanisms
such as asynchronous system calls and asynchronous event
notifications. While waiting for the completion of the asyn-
chronous operation, the main thread is capable of executing
other tasks in parallel. This asynchronous mechanism can be
concretely realized as an event-driven asynchronous model.
The logical framework of the model is illustrated in Figure 3,
where the architectural components of the event-driven asyn-
chronous model can be divided into three parts: the event
producer, the event broker, and the event consumer.

Event Producer Event broker Event Consumer

Connection 1

Connection 2

Connection ...

Callback 1

Callback 2

Callback ...

Event 

listening

Envent 

dispatching

Asynchronous 

IO support

Event Notify

Notify

Notify

Event

Event

Fig. 3. Event-driven asynchronous model.

2) Application of asynchronous mechanisms in parallel
EMS: In the cloud computing-based parallel EMS, multiple
connected vehicles act as event producers, which generate
a large number of network links and state data requests.
The cloud computing-based EMS acts as an event consumer
and triggers the control and update logic based on the
state data requests from multiple connected vehicles. The
cloud computing-based EMS handles the network connection
requests of connectd vehicles and the network IO opera-
tions generated by control interactions, all of which occur

asynchronously. The asynchronous logic is shown in Fig-
ure 4. The cloud computing-based EMS sends asynchronous
requests to the cloud processor system kernel, which can
then perform other operations unrelated to the previous call
without waiting for a response. Thus a large number of
parallel interactions can be performed without blocking.

Application Kernel

Asynchronous requests

ResponseO
th

er
 P

ro
ce
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g

IO
 read

 start
IO

 read
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m
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lete

Fig. 4. Asynchronous principle.

B. Cloud computing-based parallel EMS training framework

If DRL-based EMSs are trained with a specific driving
cycle, the trained strategies usually perform well only in
the learned driving cycles and may not yield satisfactory
outcomes in other unknown driving cycles. The adaptability
to new driving conditions usually requires retraining on top
of the existing strategies. In order to improve this problem,
a more flexible strategy needs to be developed which can
better handle different driving cycles and provide wider
adaptability.

Therefore, a parallel EMS training framework based on an
asynchronous mechanism is developed. The cloud computing
based EMS can process the communication requests from
connected vehicles running under different driving cycles
in parallel and utilize the experience of different driving
cycles to train the EMS. A schematic of the EMS training
framework is shown in Figure 5. The global policy network
interacts directly with multi-connected vehicles.
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Fig. 5. Cloud computing based parallel EMS training framework

Connected vehicles continuously send real-time driving
data to cloud servers during the driving process, including
vehicle speed, SOC, and acceleration. After deserialization
the driving data directly interacts directly with the PPO algo-
rithm. The policy network generates action outputs (engine
power) based on the state (driving data), which are serialized
into JSON and returned to the connected vehicle in real
time [37]. Simultaneously, the cloud collects and utilizes the
driving data of the connected vehicles to continuously update
the PPO algorithm. This cloud computing-based parallel
EMS training framework is able to leverage the experience
of multiple connected vehicles to accelerate policy learning
and optimization.

This framework can be used as a generic base framework
to adapt other DRL-based EMS. Data under different driving
cycles can provide richer training samples. The overall
training strategy is shown in Algorithm 2.

C. Cloud computing-based parallel real-time EMS

1) Improvements in parallel EMS training framework:
The cloud computing-based parallerl EMS training frame-
work can be trained in parallel interaction with multiple con-
nected vehicles to improve the overall generalization capa-
bility. However, the framework may face practical problems
during online real-time operation. The framework adopts an
asynchronous mechanism to interact with multiple connected
vehicles in parallel. In the cloud, the interaction between
strategy and the environment, as well as strategy updates,
are executed sequentially. The policy update consumes a rel-
atively long time, which is unacceptable in real-time control.
To improve cloud computing efficiency and enhance real-
time performance, the strategy trained by the above frame-
work is adopted as the initial strategy. A thread pool-based
parallel real-time EMS is developed. The overall architecture
is shown in Figure 6. In contrast to the parallel training
framework, the real-time EMS maintains an actor network
and a buffer for each remote connected vehicle, respectively.
The actor network replicates the parameters of the policy
network to interact with connected vehicles. A thread pool

Algorithm 2 Cloud Computing-Based Parallel EMS Training
Framework.

1: Initialize PPO network
2: Initialize TCP server and bind to port
3: while server running do
4: if connection request then
5: Create echo object e, including a buffer b
6: connection established
7: end if
8: if a connection event is triggered then
9: Connected vehicles uploads state s

10: Call back function of e with s
11: Deserialize data to get s′

12: Get control quantity c = a(s′)
13: Serialize c to get c′

14: Send c′ to client connected vehicle
15: if ∃e ∈ echo objects, e.buffer is full then
16: Update global PPO network P using data in

b
17: end if
18: end if
19: end while

Fig. 6. Cloud computing based parallel real-time EMS

is created in the cloud for policy updates, which provides the
basis for thread parallelism for subsequent algorithm updates
and action execution.

2) Thread pool based real-time control: In order to
parallelize the action execution and policy update in the
cloud computing based EMS, this study uses the newly
created threads for policy update. The interaction of states
and actions, as well as access requests for newly connected
vehicles, is still controlled by the asynchronous model of
the main thread. Since cloud computing-based EMS can
concurrently serve multiple connected vehicles, each vehicle
may trigger a cloud policy update, which results in additional
overhead from frequent thread creation. To solve the problem
of frequent thread creation, a thread pool with a fixed number
of threads is created during the initialization phase and
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threads are dynamically assigned to perform policy updates.
The specific algorithm is shown in Algorithm 3.

Algorithm 3 Cloud Computing-Based Parallel Real-Time
EMS.

1: Initialize PPO network
2: Initialize Create ThreadPool with maxthreads = n
3: Initialize TCP server and bind to port
4: while server running do
5: if connection request then
6: Create echo object e, including actor with pa-

rameters θactor ← θglobal, and buffer
7: connection established
8: end if
9: if a connection event is triggered then

10: Connected vehicles uploads state s
11: Deserialize data to get s′

12: Get control quantity c = actor(s′)
13: Serialize c to get c′

14: Send c′ to client
15: if buffer is full then
16: t← FindAvailableThread(ThreadPool)
17: Assign the task to the selected thread
18: acquireLock(lock)
19: AssignTaskToThread(t, UPDATE TASK)
20: releaseLock(lock)
21: end if
22: if Thread finished then
23: acquireLock(lock)
24: Synchronize network parameters to the actor

network
25: releaseLock(lock)
26: end if
27: end if
28: end while
29: function UPDATE TASK(params)
30: Update global PPO network P using data in buffer
31: end function

Under the parallel real-time EMS, subsequent connected
vehicles can access the entire cloud control at any time. In
addition, subsequent accessed vehicles are able to directly
utilize the experience of other previously accessed vehicles
in similar states, which can result in improved fuel efficiency.

V. VALIDATION RESULTS AND DISSCUSSIONS

This section analyzes and evaluates the proposed strategy
from multiple perspectives of performance through multiple
comparative simulations. The effectiveness of the PPO algo-
rithm based EMS is first verified. Then the generalization
performance of the cloud computing-based EMS training
framework is verified. Finally, the online validation of the
parallel real-time EMS is performed. In this study, the
deep reinforcement learning algorithm environment is built
using Python 3.7 and Pytorch. The hyperparameters of PPO
algorithm are adjusted by experience to ensure the stability
and efficiency during training. The specific parameters are
shown in Table II.

TABLE II
HYPERPARAMETERS

Parameters value

Discount factor 0.99

Policy network learning rate 3e-4

Value network learning rate 3e-4

Hidden size 256

Clip factor 0.2

A. Validation of the PPO-based EMS

1) Single driving cycle simulation validation: To evaluate
the performance of the PPO-based EMS, simulations are first
executed under the WLTC driving cycle, commencing with
initial SoC at 0.8 and 0.4. Under different initial SOC, the
trajectory of SOC is shown in Figure 7. The cumulative
reward is shown in Figure 8, as the episode count increases,
the rewards for both scenarios tend to increase and converge
at around 30 episodes. Due to the setting of the reward
function, large negative rewards are frequently obtained when
the SOC is lower than the set limit. Consequently, the reward
curve exhibits frequent fluctuations when the initial SOC is
0.4, whereas it appears smoother with an initial SOC of 0.8.

The overall equivalent fuel consumption is illustrated in
Figure 8, when the initial SOC is high, the agent tends to
consume more electrical energy, resulting in lower equivalent
fuel consumption. Conversely, when the initial SOC is low,
the engine starts more frequently to avoid larger negative
incentives, which causes an augmentation in fuel consump-
tion. With the iterative updating of the PPO-based EMS, the
equivalent fuel consumption for both cases stabilizes within
a range, which shows the adaptability and robustness of the
strategy.

2) Combined driving cycle simulation verification: For a
more comprehensive evaluation of the performance of PPO-
based EMS, combined driving cycles are further utilized for
analysis. The DP-based EMS serves as the baseline strategy
to compare with EMS based on DQN, DDQN, and PPO.

DQN and DDQN are classified as discrete DRL algorithms
for solving problems with discrete, finite action sets. The
calculation of the target Q-value by the DQN involves
the utilization of the maximum action value selected by
the current network, which can lead to overestimation and
result in reduced algorithm performance[38]. In contrast, the
DDQN algorithm separates the network for computing Q-
values from the network for action selection, mitigating the
issue of Q-value overestimation. As can be seen in Figure 9,
DQN has a higher terminal SOC compared with the other
algorithms. DDQN achieves a similar terminal SOC as DP
with slightly better performance. Compared with DQN and
DDQN, the PPO algorithm can handle a continuous action
space and therefore provides finer and smoother control. The
SOC trajectory of the PPO-based EMS is closer to that of the
DP-based EMS, which confirms the performance advantage
of the PPO algorithm. Table III shows the equivalent fuel
consumption of the DP, PPO, DQN and DDQN strategies
under the combined driving cycle. The PPO-based EMS fuel
economy improves by 10.4% and 2.7% compared with the
DQN and DDQN strategies, respectively.
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Fig. 7. SOC trajectories of PPO-based EMS at different initial SOCs under the WLTC cycle. (a) Initial SOC is 0.8. (b) Initial SOC is 0.4.
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Equivalent fuel consumption
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Fig. 8. Cumulative rewards and equivalent fuel consumption at different initial SOC. (a) Initial SOC is 0.8. (b) Initial SOC is 0.4.

TABLE III
COMPARISON OF ECONOMICS BETWEEN DIFFERENT EMSS.

Strategy Initial SOC Terminal SOC Equivalent fuel(L/100km) Fuel economy(%)

DQN 0.8 0.40 3.64 68.4

DDQN 0.8 0.32 3.27 76.1

PPO 0.8 0.31 3.16 78.8

DP 0.8 0.31 2.49 100

B. Validation of the cloud computing-based parallel EMS

In this section, four devices are used as shown in Fig-
ure 10. The cloud processor utilizes a computer with a
2.9GHz i5-10400 CPU core and 8GB of RAM, with PPO-
based EMS deployed. The other three devices served as
connected vehicle environments loaded with PHEV dynam-
ics models and deployed with different training conditions,
namely different driving cycles. Network communication
between the connected vehicles and the cloud processor
is conducted via the TCP protocol. The local PPO-based
EMS is trained for 100 episodes each under different driving
cycles, while the cloud computing-based EMS interacts with
multiple connected vehicles operating under different driving
cycles and trains for 100 episodes simultaneously.

1) Validation of the parallel EMS training framework:
The two devices load the NEDC and UDDS driving cycles
respectively. The cloud server receives and processes the state
information of the two devices in parallel and updates the
cloud policy. To assess the efficacy of the cloud computing
parallel EMS training framework, the DP-based EMS is
employed as a benchmark to compare the local PPO-based
EMS single-driving cycle training (PPO Local) with the
cloud computing-based multi-driving cycle parallel training
(PPO Cloud) at initial SOC of 0.8 and 0.4, respectively.

When the initial SOC is 0.8, vehicles operating under both
NEDC driving cycles and UDDS driving cycles only need to
use the electric motor as much as possible to achieve lower
equivalent fuel consumption. The PPO Cloud strategy, which
involves parallel interactive training in two environments,
can easily learn close to optimal strategies. As depicted
in Figure 11, the SOC trajectory of PPO Cloud basically
overlaps with the SOC trajectory of the DP algorithm, which
is better than the single driving cycle training corresponding
to the PPO algorithm.

When the initial SOC is 0.4, the connected vehicle is
more likely to achieve a lower SOC under the NEDC
driving cycle in the parallel EMS training framework, which
leads to frequent engine involvement in the control and
indirectly affects the overall strategy. Increase in equivalent
fuel consumption for connected vehicles operating in the
UDDS driving cycle. Comparative results of equivalent fuel
consumption are shown in Figure 12. In all four scenarios,
PPO Cloud demonstrated an average fuel economy improve-
ment of 7.7% compared to PPO Local.

2) Verification of parallel real-time EMS: Finally, three
connected vehicles with initial SOC of 0.4 are used. Two
target connected vehicles are loaded with NEDC and UDDS
driving cycles, respectively, while the other target connected
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Fig. 9. Comparison of different algorithms. (a) Combined driving cycle.
(b) SOC trajectories under different algorithms

Connected vehicle 1 Connected vehicle 2 Connected vehicle 3 EMS Cloud Service

Fig. 10. Cloud strategies and multi-connected vehicle simulation testing.

vehicle is loaded with an untrained WLTC driving cycle. The
parallel-trained policies are then deployed as initial policies
in a parallel real-time EMS and run online for 10 episodes.

The strategy, as demonstrated by the connected vehicles
running in parallel in real-time under the two trained driving
cycles of NEDC and UDDS, exhibits stability, can even self-
learn, and further optimize the equivalent fuel consumption,
as illustrated in Figure 13.

For the connected vehicle operating under the untrained
WLTC driving cycle, with relevant experience from other
connected vehicles, this target vehicle can achieve 79.3%
of the DP fuel economy after only 10 episodes of online
learning. The specific results are shown in Table IV. The
self-learning capability and applicability of the strategy are
validated by the fuel economy being close to that of the
local PPO-based EMS with 100 episodes of training. The
SOC trajectory and power distribution of the two strategies
are shown in Figure 14 and Figure 15.

To validate the real-time performance of the parallel real-
time EMS, the average per-step control interaction duration
of the three strategies is compared. Strategy 1 is the local

(a) SOC trajectories for different strategies under NEDC 

driving cycle with initial SOC of 0.8

(b) SOC trajectories for different strategies under UDDS 

driving cycle with initial SOC of 0.8

(c) SOC trajectories for different strategies under NEDC 

driving cycle with initial SOC of 0.4

(d) SOC trajectories for different strategies under UDDS 

driving cycle with initial SOC of 0.4

PPO_Local

PPO_Cloud

DP

PPO_Cloud

PPO_Local

DP

PPO_Cloud

PPO_Local

DP

DP

PPO_Cloud

PPO_Local

Fig. 11. Validation of parallel training results.

DP

PPO_Local PPO_Cloud

Fig. 12. Equivalent fuel consumption with different strategies.
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3.72
4.1

2.83
2.52

1.31

WLTC-Cloud

WLTC-DP

NEDC-Cloud

NEDC-DP
UDDS-Cloud

UDDS-DP

Fig. 13. Online deployment of strategies.

TABLE IV
COMPARATIVE OF EQUIVALENT FUEL ECONOMY IN WLTC.

Strategy Equivalent fuel(L/100km) Fuel economy(%)

PPO 5.03 81.5

Cloud 5.17 79.3

DP 4.1 100

DP

Cloud

Fig. 14. SOC trajectories under different strategies.

(b)

(a)

Motor power

Engine power

Motor power

Engine power

Fig. 15. Power distribution under different strategies. (a) Cloud. (b) DP.

PPO-based EMS deployed directly to the cloud server after
training is completed. Strategy 2 is the cloud computing-
based parallel EMS training framework. Strategy 3 is the
thread pool-based parallel real-time EMS.

Figure 16 shows the average computational interaction
duration per step between the connected vehicles running
under different driving cycles and the cloud-based policy. For
strategy 1, the average time per step is only related to the
network condition, thus consuming the least amount of time.
Strategy 2 contains the policy update time in addition to the
control interaction as well as the network communication
time. Although strategy 3 includes the time required for
strategy updates, the thread pool allows the update and
control to be executed concurrently in two individual threads.
The thread pool-based parallel real-time EMS reduces time
by 20% compared with parallel EMS training framework.

Strategy 1

Strategy 2

Strategy 3

Fig. 16. Average interaction time of the three strategies.

It should be noted that this study is conducted in Python
and Pytorch environments, since python has a global interpre-
tation lock (GIL), which results in multithreading mechanism
of python not effectively utilizing multiple cores of the CPU
to improve performance. However, in the environment of
multiple connected vehicles, there are multiple network IO
requests at each time point. For this IO-intensive task, the
multithreading mechanism of python still has some efficiency
advantages. If the strategy is deployed industrially, the overall
program can be developed in C++ and deployed to a Linux
server, which makes full use of the server CPU multi-core
performance.

VI. CONCLUSION

In this study, a novel cloud computing-based parallel
DRL EMS for connected PHEV is proposed. The following
conclusions can be drawn:

A PPO-based EMS is proposed. The convergence speed
and robustness advantages of the PPO-based EMS under
different initial SOC are verified through multiple driving
cycle simulations. In addition, the PPO fuel economy under
the combined driving cycle improve by 10.4% and 2.7%
compared with the DQN and DDQN strategies, respectively.

A parallel EMS training framework based on asyn-
chronous mechanism is proposed. By training multiple con-
nected vehicles in parallel, the results demonstrate the effec-
tiveness and adaptability of parallel training. In contrast to
the PPO-based EMS that is trained utilizing a solitary driving
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cycle, the cloud computing-based parallel EMS achieves an
average improvement of about 7.7% in fuel economy under
different conditions. The framework for parallel training can
be used as a generalized framework to adapt to DRL-based
EMS that can be empirically parallelized.

A thread pool based parallel real-time EMS is proposed
based on the parallel EMS training framework. The EMS
accomplishes training and computation in the cloud and
provides control for multiple connected vehicles online in
real time. The strategy remains stable and further optimizes
the equivalent fuel consumption for connected vehicles op-
erating under trained driving cycles. For a connected vehicle
operating under untrained driving cycles, 79.3% of the fuel
economy of the DP-based EMS can be achieved after only 10
episodes of online learning by utilizing similar experiences
of other connected vehicles. In addition, the EMS with a
thread pool has reduced the average time for computing in-
teractions by 20%. The proposed strategy has the advantages
of adaptability, continuous learning and real-time control for
improved fuel efficiency.
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