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Abstract—Dynamic competition-cooperation models are 

employed to scrutinize the interplay among products, markets, 

or services, either in terms of competition or cooperation. 

Additionally, they serve to predict the behavior of the entities 

under examination, such as passenger volumes within 

transportation systems. Utilizing steady-state and asymptotic 

analyses, researchers delve into the long-term dynamics of these 

entities. While steady-state analysis delves into equilibrium 

conditions, asymptotic analysis scrutinizes system behavior as 

time extends toward infinity. However, the influence of socio-

economic factors, which are external, cannot be disregarded in 

dynamic competition-cooperation models concerning passenger 

volumes in transportation systems. These factors typically 

encompass population dynamics, gross domestic product (GDP), 

oil prices, unemployment rates, consumer price indices, among 

others. The primary aim of this study is to assess the stability 

and asymptotic behavior of dynamic competition-cooperation 

models in light of economic factors. The investigation reveals 

that the solutions derived from these models do not exhibit 

periodic behavior. Rather, the system tends to converge or 

diverge. Notably, when convergence transpires, it does not 

converge towards a fixed point but towards a function of the 

economic factors. This underscores the profound influence of 

prevailing economic conditions on the behavior of 

transportation systems. 

Index Terms—dynamic competition-cooperation model, steady 

state, stability analysis, economic factors. 

 

I. INTRODUCTION 

arious modes of transportation, including high-speed rail, 

highway coaches, airlines, and conventional rail, often 

cater to similar travel routes. It is imperative to grasp 

their individual standings within the transportation landscape 

to facilitate efficient coordination towards optimizing system 

performance. Thus, employing dynamic cooperative-

competitive models becomes essential for forecasting and 

analyzing passenger volumes within interlinked 

transportation systems, services, or tourism sectors in Taiwan. 

Examples include the tourist influx to the three southern 

offshore islands [1], domestic air travel and high-speed rail 

[2, 3], vehicle ownership statistics encompassing cars and 

motorcycles [4], and the turnover rate of service areas along 

Freeway No. 3 [5]. 
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The dynamic cooperative-competitive model finds its roots 

in the population growth model, with foundational 

contributions from Fourt and Woodlock [6], Mansfield [7], 

and Bass [8]. Initially, these scholars embarked on a 

comprehensive theoretical journey, focusing on the 

univariate analysis of the life cycle of individual products. 

Subsequently, the Bass model underwent expansions to 

accommodate various complexities. Bemmaor and Lee [9], 

along with Karmeshu and Goswami [10], tackled the 

challenge posed by heterogeneous agents within the market. 

Additionally, Bass et al. [11] introduced a versatile 

intervention function, enabling the incorporation of 

marketing-mix variables, managerial controls, external 

contingencies, incentives, policy measures, and more into the 

modeling framework. 

While the Bass model [8, 12] remains widely utilized for 

analyzing competition between two species or products, it 

inherently lacks consideration for market competition. Fisher 

and Pry [13] proposed a simple substitution model, predicated 

on the notion that newer technologies would supplant 

established ones, yet it too overlooks competition dynamics. 

Norton and Bass [14], recognizing this gap, integrated the 

Bass model with the Fisher and Pry model, demonstrating the 

substitution effect and enabling the forecasting of new 

technology diffusion. 

In addition to these models, the mathematical Lotka-

Volterra (LV) model has seen extensive use in exploring the 

diffusion phenomenon and reciprocal competition between 

two species [15-19]. Recognized as a two-species biological 

model, the LV model is commonly referred to as the predator-

prey model. Moreover, its application extends to scenarios 

involving correlated populations [20-22]. 

Furthermore, equations of the system are not restricted to 

two. A technology systematic model considering three 

interacting technologies has been introduced by Jackson [23] 

and Meadows [24]. Three case sets of general application of 

the system dynamics model focusing on the transition from 

asymptotic to cyclic behavior of the technology system have 

been considered. Pretorius et al. [25] proposed a three-

technology system and simulated three competing 

technologies that interact. Chang et al. [26] analyzed the 

competition among three companies with adjusted data from 

a Korean government-affiliated institute, the Korea 

Information Society Development Institute (KISDI). The 

performances of the LV and the extended Bass models are 

discussed in the study. The results show that the goodness of 

fit of the three-species LV model in the case of competition 

among three companies is better than that of the extended 

Bass model. 
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Primarily, forecasting the diffusion of new technologies 

and predicting passenger volumes within transportation 

systems predominantly rely on numerical methods. While 

analytical discussions on global stability, solution existence, 

and asymptotic analysis of dynamic competition-cooperation 

models are prevalent [27, 28], models incorporating 

economic factors have received scant attention. Typically, 

social-economic factors such as population dynamics, gross 

domestic product (GDP), oil prices, unemployment rates, and 

consumer price indices are crucial considerations. Given the 

inherent relationship between transportation systems and 

economic factors, it becomes imperative to analyze the 

stability and asymptotic behavior of dynamic competition-

cooperation models incorporating economic variables. This 

study thus aims to fill this gap by delving into the stability 

and asymptotic analysis of such models in the context of 

transportation systems. 

II. DYNAMIC COMPETITION-COOPERATION MODEL 

In this section, we introduce the modeling of dynamic 

competition-cooperation firstly. Then, the applications of the 

dynamic competition-cooperation models in transportation 

related research are presented. 

A. Modeling Dynamic Competition-Cooperation 

Dynamic competition-cooperation model is extended from 

the population model. The simplest population model 

considered the growth rate of population is proportional to the 

population. If N(t) is the function of population and t is time. 

Let α be the proportional constant. Then, we have 

𝑑𝑁(𝑡) 𝑑𝑡⁄ = 𝛼𝑁(𝑡). The model can be solved analytically if 

the initial condition is given. The solution is 𝑁(𝑡) =

𝑁0𝑒𝛼(𝑡−𝑡0), where  𝑡0 is the initial time and 𝑁0 is the initial 

population. According to empirical studies, the model can 

only to apply to short-term forecasting because when t 

increases N increases exponentially. The result is 

unreasonable and unrealistic. In real world, the growth of 

population is also proportional to the capacity of the system, 

that is, 𝑑𝑁(𝑡) 𝑑𝑡⁄ ∝ (𝑀 − 𝑁(𝑡)) , where M is a constant, 

which presents the capacity of the system. Combine the 

capacity restriction to the previous model, the analytical 

model is obtained by separation of variables. It is in the 

logistic form, which is given by 
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Under the close system assumption, Eq. (1) can be 

represented by a general form, which is 𝑑𝑁(𝑡) 𝑑𝑡⁄ = 𝐹(𝑁, 𝑡). 

𝐹(𝑁, 𝑡) is the growth function. If two species of population 

are considered, the model is consisted by two equations with 

interaction terms, such as 𝑑𝑁1(𝑡) 𝑑𝑡⁄ = 𝐹1(𝑁1, 𝑁2, 𝑡)  and 

𝑑𝑁2(𝑡) 𝑑𝑡⁄ = 𝐹2(𝑁1, 𝑁2, 𝑡) , where 𝑁1  and 𝑁2  are two 

species, 𝐹1  and 𝐹2 are growth functions of 𝑁1  and 𝑁2 , 

respectively. The most famous model in this form is the 

Lotka-Volterra (LV) model [29-31], the model is given by  
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where a1, a2, b1, b2 c1 and c2 are coefficients which are 

calibrated by empirical data. For biology studies, a1, and a2, 

are the growth rates of species 1 and 2. b1 and b2 are related 

to carrying capacities of the populations. For competitive 

market studies, ai is the logistic parameters for product i when 

it is living alone. bi is the limitation parameter of the niche 

capacity related to the niche size. ci is with the other product 

i. The multi-mode form of LV model is illustrated in Table 1 

for the case of two species. Although there are five types of 

modes, note that there are two possible predator-prey 

interactions (depending on which species is the predator or 

prey) in the predator-prey mode and two possible states 

(depending on which species is the stronger of the two) in the 

amensalism model. 

 

Table 1 The relationship according to the signs of c1 and c2 

coefficient 
Type Explanation 

1c  
2c  

+ + 
Pure 

competition 

Both species suffer from 

each other’s existence. 

– + 
Predator-

prey 

One of them serves as direct 

food (
2N ) for the other 

(
1N ). 

– – Mutualism 
It is the case of symbiosis or 

a win-win situation. 

–

/+ 
0 Amensalism 

One (
1N ) suffers from the 

existence of the other (
2N ), 

who is impervious to what is 

happening. 

0 0 Neutralism There is no interaction. 

 

Since there are still three social-economic variables must 

be compared, the model is generalized as follows. 
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where 𝐸(𝑡) denotes the variables of economic factor. di is the 

coefficient of that. If di > 0, the economic factor influences 

the change of 𝑁𝑖  positively, and vice versa. To ensure the 

systematic equations can be solved, the function form of 𝐸(𝑡) 

is suggested to choose as simple as possible. 

B. Applications for Transportation Related Studies 

In this section, we review three applications of the dynamic 

competition-cooperation model in transportation and tourism 

studies to highlight the model's advantages and underscore 

the necessity of considering economic factors.  

The first application involves analyzing the cooperation 

and competition dynamics among the three central service 

areas of Freeway No.3 and forecasting their turnover using 

the competition-cooperation model [5]. The study aimed to 

elucidate the relationships among the Xihu service area, 

Qingshui service area, and Nantou service area, and predict 

their turnover utilizing a dynamic competition-cooperation 

model. The model, initially developed on a basic framework 

without economic factors, was calibrated using time series 

data on turnover spanning from 2008 to 2013. Furthermore, 

data from 2014 were employed to validate the model's 

performance. 

The findings can be summarized as follows: the Xihu 

service area and Nantou service area were identified as 

having subpar reputations, while the Qingshui and Xihu 

service areas were noted to suffer from inadequate 

infrastructure and capacity. The analysis revealed a 

competitive relationship between the Xihu service area and 
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Qingshui service area, potentially diverting tourists from the 

Nantou service area. Only the Nantou service area appeared 

capable of meeting travelers' needs in terms of infrastructure 

and capacity. Despite the absence of economic factors, the 

dynamic competition-cooperation model exhibited 

remarkable accuracy in predicting turnover, with a mean 

absolute percentage error (MAPE) of less than 10%, 

signifying its precise forecasting capabilities. 

In the second example, the dynamic competition-

cooperation model was utilized to scrutinize passenger 

volumes for Taiwan High-Speed Rail (THSR) and domestic 

airlines within Taiwan [2], spanning from 2007 to 2010. The 

study sought to assess the forecasting accuracy of the 

dynamic competition-cooperation model with and without 

the inclusion of economic factors. 

The findings unveiled that incorporating economic 

variables, particularly oil prices, resulted in a reduced MAPE 

compared to the model devoid of economic considerations. 

This suggests that integrating economic factors led to more 

precise forecasts of passenger volumes for THSR and 

domestic airlines. The forecasts rooted in economic factors 

exhibited closer alignment with actual data, indicating 

enhanced predictive capabilities. Surprisingly, the study 

uncovered a symbiotic relationship in passenger volumes 

between THSR and domestic airlines, contrary to 

conventional expectations. This unexpected outcome was 

ascribed to the incorporation of economic factors, notably oil 

prices. The study discerned that higher oil prices spurred an 

increase in passenger volumes for both THSR and airlines. 

Elevated oil prices not only inflate the operational costs for 

airlines but also influence overall transportation demand. 

The surge in oil prices tends to influence transportation 

preferences, with individuals gravitating towards more fuel-

efficient modes such as public transportation like THSR. 

Hence, despite the potential dampening effect on airline 

demand, higher oil prices propel an uptick in passenger 

volumes for both THSR and airlines. This observation 

underscores the intricate interplay between economic factors, 

mode choice, and transportation dynamics. 

Ultimately, the study underscores the imperative of 

integrating economic variables into dynamic competition-

cooperation models for transportation systems. Economic 

factors, such as oil prices, wield substantial influence over 

passenger demand and mode selection, thereby shaping the 

landscape of competition and cooperation among different 

transportation modes. 

 

Table 2 MAPE of the forecasting results of THSR and 

domestic airlines. 
Model Mode MAPE (%) 

without oil price airline 58.91 

THSR 16.17 

with oil price airline 39.84 

THSR 3.47 

 

In the third example, the dynamic competition-cooperation 

model was deployed to examine tourist volumes on three 

southern offshore islands in Taiwan: Ludao (LD), Lanyu 

(LY), and Little Liuqiu (LLQ) [1], spanning from 2008 to 

2014. Table 3 provides a comparative analysis of the 

forecasting outcomes for the three islands with and without 

the integration of economic factors, specifically the 

unemployment rate. 

The study discerned that the model lacking economic 

considerations yielded inaccurate forecasts. In stark contrast, 

the inclusion of the unemployment rate significantly reduced 

the MAPE compared to the model devoid of this economic 

factor. 

According to the model's analysis, Little Liuqiu and Lanyu 

exhibited a neutralistic relationship, while both Ludao-Lanyu 

and Ludao-Little Liuqiu were characterized by a predator-

prey dynamic, with Ludao assumed the role of the predator 

owing to its superior resources, amenities, and transportation 

infrastructure. 

However, given the geographical proximity of Lanyu and 

Ludao, both falling under the governance of Taitung County, 

there arises an opportunity to transform their predator-prey 

relationship into a cooperative one. Such a transition could 

prove advantageous in bolstering offshore island tourism in 

Taitung County. 

 

Table 3 MAPE of the forecasting results of the visitor 

volume of the three southern offshore islands. 
Model island MAPE (%) 

without unemployment 

rate 

LLQ 110.74 

LD 59.89 

LY 147.88 

with unemployment rate LLQ 58.75 

LD 21.38 

LY 38.99 

III.  STABILITY ANALYSIS OF THE MODEL WITHOUT 

ECONOMIC FACTORS 

Stationary points denote stable states where the system's 

behavior remains consistent and unaffected by time. 

Conversely, unstable cases arise when the system's equations 

become unsolvable, indicating inherent instability within the 

system. In the realm of dynamic competition-cooperation 

models for transportation systems, only stable and periodic 

scenarios prove beneficial for forecasting and analysis. 

Stability implies that the system tends to converge towards 

a stationary point, ensuring a stable equilibrium within the 

transportation market. Periodicity, on the other hand, refers 

to the oscillations observed in the variables described by the 

system equations. These oscillations manifest when the 

system, although not in a steady state, exhibits regular 

patterns over time. 

Whether the systematic equations converge to a stationary 

point or exhibit periodic behavior, it provides valuable 

insights for planners and operators of transportation systems. 

Understanding the system's status enables stakeholders to 

make informed decisions and implement strategies to 

enhance service quality and efficiency. 

In dynamic systems, the behavior of the system near a 

stationary point can be determined by the eigenvalues of the 

Jacobian matrix at the stationary point. The Jacobian matrix 

of Eqs (2) and (3) is 


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The sign of the real parts of the eigenvalues of the Jacobian 

matrix will determine the behaviors of surrounding points. 

The stationary points can be characterized as follow: 

1. If both the real parts of eigenvalues are negative, it 

is stable and 
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and  0,0  are the stationary points. 

2. If one of the real parts of eigenvalues is positive, it 

is unstable. 

3. If both the real parts of eigenvalues are zero, it is a 

center. 

Three sets of coefficients are given to show the three cases 

numerically. The systematic model is coupled by Eqs (2) and 

(3) and the coefficients and eigenvalues are given in Table 4. 

The initial values and the value of the coefficients are chosen 

to show the trajectories clearly, which do not have physical 

meanings. 𝜆1 and 𝜆2 are eigenvalues of the Jacobian matrix. 

Figures 1 to 3 illustrate the three cases. For all cases, the 

initial 𝑁1 is 500 and 𝑁2  is 50. In the figures, “+” denotes the 

points of initial conditions and “o” denotes the stationary 

point. (900, 220) is the stationary point of the stable case, (900, 

400) is the center of the periodic case. According to the c1 and 

c2, 𝑁1 is the prey and  𝑁2  is the predator in the system.  

 

Table 4 The coefficients and eigenvalues of stable, unstable 

and periodic cases. 
coefficient 

 

cases 

a1 a2 b1 b2 c1 c2 eigenvalue 

1  
2  

stable 0.4 -0.9 0.0002 0.0 0.001 -0.001 -0.09 -0.09 

unstable 0.4 -0.9 0.001 0.0 0.001 -0.001 -1.26 0.36 

periodic 0.4 -0.9 0.0 0.0 0.001 -0.001 0.0 0.0 

 

 

(a) 

 

(b) 

Figure 1 Stable case: (a) The numbers of 𝑁1 and 𝑁2.vary 

with time; (b) Phase plane and the vector field of  

𝑁1 and 𝑁2. 

 

 

(a) 

 
(b) 

Figure 2 Unstable case: (a) The numbers of 𝑁1 and 𝑁2.vary 

with time; (b) Phase plane and the vector field of 

𝑁1 and 𝑁2. 

 

 
(a) 

 
(b) 

Figure 3 Periodic case: (a) The numbers of 𝑁1 and 𝑁2.vary 

with time; (b) Phase plane and the vector field of 

𝑁1 and 𝑁2, which shows the periodic results of 

different initial conditions and the stationary 

point. 
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From Fig. 1 (a), the numbers of 𝑁1 and 𝑁2 oscillate with 

time and become stable in the stable case. Figure 1 (b) shows 

the convergent trajectory to the stationary point and the vector 

field, which illustrates the direction and the intensity of the 

convergence. The divergent case is shown in Fig. 2. The 

system cannot converge to the theoretical stationary point. 

Figure 3 is the periodic case. Different initial conditions are 

given and each one of them derived the solution to an orbit 

around the center.  

IV. STABILITY ANALYSIS OF THE MODEL WITH ECONOMIC 

FACTORS 

Passenger and cargo volumes are generally subject to a 

myriad of factors, including income levels, pricing dynamics, 

health crises such as diseases, political climates, economic 

conditions, weather patterns, holiday seasons, governmental 

regulations, foreign exchange rates, and advancements in 

transportation technology. For instance, events like the SARS 

outbreak from 2002 to 2003 and the financial crisis of 2007 

to 2008 significantly impacted the global economy, leading 

to a decline in consumer wealth and subsequently affecting 

transportation demand during these periods. 

Given the profound influence of socio-economic factors on 

transportation demand, it is imperative to incorporate 

economic considerations when applying the dynamic 

competition-cooperation model to forecast and analyze 

passenger volumes within transportation systems. Based on 

insights gleaned from previous studies, we propose a 

structured modeling procedure for this purpose. 

1. Calibrate the coefficients of the model and 

examine the significance of each coefficient. 

2. Omit the variable whose coefficient is insignificant 

and check the R-squared of each equation is 

acceptable or not.  

3. If the R-squared after omitting the variable 

becomes much worse than it before omitting the 

variable, the variable should be remained in the 

systematic equations. 

4. Repeat Step 1 to 3 until all coefficients are 

significant and the R-squared of all equations are 

acceptable. 

Through the modeling procedure, we will have a concise 

and significant model. The economic factors might not 

always be significant and could be omitted.  

GDP, population, oil prices, and unemployment rate are 

selected as independent variables in modeling transportation 

demand. GDP represents the total monetary value of all 

finished goods and services produced within a country during 

a specified period, commonly viewed as an indicator of a 

nation's standard of living. A rise in population often 

correlates with increased transportation demand. Oil prices 

significantly affect the operational expenses of transportation 

systems, with potential cost transfers to consumers. 

Additionally, the unemployment rate, reflecting economic 

conditions, inversely impacts transportation demand, serving 

as a gauge of the overall economic environment. 

The basic dynamic competition-cooperation model has 

been extended to encompass phenomena such as diffusion 

[32-35], delays [36], and random environmental factors [37-

39]. Despite these extensions, the core structure of these 

models retains the dependency on the studied species in their 

right-hand side equations. 

Subsequently, numerical examples are provided to 

elucidate the stability and asymptotic behavior. To facilitate 

solvability of Equations (4) and (5), it is recommended that 

the economic factor function remain linear. The systematic 

equations are rewritten as 
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where m and n are coefficients. t denotes time. From Eqs (7) 

and (8), the Jacobian matrix of Eqs (7) and (8) is the same as 

Eq. (6) because the parts of the economic factor are 

independent to 𝑁1 and 𝑁2. Since the unstable case diverges, 

we discuss the stable and periodic case only. Table 4 gives 

the coefficients of the model with the economic factor effect. 

The value of a1, b1 and c1 of case 1 in Table 5 are equal to the 

stable case in Table 3 and a2, b2 and c2 of case 2 in Table 5 

are equal to the periodic case in Table 3. Figure 4 illustrates 

the numbers of  𝑁1  and 𝑁2  varying with time for the two 

cases. Figures 5 and 6 are the trajectories of solution for the 

two cases at given time. 

 

Table 5 The coefficients of cases for the model with the 

economic factor. 
coefficient 

cases 
a1 a2 b1 b2 c1 c2 

case 1  
(stable case) 

0.4 -0.9 0.0002 0.0 0.001 -0.001 

case 2  
(periodic case) 

0.4 -0.9 0.0 0.0 0.001 -0.001 

coefficient 
cases 

d1 d2 m n   

case 1  
(stable case) 

0.2 -0.05 5 2   

case 2  
(periodic case) 

0.2 -0.05 5 2   

 

 
(a) 

 
(b) 

Figure 4 The numbers of 𝑁1 and 𝑁2.vary with time (a) case 

1 (stable case); (b) case 2 (periodic case). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5 Trajectory of solution for case 1 (stable case) on 

phase plane and its vector field with different time 

(t): (a) t = 10; (b) t = 60; (c) t = 110; (d) t = 160. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6 Trajectory of solution for case 2 (periodic case) on 

phase plane and its vector field with different time 

(t): (a) t = 10; (b) t = 60; (c) t = 110; (d) t = 160. 
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To make the discussion clearly, we denote the 

       tNtNctNbtNa iiiiiii  2  part of Eqs (7) and (8) as the 

competition-cooperation part (CC part) and  nmtdi   part of 

Eqs (7) and (8) as the economic factor part (EF part). In stable 

case, the CC part dominates the behavior of the model and the 

solution will move close to the stationary point gradually. 

This phenomenon can be observed in Fig. 4 (a) when time is 

smaller than 50 and can be observed in Figs 5 (a) and (b). 

Unlike the case without economic factors, the solution of the 

stable case will not converge to the stationary point, which is 

discussed in Sec. 3. When the trajectory of solution is close 

to the stationary point means the CC part is close to zero, the 

model is dominated by the EF part. Figures 5 (c) and (d) 

present the behavior well. Thus, the stable case of model with 

economic factors will not converge to a stationary point but 

will converge to the function of the economic factor.  

In the periodic case, we can find the solution still converges 

to the function of the economic factor in long-term trend from 

Figs 4(b) and 6. From Fig. 4(b), the solutions of 𝑁1 and 𝑁2 

oscillate larger than the solutions of the stable case. The EF 

part of the periodic case takes a longer time to take over the 

system than that of the stable case. Therefore, there is no 

periodic case when an economic factor is considered in the 

dynamic competition-cooperation model. The economic 

factor plays a role like the perturbation to the periodic orbit 

and push the solution close to the center (stationary point).  
Next, the magnitude of the EF part to the model is 

discussed in stable and periodic cases. Table 6 provides the 

coefficients of the economic factor, as well as the initial 

values of both the EF and CC parts of the model. By 

comparing the magnitudes of these parts, insights into their 

relative influence on the system dynamics can be gained. The 

other coefficients are the same as Table 5. Initial values are 

presented to compare the magnitude of both parts because the 

magnitude of the CC part decreases with time and the 

magnitude of the EF part increases with time. In addition, the 

initial point of the system is set to be (500, 50).  

 

Table 6 The coefficients and the initial values for stable and 

periodic cases. 
 Case 3 (stable case) 

 d1 d2 initial value of the 

EF part 

initial value 

of the CC 

part 

dN1 dN2 dN1 dN

2 

case 3-1 2 0.05 14 0.35 125 -20 

case 3-2 0.2 0.005 1.4 0.035 125 -20 

case 3-3 0.02 0.0005 0.14 0.0035 125 -20 

case 3-4 0.002 0.00005 0.014 0.00035 125 -20 

 Case 4 (periodic case) 

 d1 d2 initial value of the 

EF part 

initial value 

of the CC 
part 

dN1 dN2 dN1 dN

2 

case 4-1 2 0.05 14 0.35 175 -20 

case 4-2 0.2 0.005 1.4 0.035 175 -20 

case 4-3 0.02 0.0005 0.14 0.0035 175 -20 

case 4-4 0.002 0.00005 0.014 0.00035 175 -20 

 

Figures 7 and 8 depict the results of the stable case, while 

Figures 9 and 10 show the results of the periodic case. By 

examining these figures, it becomes apparent how the EF part 

influences the behavior of the model in both scenarios. In 

both the stable and periodic cases, if the magnitude of the EF 

part is larger, the solution tends to converge to the EF part 

faster. The economic factor enhances the convergence of the 

dynamic competition-cooperation model, improving the 

accuracy of forecasts.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7 The numbers of 𝑁1 and 𝑁2.vary with time for case 

3 with different di, i=1, 2: (a) case 3-1; (b) case 3-

2; (c) case 3-3; (d) case 3-4. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8 Trajectory of solution for case 3 on phase plane and 

its vector field with different di, i=1, 2: (a) case 3-

1; (b) case 3-2; (c) case 3-3; (d) case 3-4. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9 The numbers of 𝑁1 and 𝑁2.vary with time for case 

4 with different di, i=1, 2: (a) case 4-1; (b) case 4-

2; (c) case 4-3; (d) case 4-4. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10 Trajectory of solution for case 4 on phase plane 

and its vector field with different di, i=1, 2: (a) 

case 4-1; (b) case 4-2; (c) case 4-3; (d) case 4-4. 

However, if the results resemble those shown in Figures 

7(a) and 9(a), where the solution primarily converges to the 

EF part, it suggests that developing a forecasting model based 

solely on the economic factor might be more appropriate. 

These observations underscore the importance of the 

economic factor in shaping the behavior of the dynamic 

competition-cooperation model. Depending on the relative 

magnitudes of the EF and CC parts, the model's convergence 

and accuracy may vary. Understanding these dynamics can 

inform decisions regarding the development of forecasting 

models and the incorporation of economic factors in 

transportation planning and management. 

 

 
(a) 

 
(b) 

Figure 11 Competitive type model: (a) The numbers of 
1N  

and 
2N .vary with time; (b) Phase plane and the 

vector field of 
1N  and 

2N . 

 

Table 7 The coefficients and eigenvalues of the competitive 

type model. 
coefficient a1 a2 b1 b2 c1 c2 eigenvalue 

1
 

2  

value 0.4 0.09 -0.04 -0.001 -0.0005 -0.001 -0.36 -0.08 

 

All discussions above are based on the predator-prey type 

model because c1 is positive and c2 is negative, which means 

N1 is the predator and N2 is the prey. A competitive type model 

is employed to discuss, and the coefficients are given in Table 

7. According to the Jacobian analysis, the system is stable 

because the two eigenvalues of the Jacobian matrix are 

negative. The system converges to (8.99, 81.01) and the 

initial condition is (50, 500). Figure 11 illustrates the numbers 

of N1 and N2 and their phase plane. Figures 12 and 13 are the 

results with the economic factor. d1 and d2 are given the same 

as Table 6.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 12 The numbers of 
1N  and 

2N .vary with time for the 

competitive type model with different di, i=1, 2: 

(a) d1 =2, d2 =0.05; (b) d1 =0.2, d2 =0.005; (c) d1 

=0.02, d2 =0.0005; (d) d1 =0.002, d2 =0.00005. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 13 Trajectory of solution for the competitive type 

model with different di, i=1, 2: (a) d1 =2, d2 =0.05; 

(b) d1 =0.2, d2 =0.005; (c) d1 =0.02, d2 =0.0005; 

(d) d1 =0.002, d2 =0.00005. 
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V. CONCLUSION AND PERSPECTIVES 

Forecasting passenger or visitor volumes in transportation 

systems necessitates accounting for the influence of socio-

economic factors. However, traditional Jacobian analysis 

falls short when economic factors are incorporated into the 

model. In this study, we complement the Jacobian analysis 

with numerical examples to explore the stability and 

asymptotic behavior of the competition-cooperation model 

enriched with economic factors. Our findings can be 

summarized as follows:  

1. In unstable models, solutions diverge over time, leading 

to increasingly unpredictable dynamics that may fail to 

converge to a steady state. 

2. In stable models, solutions converge towards the 

economic factor function in the long term. This underscores 

the significant role of economic factors in shaping the model's 

behavior over time, influencing the convergence pattern. 

3. Similarly, in periodic models characterized by 

oscillations, solutions still converge to the economic factor 

function over the long term. This indicates the enduring 

influence of economic factors even in dynamic and 

fluctuating scenarios. 

Both convergent and periodic models with economic 

factors exhibit stability, ensuring bounded trajectories over 

time. Initially, competition-cooperation dynamics dominate, 

leading trajectories towards a stationary or center point. As 

time progresses, economic factors gradually exert their 

influence, guiding trajectories towards the economic factor 

function. This highlights the pivotal role of economic factors 

in shaping model behavior over time. By integrating 

economic factors, the model yields more accurate forecasts, 

reflecting real-world dynamics and enhancing decision-

making in transportation planning and management. 

In real-world transportation systems, competition and 

cooperation often involve multiple entities. For instance, in 

Taiwan's transportation landscape, high-speed rail, freeway 

coaches, and rail services in the western corridor may 

compete or cooperate. Analyzing systems with three or more 

entities introduces complexity and dynamics surpassing two-

species models. These systems may exhibit emergent 

behaviors, nonlinear interactions, and intricate feedback 

loops, necessitating advanced modeling techniques. 

While this study delves into the stability and asymptotic 

behavior of two-species models, extending these analyses to 

multispecies systems presents a challenging yet promising 

research direction. Understanding the stability and 

convergence properties of such models is crucial for 

predicting system behavior and guiding decision-making in 

transportation planning and management. The stability and 

asymptotic analyses of systems involving three or more 

entities warrant further investigation. 
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