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Abstract—This study comprehensively compares different
machine learning algorithms to assess their applicability in
Quality Assurance (QA) contracting procedures. The evaluated
algorithms encompass Nearest Neighbors, Linear SVM, Radial
SVM, Gaussian Process, Decision Tree, Neural Network, Logis-
tic Regression, Naive Bayes, and QDA. Following the Knowledge
Discovery Database (KDD) process, the methodology includes
a diverse set of evaluation metrics such as F1-Score, recall,
accuracy, and AUC-ROC, as well as learning curves, boundary
maps, confusion matrices, Matthews Correlation Coefficient
(MCC), and complexity curves. According to the Gartner Magic
Quadrant assessment, the results suggest that Neural Network,
QDA, and Gaussian Process models exhibit strong performance
and thorough evaluation, making them optimal for the case
study presented in the paper. In contrast, Nearest Neighbors
and Linear SVM models are considered suboptimal, indicating
an opportunity to explore the reasons behind their behavior
in the case study and how to modify them for improved
results. The other algorithms also present various possibilities
for adaptation to the current case study, either as models
with limited analysis or as imprecise models that can offer
valuable insights for future work on optimizing them more
effectively. This study significantly contributes to advancing
machine learning applications in recruitment procedures.

Index Terms—Machine Learning, Quality Assurance, hiring
processes, algorithm comparison, bias reduction.

I. INTRODUCTION

MACHINE learning is a subdivision of artificial intel-
ligence focused on enabling systems to learn without

explicit programming. This is achieved by allowing the
system to identify patterns and anticipate future actions.
Machine learning is applied in various domains, includ-
ing natural language processing, genetic sequence analysis,
robotics, financial risk assessment, threat detection, compiler
optimization, semantic web, computer security, software en-
gineering, and image processing, as highlighted by Panesar
[1].

In computing, machine learning leverages statistical meth-
ods and algorithms to help machines enhance their perfor-
mance on tasks by learning from data. According to Panesar
[1], the ultimate objective is to create models that can learn
from examples and training data, and subsequently apply that
knowledge to new scenarios.
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The software quality assurance industry has experienced
substantial changes, resulting in a heightened demand for
specialized professionals. The increasing complexity of mod-
ern software systems and the emphasis on their effectiveness
and security has led to a greater need for QA professionals.
As a result, hiring teams are facing challenges in finding
candidates with the required skills and knowledge.

Recruiting QA professionals has become highly competi-
tive. According to a report by the International Association
of Software Testing Professionals (ISTQB), the demand for
QA professionals has surged by 30% over the past three
years, leading to a shortage of talent in the job market.
Consequently, companies are now vying to attract the most
qualified professionals. [2]

In the rapidly evolving digital landscape, machine learning
has emerged as a valuable asset for hiring teams. Its capacity
to process intricate data, uncover underlying trends, and
drive data-driven decision-making renders machine learning
algorithms well-suited for specialized and competitive hiring
procedures, instilling confidence in the recruitment process.

Notably, machine learning has revolutionized the hiring
landscape, particularly within the software QA industry.
Through the analysis of extensive datasets and pattern recog-
nition, machine learning algorithms can effectively pinpoint
candidates whose profiles align closely with specific job
prerequisites. According to Sharma [3], this technology can
streamline the selection phase, ultimately alleviating the
workload for hiring teams and conserving valuable time and
resources.

In this paper, a thorough analysis of machine learning
algorithms commonly used in software QA recruitment is
presented. It delves into the core concepts of machine learn-
ing and its impact on enhancing recruitment efficiency.

This research is notable for its in-depth examination of
different algorithms, their comparative analysis, and their
practical application in a controlled scenario. It underscores
the significance of prior research and the benefits of com-
paring various machine learning options for recruitment.
The inclusion of examples and comparisons throughout the
text reflects the intent to assess different alternatives using
specific metrics.

Key sources for this research include Panesar [1] and
Sharma [3], whose contributions have influenced the problem
statement of this paper and advocated for the adoption of
machine learning in recruitment, particularly in software QA.
This paper has not been previously published.
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II. PROBLEM

The field of human resource management is constantly
evolving, driven by technological advancements, shifts in
work trends, and updates in regulations that influence work
dynamics and employee expectations [4].

As Russo et al. [5] highlighted, this evolution is particu-
larly evident in software quality assurance, where technical
expertise and precision are imperative. The introduction
of machine learning has transformed the recruitment and
selection processes within this field.

The incorporation of machine learning into human re-
source management offers substantial advantages. Adnan [6]
explains that algorithms can swiftly and accurately analyze
extensive candidate data, identifying patterns and charac-
teristics that traditional methods might overlook. This not
only streamlines the selection process but also enhances
the likelihood of identifying highly qualified candidates for
specific roles.

Automating routine tasks in the selection process enables
Human Resources (HR) professionals to concentrate on
more strategic initiatives, such as employee development and
retention, which are crucial for an organization’s success.

However, this technological revolution also presents sig-
nificant ethical challenges [6]. One pressing concern is
candidate privacy, as the collection and analysis of personal
data raise questions about the handling of sensitive infor-
mation. Additionally, there is a risk of algorithmic bias,
where algorithms may reflect inherent biases in the training
data, potentially leading to unfair or discriminatory hiring
decisions.

A. Competency-Based Selection and Its Relation to the The-
ory of Human Talent Management

In the modern field of human resource management, eval-
uating competencies during the hiring process is essential.
This approach moves beyond the traditional emphasis on
work experience and academic qualifications, in line with
human talent management theory principles.

Human talent management theory emphasizes identifying
and nurturing the competencies crucial to an employee’s
performance. It recognizes that a robust academic foundation
or extensive professional experience, in isolation, may be
insufficient. What truly matters are the skills, knowledge,
and practical abilities that render an individual suitable for a
particular role. [7]

Competency-based selection employs objective, data-
driven techniques to assess candidates. Instead of relying
solely on subjective interviews or personal judgments, this
method measures specific competencies relevant to a given
position. Approaches include skills assessments, simulated
exercises, and evaluations based on past performance.

This method leads to more informed hiring decisions and
ensures employees align with the organization’s objectives.
By choosing candidates with the right competencies, organi-
zations enhance their ability to adapt and swiftly contribute
to success.

B. Digitization and Process Automation: A Reflection of
Management Theory

In the modern era, digitalization and process automation
are vital for efficient management in all types of organiza-

tions. This transition allows managers to maximize efficiency
and effectiveness, aligning with fundamental management
principles.

A prime example of this collaboration is the utilization of
Applicant Tracking Systems (ATS) in recruitment. ATSs are
based on effective management principles and have become
indispensable tools in the workplace.

ATSs facilitate precise and consistent data collection and
analysis in hiring, leading to more efficient resource manage-
ment and the elimination of repetitive tasks such as resume
reviews and interview scheduling. This automation enables
HR professionals to focus on more valuable activities, such
as skills assessment and strategic decision-making.

Moreover, ATSs enhance communication between hiring
team members and candidates, improving the candidate expe-
rience and positively impacting a company’s reputation and
talent retention. [7]

At a broader level, digitalization and process automation
not only apply to recruitment but also extend to various
administrative areas such as project management, inventory
tracking, and accounting, among others. These approaches
are aligned with the central goal of management theory,
which is to maximize the efficiency and effectiveness of or-
ganizational operations by reducing human error, minimizing
response time, and optimizing resource utilization.

C. Candidate Assessment Through Technical Tests: An Ap-
proach Supported by Human Capital Theory

Candidate assessment has undergone significant transfor-
mation in specialized fields such as technology. The tra-
ditional emphasis on academic or work history is being
replaced by technical testing, which has become a central
hiring process component. This shift is in line with human
capital theory, which underscores the importance of investing
in specific skills to enhance organizational performance and
success [8].

Human capital theory emphasizes that an organization’s
most valuable asset is its people. Therefore, investing in
specific skills and technical capabilities is crucial for max-
imizing employee potential and overall organizational per-
formance. Academic qualifications or past work experience
alone can no longer determine a candidate’s suitability.
Instead, practical skills and technical competencies are given
priority.

Often supported by machine learning, technical testing has
become a critical tool in candidate evaluation. According to
Magazzino et al. [9], these tests assess candidates’ ability to
apply their knowledge in real-life scenarios, such as solving
coding problems or performing specialized tasks.

The advantage of incorporating machine learning in as-
sessment lies in its ability to evaluate correct answers and
candidates’ problem-solving strategies and creativity. This
comprehensive assessment reassures HR professionals and
hiring managers regarding the effectiveness of the process.
It helps identify individuals with strong knowledge bases and
high potential to contribute to the organization by addressing
complex challenges and adapting to an ever-changing work
environment.

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1690-1707

 
______________________________________________________________________________________ 



D. Promoting Diversity and Inclusion in Recruitment: An
Alliance with Diversity Management Theory

The promotion of diversity and inclusion has become
integral to corporate recruitment. Many companies now
understand that having ethnic, gender, and cultural diversity
within their teams is morally right and essential for achieving
business success. Studies indicate that diverse companies
often outperform their competitors regarding profitability and
innovation.

Diversity management theory emphasizes the importance
of creating a workplace that values and respects individual
differences, promoting diversity and inclusion. This approach
brings about a range of perspectives and experiences that
positively influence decision-making, innovation, and overall
organizational performance.

Research has shown that ethnic and gender diversity is
a driving force behind effective and innovative teams. Indi-
viduals with unique cultural backgrounds and experiences
bring more nuanced and comprehensive problem-solving
approaches, leading to innovative solutions. Furthermore, a
diverse workforce enables companies to comprehend better
and cater to the needs of a global and diverse market.

Nevertheless, having diversity on paper is not sufficient.
Establishing an environment where everyone feels valued,
respected, and empowered to make meaningful contributions
is critical. This includes implementing policies and practices
that promote fairness and equal opportunity in the workplace
and eliminate any barriers that hinder employee participation.

E. Implications of the Application of Machine Learning and
a Crucial Question

The growing use of machine learning in recruiting marks a
milestone in human resource management. This technology
automates tasks, reduces costs, and improves talent identifi-
cation and selection efficiency. Applications like automated
resume analysis and video interview scoring significantly
advance how companies hire employees.

Amid this technological revolution, a fundamental ques-
tion arises that deserves deep and thoughtful consideration:
How can machine learning ethically and effectively support
the hiring process? This involves many aspects of HR man-
agement and impacts decision-making and organizational
culture.

Firstly, automation affects candidate search and selection.
While algorithms can speed up the process by analyzing large
data sets, it’s crucial to ensure they are unbiased and do
not perpetuate discriminatory biases. Fairness in candidate
consideration must be a priority.

Skill assessment is another critical aspect. Machine learn-
ing can help identify candidates with the right skills, but
these tests must be relevant and fair, without discrimination
based on age, gender, race, or other protected factors. [10]

Automating interviews and candidate interactions also
presents ethical challenges. Impersonal communication can
feel cold and dehumanizing, negatively affecting the com-
pany’s image and ability to attract top talent.

Lastly, automated job postings can overwhelm candidates
with information, making it hard to find suitable opportuni-
ties.

Machine learning techniques revolutionize recruitment
processes, especially in the software QA industry. These

innovations, supported by management theories, promise to
optimize talent identification. However, addressing ethical
and equity concerns is essential to ensure these technologies
are fair and beneficial to all parties involved.

III. ALGORITHM SELECTION

Machine learning involves computational methods that
allow systems to automatically learn and enhance their per-
formance through experience, without the need for explicit
programming. These algorithms are successful in computer
vision, natural language processing, fraud detection, and
medicine. Mahesh [11] notes that recent progress in machine
learning is due to advancements in computing power, mod-
eling techniques, and optimization methods.

Machine learning includes various types, each focusing on
different learning tasks [12]. Here are a few primary types
of machine learning:

A. Supervised Learning Algorithms

Supervised learning is a widely used approach in machine
learning. In this approach, models are trained using labeled
examples, where each example includes input features and
a corresponding output label [13]. The aim is to learn a
function that accurately maps input features to output la-
bels. Popular supervised learning algorithms include Support
Vector Machines (SVMs) and Artificial Neural Networks
(ANNs).

The SVM algorithm solves linear and nonlinear classi-
fication problems by finding an optimal hyperplane that
maximizes the separation between data classes. SVM is used
in applications like image recognition and fraud detection in
finance [14]. However, SVM can struggle with large datasets
due to its computational complexity. [15]

Random forest is an ensemble technique using multiple
decision trees to make predictions. Each tree is trained on
a random sample of data and features. The predictions from
each tree are combined to produce a final prediction. Random
forest handles large datasets and irrelevant features well and
is less prone to overfitting than individual decision trees. It
is effective in applications like spam detection and image
classification. [16]

Gradient Boosting Machines (GBM) is another ensemble
technique that combines several weaker models into one
robust model. Unlike Random Forests, GBM builds models
sequentially, with each model fitting the residual errors of the
previous one. This technique performs well on regression
and classification problems and is popular in data science
competitions [17]. However, due to its sequential nature,
GBM can be slower.

The human brain inspires ANNs, which consist of multiple
layers of interconnected artificial neurons. These networks
can learn and extract complex features from data. ANNs
excel in speech recognition, computer vision, and natural
language processing [18]. However, they often require large
amounts of data to train effectively and can be more difficult
to interpret than other algorithms.

B. Unsupervised Learning Algorithms

Unsupervised learning involves unlabeled data; no output
labels are provided during training. According to Abou [19],

Engineering Letters

Volume 32, Issue 8, August 2024, Pages 1690-1707

 
______________________________________________________________________________________ 



unsupervised learning algorithms are designed to uncover
hidden patterns or structures within the data. This is achieved
through methodologies such as clustering, which involves
grouping data based on similarities. One of the most com-
monly used unsupervised learning algorithms is K-Means.

K-Means is a widely used clustering algorithm that seg-
ments a dataset into k groups to minimize the variance within
each cluster. It accomplishes this by assigning each data point
to the nearest centroid and then adjusting the centroids to
enhance clustering accuracy. Hastie et al. [20] highlight that
K-Means is computationally efficient and performs well with
high-dimensional data. Still, it is sensitive to initial centroids
and requires the specification of the number of clusters.

Another clustering algorithm, Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN), identifies
clusters based on point density. Unlike K-Means, DBSCAN
does not require a pre-specified number of clusters. It effec-
tively identifies clusters of various shapes and sizes and han-
dles noise and outliers. However, DBSCAN may encounter
challenges with high-dimensional data and is sensitive to
parameter choices. [21]

Principal Component Analysis (PCA) is a commonly
utilized technique for reducing dimensionality in machine
learning. As Géron [22] explains, PCA identifies the principal
components or directions of maximum variance in a dataset,
facilitating the reduction of the dataset’s dimensionality. PCA
is valuable for data visualization, compression, and feature
elimination. Still, it may not be suitable for nonlinear data
and can lead to the loss of detailed information from the
original data.

Autoencoders are a type of unsupervised learning algo-
rithm used for feature reconstruction and extraction. These
neural networks consist of an input layer, one or more hidden
layers, and an output layer. The main goal of autoencoders
is to reconstruct input data through a latent representation
in the hidden layer. Tan et al. [23] suggest that autoencoders
are helpful for dimensionality reduction, data generation, and
anomaly detection, but their effectiveness depends on the
architecture and training data quality.

Association algorithms, like Apriori, identify patterns or
association rules in transactional or item-based datasets.
These algorithms find item sets that frequently occur to-
gether. They are widely used in shopping cart analysis,
product recommendations, and consumer behavior analysis.
However, they can be computationally expensive and gener-
ate many trivial or useless rules. [24]

The machine learning algorithms mentioned offer different
approaches for specific problems. Clustering techniques like
K-Means and DBSCAN focus on grouping data, while PCA
and autoencoders are used for dimensionality reduction.
Association algorithms find patterns in data. The choice of
algorithm depends on the problem, data characteristics, and
analysis objectives. [25]

C. Algorithm Choice

The selection of supervised learning algorithms is a crit-
ical aspect of the QA recruitment process, especially for
tackling classification problems. In supervised learning, a
labeled dataset comprises historical instances of candidates
categorized as either suitable or unsuitable for the job. This

enables algorithms to discern patterns and connections from
past cases and apply this knowledge to assess new candidates.
The primary objective is to train the model to extrapolate
from labeled data and employ this information to evaluate
new candidates.

1) Nearest Neighbors: It is a fundamental machine learn-
ing tool characterized by its simplicity and effectiveness.
Used in both classification and regression tasks, its operation
is based on identifying a predefined number of training
samples closest in the distance to a new point and then
predicting the corresponding label based on these samples.
This nonparametric approach is distinguished by its ability
to adapt to various types of data by avoiding significant as-
sumptions about the shape of the assignment function. Near-
est Neighbors finds frequent applications in recommender
systems, anomaly detection, and disease classification, such
as lung cancer [26], where its versatility and robustness make
it a preferred choice for tackling a wide range of problems.

2) Linear SVM: The Linear Support Vector Machine
(Linear SVM) is a type of SVM with a linear decision
boundary. It finds the optimal hyperplane that best separates
the classes in the feature space. Due to its simplicity and
effectiveness, Linear SVM is widely used in various machine
learning applications. Linear SVM is known for its efficient
generalization, making it ideal for high-dimensional data.
However, training Linear SVM can be time-consuming,
especially during the cross-validation phase for parameter
selection. Methods like early stopping in iterative learning
have been proposed to speed the training and maintain
performance without prolonging training. [27]

3) Radial SVM: The Radial Support Vector Machine (Ra-
dial SVM) is a robust supervised machine learning algorithm
that excels in classification and regression tasks. Its method-
ology involves identifying the optimal hyperplane to distin-
guish between different classes within a given feature space.
This technique has been utilized across various industries,
from cybersecurity to medical diagnosis, and has proven
highly effective in handling complex datasets with high-
dimensional data. SVMs are particularly adept in identifying
clear separation margins between classes, making them an
invaluable tool in analyzing challenging datasets.

4) Gaussian Process: These are essential for problems
with continuous input and finite output spaces. These models
extend multivariate Gaussian random variables to infinite
index sets, providing versatility and computational efficiency
[28]. Using Gaussian processes in a Bayesian framework
allows for precise uncertainty calculations in predictions and
supports standard model selection techniques. However, their
scalability is challenging and can be addressed using sparse
approximation techniques. [28]

5) Decision Trees: The integration of Decision Trees
is supported by various technical reasons. Primarily, these
algorithms are exceptionally interpretable, which is funda-
mental in QA hiring, as comprehending and rationalizing
hiring decisions is crucial. Additionally, decision trees can
proficiently handle both numeric and categorical data, which
is typical in candidate datasets that may comprise diverse
attributes. Furthermore, their proficiency in handling missing
data and their resilience to noise in the data make them
highly adaptable in real-world scenarios. They can also
be seamlessly regularized to prevent overfitting, a common
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concern in machine learning. [29]
6) Neural Network: Implementing machine learning

through Neural Network mimics the structure and behavior
of the human brain to learn from data and make predictions.
This technique is essential in machine learning and intense
learning and has advanced various fields like telecommuni-
cations, computer vision, and biomedical image processing.
Recent studies compare traditional machine learning models
with neural network-based models for tasks such as iden-
tifying malware families on Android devices [30]. Neural
Network effectively tackle complex challenges by identifying
and learning patterns and relationships in data.

7) Logistic Regression: It is a statistical technique used
in machine learning for binary classification tasks. It aims to
predict the likelihood of a specific event by fitting data to
a logistic function. This method is widely used in various
domains, such as disease prognosis, fake news detection,
and data categorization. Logistic Regression is effective as a
supervised learning algorithm, especially when the dependent
variable is categorical. Its importance in machine learning
comes from its simplicity and clear results. [31]

8) Naive Bayes: It is an optimal choice due to its profi-
ciency in managing high-dimensional data and computational
speed. Many candidate features are collected during the
QA recruitment process, creating large data sets. Naive
Bayes is advantageous as it presumes conditional indepen-
dence among features, making it reliable and efficient in
overcoming the curse of dimensionality. Furthermore, it is
advantageous in handling categorical data or text frequently
encountered during candidate evaluation.

9) QDA: Quadratic Discriminant Analysis (QDA) is a
valuable classification algorithm in machine learning, espe-
cially when classes have different covariance matrices. It
calculates the likelihood of a data point belonging to a class,
assuming features are usually distributed within each class,
and uses Bayes’ theorem to make predictions. QDA has
shown versatility and effectiveness in various classification
and prediction tasks in machine learning applications.

The selection of algorithms, including Nearest Neighbors,
Linear SVM, Radial SVM, Gaussian Process, Decision Tree,
Neural Network, Logistic Regression, Naive Bayes, and
QDA, was carefully made based on their appropriateness
for handling various classification tasks. Each algorithm
possesses unique features that make it suitable for specific
scenarios. The decision to use these algorithms was based
on their successful track record in numerous contexts and
their ability to adjust to the particular attributes of the
classification problem during the QA recruitment process.

IV. DATA PREPARATION

The Knowledge Discovery in Databases (KDD) method-
ology is often used to solve complex problems to facilitate
scientific research. Comendador et al. [32] noted that KDD
is a structured process for extracting valuable insights from
large datasets. This method has proven effective in various
fields, including artificial intelligence, data mining, and data
analytics.

This study rigorously applies the KDD methodology,
following Fayyad et al.’s [33] steps to ensure quality and
validity. Following Chen et al.’s [34] work on data mining’s

business applications, a comprehensive literature review es-
tablishes the theoretical foundation and research goals.

The initial phase involves selecting data by interviewing
two organizations. Over the past two years, meetings have
been held with candidates for the role of QA analyst in
each organization to create a substantial database for the next
stages of the methodology. During these sessions, candidates
provide basic information, experience, QA knowledge, soft
skills, and job expectations.

The candidate’s interview responses are evaluated by QA
expert interviewers who assign scores to specific questions
based on their perception of the candidate’s accuracy. This,
along with other gathered information, results in 42 categor-
ical data points per candidate in the first dataset and 38 in
the second, all stored in a plain text file for traceability and
future processing.

The next step involves processing and standardizing the
data to identify the point of maximum equality, facilitating
machine learning processes and streamlining workflow for
optimal outcomes.

One effective data transformation technique involves con-
verting open-ended responses into a standardized format. For
instance, questions with positive or negative answers are
assigned binary values: ’no/negative’ responses are 0, and
’yes/positive’ responses are 1, simplifying the data to two
possible values for each dataset. Furthermore, comparable
scoring systems were established, such as a scale from 1
to 5 for ’Knowledge of agile methodologies’ and from 1
to 3 for ’How far do you live from the office?’ where 1
represents ’live in Bogotá,’ 2 represents ’live near Bogotá,’
and 3 represents ’live far from Bogotá (remote work).’

The data was meticulously transformed from an open,
unstructured format into a more concise, machine-
understandable format. This simplifies data interpretation for
developers and minimizes the risk of machine learning errors,
ultimately improving accuracy and success rates.

This transformation phase served as a precursor to the next
stage of the study following the KDD methodology: feature
selection. Two key steps were taken to identify the most
significant variables: data cleaning and debugging, followed
by prioritizing and renaming the crucial data as determined
by expert interviewers from both companies.

The reduction process focused on eliminating redundant
questions. For example, if an interviewee was asked, ’Are
you familiar with creating test cases?’ (yes/no) and ”How
knowledgeable are you about test case creation?” (1 to 5),
the answer to the second question was considered, as it
inherently covers the first question.

In order to enhance the predictive capability of the eval-
uation system, a comprehensive review was carried out to
eliminate redundant or irrelevant questions. As a result, a
set of nine essential characteristics was identified to ensure
the effectiveness of predicting candidates’ performance while
avoiding redundancy.

Questions such as ’What is your knowledge of program-
ming languages?’ were omitted as they did not contribute
to evaluating a QA analyst’s performance. This refined
approach ensures the efficiency and accuracy of the selection
process.

Furthermore, to improve readability and clarity, the cat-
egorical data in each dataset were renamed. This process
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involved transforming complex questions into concise titles
with numerical values under a standard scale, simplifying the
information and making it more accessible.

A. Source Code Parameters

Specialized machine learning libraries were used to imple-
ment and evaluate the algorithms efficiently. These libraries
became the technological basis for building and evaluating
the models. Some key libraries that played a fundamental
role are pandas, scikit-learn, matplotlib.pyplot, and numpy.

Consistency and reproducibility of results are essential in
scientific research. To ensure these qualities, specific versions
of the following libraries were used.

• pandas version: 2.0.3
• scikit-learn version: 1.3.0
• matplotlib version: 3.7.2
• numpy version: 1.25.0

V. RESULTS

This section presents the meticulous results of a com-
prehensive comparative evaluation of nine prominent ma-
chine learning algorithms for a classification problem. The
evaluation was meticulously focused on basic performance
metrics, computational efficiency, and discriminative ability.
It culminated in adapting Gartner’s magic table to provide a
thorough analysis. Each of the algorithms, including Nearest
Neighbors, Linear SVM, Radial SVM, Gaussian Process,
Decision Tree, Neural Network, Logistic Regression, Naive
Bayes, and QDA, underwent a meticulous analysis to assess
their suitability for application in QA recruitment.

A. Evaluation Metrics

The results will be thoroughly examined, including perfor-
mance metrics such as precision, accuracy, F1-score, recall,
and discriminative ability measured by the area under the
Receiver Operating Characteristic (ROC) curve. These met-
rics are crucial for understanding the algorithm’s capabilities.
Additionally, the computational efficiency of each algorithm
will be analyzed, considering training time and memory
usage. These metrics will be described below, including their
mathematical expressions and interpretations.

1) Accuracy Rating Score: An analysis of various ma-
chine learning algorithms for predicting employee hiring
shows an average accuracy of 0.789. The Decision Tree
algorithm demonstrates the highest accuracy at 0.8833, while
the Linear SVM and QDA exhibit the lowest accuracy
at 0.7100. The high accuracy of the Decision Tree can
be attributed to its capability to handle complex decision
boundaries and nonlinear relationships between features. In
contrast, the Linear SVM and QDA, which assume linear
relationships and Gaussian distributions, respectively, do not
capture the complexities of the data well, explaining their
lower performance (see Table I).

2) Precision and Recall Ratios: The overall precision
score for all algorithms is 0.764, indicating the algorithms’
ability to avoid false positives. With an average recall
score of 0.864, the algorithms also demonstrate their pro-
ficiency in identifying true positives. The Decision Tree
algorithm stands out with the highest precision 0.8833 and

recall 0.9021, demonstrating its superior predictive abilities.
Conversely, the Linear SVM exhibits the lowest precision
0.6443, while the Gaussian Process displays the lowest recall
0.8322, indicating challenges in identifying true positives.
These scores provide valuable insights into the algorithms’
predictive strengths and weaknesses.

The superior performance of the Decision Tree can be
attributed to its capability to handle complex decision bound-
aries, unlike the Linear SVM, which relies on a linear
hyperplane and may struggle to capture the complexity of
the data. The intricate and nonlinear nature of the dataset
favors algorithms like Decision Trees, which do not assume a
specific data distribution. In contrast, algorithms such as Lin-
ear SVM and QDA, which are based on linear assumptions
or specific distributions, show lower accuracy and recall, as
shown in Table II.

3) F1-Score: The average F1-score across the algorithms
is 0.809. The Decision Tree stands out as the most effective,
achieving an F1-score of 0.8805, while the Linear SVM
lags with a score of 0.7418. The F1-score, which strikes
a balance between precision and recall, serves as a measure
of a model’s effectiveness by accounting for false positives
and negatives. The Decision Tree’s high F1-score can be
attributed to its capability to model nonlinear relationships
without making prior assumptions about data distribution,
making it particularly valuable when dealing with nonlinear
relationships or datasets containing numerous categorical
variables.

On the other hand, the low scores of the Linear SVM
suggest challenges in handling complex and diverse data.
Although Linear SVMs perform well in high-dimensional
spaces, they struggle to capture nonlinear relationships with-
out utilizing kernel tricks. (See Table III for details).

The differences in F1-scores underscore the importance of
choosing a suitable model for the data set. Although the De-
cision Tree is practical, each algorithm’s performance varies
according to the dataset’s characteristics, preprocessing, and
hyperparameters.

4) Area Under ROC Curve: The average AUC-ROC score
among the evaluated algorithms is 0.806, highlighting its
ability to differentiate between hires and non-hires. The
Decision Tree is the most effective, with an AUC-ROC of
0.8842, indicating its ability to discriminate between classes.
In contrast, the Linear SVM has the lowest AUC-ROC of
0.7173, suggesting difficulty separating classes. The Decision
Tree’s success is due to its ability to handle complex and
nonlinear relationships between variables.

The Linear SVM’s low AUC-ROC score can be attributed
to its focus on finding a linear hyperplane to separate classes.
Although effective on data sets with clear linear separation,
this approach may fail in more complex scenarios, reducing
its ability to discriminate between classes effectively. Refer
to Table IV for further details.

B. Learning Curve

This analysis examines the performance of several ma-
chine learning algorithms using learning curves, providing a
comprehensive evaluation of their behavior against different
amounts of training and test data. This approach allows iden-
tifying the algorithms’ generalization capability and tendency
to overfit.
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TABLE I
RESULTS OF DIFFERENT MACHINE LEARNING ALGORITHMS

Algorithm Nearest Linear Radial Gaussian Decision Neural Logistic Naive QDA
Neighbors SVM SVM Process Tree Network Regression Bayes

Accuracy 0.7733 0.7100 0.8167 0.8267 0.8833 0.8433 0.7633 0.7733 0.7100

TABLE II
PRECISION AND RECALL RATIOS CALCULATED BY CLASSIFIER ALGORITHM

Algorithm Nearest Linear Radial Gaussian Decision Neural Logistic Naive QDA
Neighbors SVM SVM Process Tree Network Regression Bayes

Precision 0.7095 0.6443 0.7785 0.8095 0.8600 0.8200 0.7143 0.7110 0.8255
Recall 0.8881 0.8741 0.8601 0.8322 0.9021 0.8601 0.8392 0.8601 0.8601

TABLE III
F1-SCORE CALCULATED BY CLASSIFIER ALGORITHM

Algorithm Nearest Linear Radial Gaussian Decision Neural Logistic Naive QDA
Neighbors SVM SVM Process Tree Network Regression Bayes

F1-score 0.7888 0.7418 0.8173 0.8207 0.8805 0.8396 0.7717 0.7785 0.8425

TABLE IV
AUC-ROC CALCULATED BY CLASSIFIER ALGORITHM

Algorithm Nearest Linear Radial Gaussian Decision Neural Logistic Naive QDA
Neighbors SVM SVM Process Tree Network Regression Bayes

AUC-ROC 0.7785 0.7173 0.8186 0.8269 0.8842 0.8441 0.7667 0.7708 0.8473

Figure 1 (a) shows that the observed characteristics of
Nearest Neighbors are remarkable: it shows rapid initial
growth in accuracy, suggesting efficiency with small samples
due to its instance-based nature. Both training and test curves
stabilize quickly, indicating an efficient balance between bias
and variance. In addition, the confidence intervals are narrow,
implying low variability in predictions and high certainty in
results.

Figure 1 (b) shows that the features observed in the Linear
SVM model show moderate accuracy, around 48%, suggest-
ing limitations in capturing the complexity of nonlinear data
due to its linear nature. Furthermore, the similarity between
the training and test curves indicates that the model is not
overfitted but does not improve significantly with increased
training data.

In Figure 2 (a), this algorithm shows perfect 100% accu-
racy on the training set, indicating a complete overfit to the
training data. However, in the test set, the high accuracy close
to 100% suggests excellent generalization ability despite the
perfect fit in training. In addition, the narrow confidence
intervals indicate high prediction certainty, suggesting low
variability in model performance.

Figure 2 (b) shows that the model effectively captures
complex distributions and provides robust predictions. How-
ever, it requires substantial computational resources, espe-
cially for large volumes of data due to the computation of
large matrices. Observed characteristics include an initial
variability in accuracy followed by a steady increase, sug-
gesting a period of adjustment before stabilizing and gen-
eralizing better with more data. In addition, the continuous
improvement in the accuracy of the test set indicates that
the model continues to learn and improve its generalization
ability. Consistently narrow confidence intervals reflect high
prediction certainty and low variability.

In Figure 3 (a), this type of model easily overfits the train-
ing data, which limits its generalizability. However, its per-
formance can be improved considerably through techniques
such as pruning and ensemble methods such as Random
Forests or Boosting. It is especially useful for interpretable
problems and with noisy data.

The observed features show constant stability in the train-
ing set, suggesting possible overfitting, where the model
memorized the training data rather than learning generaliz-
able patterns. In addition, the lack of significant improvement
in the accuracy of the test set suggests that the model does
not generalize well to new data and may be memorizing the
training data.

In Figure 3 (b), it can be seen that Neural Network
is suitable for complex problems with large data volumes
and nonlinear patterns. They can benefit from using more
data and advanced computational resources such as GPUs
and regularization techniques to improve generalization and
avoid overfitting. The observed features show high initial
accuracy, indicating the ability to learn complex patterns in
the training data quickly. However, the plateauing in accuracy
suggests the need to implement regularization techniques
such as Dropout or L2 to improve generalization and avoid
overfitting. The moderate width of the confidence intervals
reflects reasonable certainty in the predictions, albeit with
some variability.

Figure 4 (a) shows that Logistic Regression suits sim-
ple linear problems requiring a clear model interpretation.
The higher uncertainty in the predictions can be mitigated
with more data or regularization techniques. The observed
characteristics show wide confidence intervals, indicating
higher uncertainty in the model predictions. In addition, the
intermediate and stable accuracy suggests acceptable but not
optimal model performance.
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Fig. 1. Algorithm learning curve as a function of cross-validation for Nearest Neighbors and Linear SVM

Fig. 2. Algorithm learning curve as a function of cross-validation for Radial SVM and Gaussian Process

As shown in Figure 4 (b), Naive Bayes is efficient and
robust for classification problems where features are inde-
pendent. However, it is not suitable for capturing complex
interactions between features. The observed features show
high stability in accuracy due to the model’s conditional
independence assumptions, which makes it robust and effi-
cient. In addition, the narrowness of the confidence intervals
reflects low variability in the predictions and high certainty.

Figure 5 demonstrates that his algorithm is useful for
problems with complex nonlinear relationships but can be
prone to overfitting in high-dimensional data sets. Regular-
ization or dimensionality reduction techniques are necessary
to improve stability and control prediction variability. The
observed features show high accuracy variability, reflecting
the model’s ability to capture complex quadratic relationships
in the data. In addition, the improvement in the accuracy
of the test set with more data indicates good generalization
ability, albeit with higher uncertainty due to the complexity
of the model.

Analyzing the learning curves of various machine learning
algorithms provides critical insights for selecting the most
suitable model. The selection of the correct algorithm for
QA applications depends on multiple critical factors:

• Nearest Neighbors and Gaussian Process are recom-
mended for problems where high initial accuracy is
required and moderate data size is available.

• Radial SVM is powerful for problems with nonlinear
decision boundary but requires careful parameter tuning
to avoid overfitting.

• Decision Tree and Neural Network are effective for
complex problems, although they require pruning and
regularization techniques to mitigate overfitting.

• Logistic Regression and Naive Bayes are efficient for
linear and straightforward classification problems, pro-
viding interpretability and robustness.

• QDA is suitable for data with complex nonlinear re-
lationships but requires careful dimensionality manage-
ment and regularization techniques to control variability
and improve prediction certainty.

C. Decision Boundaries Map

This example illustrates the nature of the decision bound-
aries of different classifiers. In higher-dimensional spaces, it
becomes easier to linearly separate data, and the straightfor-
ward nature of classifiers such as Naive Bayes and Linear
SVM can lead to improved generalization over other types
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Fig. 3. Algorithm learning curve as a function of cross-validation for Decision Tree and Neural Network

Fig. 4. Algorithm learning curve as a function of cross-validation for Logistic Regression and Naive Bayes

of classifiers. Decision boundary mapping is a powerful
tool in machine learning, especially for understanding how
algorithms classify bivariate data. By mapping the decision
boundaries they use to differentiate between classes, this
visualizer provides intuitive insight into the behavior and
effectiveness of various models.

1) Plotting Quantitative Variables: Specifically, this map
plots each data point in a two-dimensional space, defined
by two characteristics: the decision to hire a candidate
or not. The algorithm then overlays decision boundaries
determined by the model to classify the data points into
different categories. The areas bounded by these boundaries
represent the model’s prediction for the class label of the data
points within that area. The map shows the training points
in solid colors and the test points semi-transparent.

Figure 6 represents the decision map for two quantitative
variables in the data set: age versus number of certificates.
Similarly, Figure 7 corresponds to age versus number of
work experiences. As demonstrated by the Nearest Neighbors
algorithm, it displays its decision-making through colored
clusters with boundaries that may appear irregular, reflecting
its reliance on the proximity of neighboring points to dictate

class assignments. This contrasts markedly with the Linear
SVM, which opts for a more straightforward approach,
manifesting as straight-colored stripes signifying a linear
hyperplane designed to separate classes optimally.

The Radial SVM and the Gaussian Process classifier
introduce complexity through curved decision boundaries,
capturing nuanced patterns within the data. On the other
hand, the Decision Tree classifier presents rectangular seg-
ments, reflecting its hierarchical decision-making process.
Neural Network can generate simple or intricate decision
boundaries, adapting to various patterns. Logistic Regression
and Naive Bayes produce linear or slightly curved bound-
aries, while QDA allows more flexible decision boundaries
with quadratic functions to capture nonlinear relationships
more accurately.

2) Plot Categorical Variables: When transitioning from
continuous to categorical variables (as shown in Figure 8),
the representation and interpretation of decision boundaries
experience a significant shift. Instead of lines or curves
demarcating the space, categorical variables produce a visual
divided into distinct blocks or regions, each corresponding
to a specific combination of category states. This creates
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Fig. 5. Algorithm learning curve as a function of cross-validation for QDA

Fig. 6. Decision boundaries map for age vs number of certificates

Fig. 7. Decision boundaries map for age vs lenght of work experience

a mosaic-like appearance, with each block representing the
predicted class for that particular combination of categorical
inputs.

For algorithms like Nearest Neighbors, Linear SVM, and
Radial SVM, continuous decision lines or curves are replaced
by segmented areas, reflecting a more discrete classification
approach. Decision Tree and Neural Network naturally adjust
to this change, illustrating their decision-making through
clear segmented blocks corresponding to categorical com-
binations. In this categorical context, Logistic Regression,
Naive Bayes, and QDA map the decision space block-like
manner, indicating the predicted class for each combination
of categories. The overall result is a map showcasing the
classification strategy of each algorithm in a discrete cate-
gorical landscape, providing a different perspective on how
different models handle categorical data.

3) Regularization: Control Overfitting: Regularization is
a technique to prevent overfitting by adding a penalty to the
size of the coefficients in the learning model, thus discour-
aging overly complex models. In a Multi-Layer Perceptron

(MLP), the alpha parameter acts as a regularization term,
controlling the complexity of the model by fitting. Figure
9 compares different alpha values in a data set, showing
how they affect the decision functions of the MLP. The
lowest alpha values produce the best results when creating
classification clusters.

D. Confusion Matrix

This section explores confusion matrices, which are crucial
for evaluating the performance of the nine machine learning
algorithms studied in candidate classification in a quality
control environment. This analysis is essential to determine
the accuracy and efficiency of each algorithm, which is
essential for selecting the most suitable algorithm for specific
QC applications. The matrices are based on a classification
scenario for hiring, where the positive and negative results
represent the prediction of hiring or not hiring a candidate.

Tables V and VI show the confusion matrices of the Near-
est Neighbors and Linear SVM algorithms, evaluating their
performance. Both reveal a worrying trend with a significant
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Fig. 8. Decision boundaries map for age vs length of salary aspiration

Fig. 9. Decision boundaries map for age vs number of certificates with alpha parameter variation

TABLE V
NEAREST NEIGHBORS CONFUSION MATRIX

Predicted positive Predicted negative
Actual positive 127 16
Actual negative 52 105

TABLE VI
LINEAR SVM CONFUSION MATRIX

Predicted positive Predicted negative
Actual positive 125 18
Actual negative 69 88

presence of False Positives (FP), raising doubts about their
suitability for quality control contracting processes. On the
other hand, the Radial SVM in Table VII stands out as
a model with minimal errors and a high hit rate of 81%,
outperforming other algorithms and being a solid option for
quality selection support.

Tables VIII, IX, and X show the results of the Gaussian
Process, Decision Tree, and Neural Network models, reveal-
ing that they are competent in accurately predicting positive
and negative classifications. They stand out for their high
hit rates, with Decision Tree leading with 88.3%, followed
by Gaussian Process with 82.6% and Neural Network with
84.3%. Their solid performance positions them as promising
options for support in quality selection processes.

TABLE XI
LOGISTIC REGRESSION CONFUSION MATRIX

Predicted positive Predicted negative
Actual positive 120 23
Actual negative 48 109

TABLE VII
RADIAL SVM CONFUSION MATRIX

Predicted positive Predicted negative
Actual positive 123 20
Actual negative 35 122

TABLE VIII
GAUSSIAN PROCESS CONFUSION MATRIX

Predicted positive Predicted negative
Actual positive 119 24
Actual negative 28 129

TABLE XII
NAÏVE BAYES CONFUSION MATRIX

Predicted positive Predicted negative
Actual positive 123 20
Actual negative 50 107

TABLE XIII
QDA CONFUSION MATRIX

Predicted positive Predicted negative
Actual positive 123 20
Actual negative 26 131

Tables XI, XII, and XIII detail the performance of the
Logistic Regression, Naive Bayes, and QDA algorithms.
Logistic Regression and Naive Bayes showed many false
positives (FP), negatively affecting their QA selection pro-
cess reliability. Although QDA had a similar false negative
(FN) value, it had half as many FPs as the other two
algorithms. The hit rates were 76.3%, 76.6%, and 84.6% for
Logistic Regression, Naive Bayes, and QDA, respectively,
highlighting the latter as a strong candidate to support QA
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TABLE IX
DECISION TREE CONFUSION MATRIX

Predicted positive Predicted negative
Actual positive 129 14
Actual negative 21 136

TABLE X
NEURAL NETWORK CONFUSION MATRIX

Predicted positive Predicted negative
Actual positive 123 20
Actual negative 27 130

selection processes.

E. Matthews Correlation Coefficient (MCC)

Classifiers’ performance on a classification problem is
essential for its practical application. The MCC, which con-
siders true positives, true negatives, false positives, and false
negatives, is a robust measure to evaluate their effectiveness,
especially in situations of class imbalance or asymmetric
costs associated with classification errors.

Figure 11 (a) presents the MCC values for each classifier
evaluated. Highlighting the Decision Tree obtains an MCC
of 0.7675, demonstrating its robustness in class prediction.
This result is attributed to its ability to capture nonlinear
relationships and handle complex data sets. On the other
hand, Gaussian Process 0.6532, Neural Network 0.6874, and
QDA 0.6938 also show competitive performance, exceeding
an MCC of 0.65, indicating their ability to model complex
relationships.

In contrast, Nearest Neighbors 0.5670, Linear SVM
0.4541, Logistic Regression 0.5367, and Naive Bayes 0.5476
exhibit inferior performance. Although they may be more
computationally efficient or interpretable, their ability to
capture nonlinear relationships or model complex data may
be limited in this specific data set.

1) Analysis of the Balance between Bias and Variance
in Classification Algorithms: Balancing bias and variance
is crucial in machine learning models, as it influences their
generalizability. Looking at Figure 11 (b), the relationship
for each algorithm evaluated can be analyzed.

• Decision Tree: Shows an accurate fit in the training set
but overfitting in the test set, indicating high variance.

• Neural Network: This has a similar pattern, showing
that it overfits the training data.

• Radial SVM and Gaussian Process: They have an
improved balance between bias and variance, offering
better generalization.

• Naive Bayes and Logistic Regression: They present
moderate bias and low variance, providing stability
in both data sets.-suited for applications where inter-
pretability and stability are crucial.

Figure 11 (b) illustrates how the balance between bias and
variance influences each algorithm’s predictive performance
and generalization.

F. Complexity Analysis

The balance between training time and cross-validation
score can now be evaluated. In the following figures, it is

essential to determine when the cross-validation score stops
increasing while the training time continues to grow.

The Nearest Neighbors algorithm in Figure 12 (a) shows a
strong correlation between fitting time and accuracy, reach-
ing its maximum around 0.80 with moderate fitting times,
between 0.001 and 0.0026 seconds. However, the Linear
SVM in Figure 12 (b) maintains a constant accuracy of
around 0.49 regardless of the fitting time, which varies
up to 14 seconds. This stability suggests that allocating
more computational resources does not significantly improve
predictive performance beyond a certain point, indicating a
possible inefficiency for this dataset.

The Radial SVM in Figure 13 (a) shows a significant im-
provement in accuracy with increasing fitting time, reaching
approximately 0.8 with 0.08 seconds of fitting. Although the
confidence intervals narrow with longer times, they indicate
variability in performance, although the overall predictive
ability remains robust. On the other hand, the Gaussian
Process model in Figure 13 (b) achieves the highest accuracy,
up to 0.9, but with an extended fitting time of up to
14 seconds, reflecting greater computational demands. The
wide confidence intervals suggest variability in performance,
possibly due to model sensitivity to hyperparameters and data
characteristics.

The Decision Tree algorithm in Figure 14 (a) shows a
noticeable increase in accuracy as the fitting time increases,
reaching a maximum near 0.88. Fit times remain relatively
short, with a maximum of 0.004 seconds, and the narrowing
confidence intervals indicate consistent performance with
adequate training. In contrast, the Neural Network model in
Figure 14 (b) exhibits fluctuating accuracy within a fitting
time interval of 0.05 to 0.085 seconds. Although it achieves
a maximum accuracy of about 0.54, the wide confidence
intervals suggest significant variability, possibly due to the
model’s sensitivity to initialization and training parameters.

In Figure 15 (a), the Logistic Regression model exhibits
a constant accuracy of about 0.52 at different fitting times,
concentrated around 0.004 seconds. The narrow confidence
intervals indicate stable performance, albeit with moderate
accuracy, reflecting the simplicity and reliability of the
model. Meanwhile, in Figure 15 (b), the Naive Bayes model
shows a gradual increase in accuracy as the fitting times
increase, reaching approximately 0.78 accuracy with narrow
confidence intervals, indicating robust performance with min-
imal computational requirements.

In Figure 16, the QDA model shows consistent levels
of accuracy, reaching approximately 0.86, with adjustment
times mainly around 0.0016 seconds, highlighting its effi-
ciency.

Gaussian Process and Decision Tree models are highly
accurate, although the former requires longer fitting times.
On the other hand, Linear SVM and Neural Network have
relatively lower accuracy. QDA and Naive Bayes offer
efficient training times with moderate accuracy, balancing
accuracy, and computational efficiency.

G. Gartner Magic Quadrant (GMQ)

A customized GMQ will be implemented to obtain a com-
prehensive and detailed view of the nine algorithms under
consideration. This approach will facilitate a systematic and
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Fig. 10. MCC value per classifier and training set vs testing set

Fig. 11. MCC value per classifier and training set vs testing set

thorough evaluation and comparison of each algorithm. The
Magic Quadrant will be specifically tailored for these nine
algorithms, providing a clear visual representation of their
performance relative to the metrics analyzed in this paper.

Each algorithm will be positioned in the chart according to
its performance on critical dimensions assessed in this study.
By evaluating these factors, it will be possible to identify
each algorithm’s strengths and areas for improvement and
how they compare to each other in a practical context.

This methodology will objectively determine the most
suitable algorithm for the study’s specific needs. Through
this evaluation, an informed selection can be made that
maximizes the benefits and minimizes the constraints, thus
ensuring the optimal algorithmic solution is chosen for the

case study.
In the Cartesian plane representing the Gartner Magic

Box, the x-axis signifies the algorithms’ performance across
various metrics, including Accuracy (Acc in Equation (1)),
Precision (Pre in Equation (1)), recall, F1-score, AUC-ROC,
and MCC. Each of these metrics holds equal significance
along the x-axis for every algorithm. Consequently, the aver-
age of these metric values is computed for each algorithm to
establish its position on the x-axis of the GMQ. The equation
used to calculate the x-axis value is as follows:

x-axis =
Acc + Prec + Recall + F1-score + AUC-ROC + MCC

6
(1)

Each metric is given equal weight to determine the algo-
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Fig. 12. Nearest Neighbors and Linear SVM complexity curves

Fig. 13. Radial SVM and Gaussian Process complexity curves

rithm’s positioning on the GMQ’s x-axis.
The y-axis of the GMQ, known as the Comprehensive

Evaluation Axis, utilizes a wider range of evaluation criteria.
These criteria are based on a combination of learning curve,
decision boundaries maps, confusion matrices, and complex-
ity analysis. Each criterion provides an objective evaluation
value. The method for obtaining these values depends on the
specific characteristics of each of the three evaluation criteria.
The values considered for each criterion are detailed below:

1) Learning Curve: The learning curves illustrate how
the model’s performance improves with more data. In this
instance, the stability and convergence speed of the model
will be assessed.

Stability: This is determined based on the standard devi-
ation of the points on the learning curve. A lower standard
deviation indicates greater stability, and it will be calculated
using Equation (2).

Stability = 1−
(
σlearning curve

σmax

)
(2)

Convergence: This is measured by the amount of data
required to reach a specific percentage of the maximum yield
(e.g., 95%). This will be calculated using Equation (3).

Convergence = 1−
(
Nsamples at 95%

Nmax

)
(3)

An average of the stability and convergence values will be
computed for each algorithm to determine the learning curve
criterion. As per Equation (4), both stability and convergence
are equally important for all algorithms.

Learning Curve =
Stability + Convergence

2
(4)

2) Decision Boundaries Maps: In this context, two spe-
cific metrics will be assessed in relation to the three maps
generated in the study:

Clarity: This metric quantifies the variation within deci-
sion regions, with lower variation indicating greater clarity.

Clarity = 1−
(

Boundary Variation
Boundary Variationmax

)
(5)

Accuracy: It measures the proportion of samples correctly
classified within the map.

Accuracy =
Ncorrectly classified

Ntotal
(6)

To derive the criterion value of the decision boundaries
maps, the following steps should be followed: For each of the
three generated maps, the average of the clarity and precision
values for each algorithm will be calculated.

ClarityT =
Clarity1 + Clarity2 + Clarity3

3
(7)
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Fig. 14. Decision Tree and Neural Network complexity curves

Fig. 15. Logistic Regression and Naive Bayes complexity curves

AccuracyT =
Accuracy1 + Accuracy2 + Accuracy3

3
(8)

Subsequently, the average of the three values obtained for
each algorithm will be calculated, as all comparisons are
considered equally important.

Decision Boundary =
ClarityT + AccuracyT

2
(9)

Equations (7), (8), and (9) provide the mathematical foun-
dation for these calculations, ensuring a comprehensive and
equitable evaluation of the algorithms’ performance in terms
of the clarity and accuracy of the decision boundaries.

3) Confusion Matrix: The confusion matrices assesses
a model’s performance based on true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN).
Two specific metrics are used to evaluate the model: clarity
and balance of classifications.

Clarity: This is determined by the ratio of the sum of true
positives and true negatives to the total number of samples.
The formula for this metric is given in Equation (10):

Clarity =
TP + TN

Ntotal
(10)

Balance: This is calculated as the average of precision and
recall. The formula for this metric is given in Equation (11):

Balance =
Precision + Recall

2
(11)

To derive the value of the confusion matrix criterion, an
average of the clarity and balance values will be computed
for each algorithm, as both metrics are equally important
across all algorithms. See Equation (12) for the combined
representation of these metrics.

Confusion Matrix =
Balance + Clarity

2
(12)

4) Complexity Analysis: Complexity analysis assesses the
efficiency and stability of machine learning algorithms during
training. To do this, three specific metrics derived from the
accuracy curves will be examined as a function of the fitting
time:

AUC-ROC - accuracy vs. fit time: The AUC.ROC is
computed for the accuracy curve over fit time. This provides
a measure of the model’s efficiency and performance over
time (see Equation (13)).

AUC-ROC =
AUC-ROC of accuracy vs. Fit time

AUC-ROCmax
(13)

Convergence time: This is calculated as the time taken for
the model to achieve 95% of its maximum accuracy (see
Equation (14)).
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Fig. 16. QDA complexity curves

Fig. 17. Algorithm comparison using the GMQ

Convergence Time = 1−
(
T95% max accuracy

Tmax fit time

)
(14)

Stability of the curve: Stability is determined as the
variability (standard deviation) of the accuracy over time.
A lower standard deviation indicates greater stability (see
Equation (15)).

Stability = 1−
(
σaccuracy

σmax

)
(15)

To determine the complexity analysis criterion, the average
of the AUC-ROC, Convergence Time, and Stability values
will be calculated for each algorithm, as both metrics are

equally important. Equation (16) presents the corresponding
equation for combining these metrics.

Complexity =
AUC-ROC + Convergence Time + Stability

3
(16)

In order to find the value of the y-axis, the average of
the values obtained by applying the processes described in
equations (4) represented as LDC, (9) represented as DBV,
(12) represented as CMV and (16) represented as CV is
calculated. This procedure can be expressed by the following
equation (17):
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y-axis =
LCV + DBV + CMV + CV

4
(17)

Once the values of both axes have been determined, they
are plotted on a Cartesian plane. The distribution of the
values results in two intersecting straight lines at the center
of the plane, creating four quadrants. In this study, each of
these quadrants is named as follows:

• Optimal models: These models demonstrate high per-
formance across all evaluation metrics (accuracy, pre-
cision, recall, F1-score, AUC-ROC, MCC) as well as
in comprehensive evaluation (learning curve, decision
boundaries maps, confusion matrices, complexity anal-
ysis). They are ideal for implementation.

• Accurate models with limited analysis: These models
exhibit strong evaluation metrics but do not perform
as well in performance analysis. They can be chosen
when accuracy is crucial but may require optimization
to improve efficiency and complexity.

• Suboptimal models: Models in this quadrant do not
excel in either evaluation metrics or performance anal-
ysis. These models would typically be discarded or
considered for significant improvement.

• Efficient but inaccurate models: These models are ef-
ficient and yield good results in performance analysis,
but are not very accurate according to the evaluation
metrics. They could be useful in situations where model
efficiency is more important than accuracy.

VI. CONCLUSIONS

This research extensively assessed various machine learn-
ing algorithms for use in QA Recruiting. This assessment
utilized a range of performance metrics (including accuracy,
precision, recall, F1-score, AUC-ROC, and MCC) and anal-
ysis criteria (such as learning curves, decision boundaries
maps, confusion matrices, and complexity analysis). The
evaluation enabled the classification of the algorithms into
four primary categories: Optimal Models, Accurate Models
with Limited Analysis, Suboptimal Models, and Efficient but
Inaccurate Models, as illustrated in Figure 17.

Optimal Models: Algorithms in this category, such as
Gaussian Process and Neural Network, are notable for their
exceptional accuracy and operational efficiency performance.
These models are well-suited for complex applications that
require effective handling of nonlinear relationships, offering
an optimal balance between accuracy and analysis.

Accurate Models with Limited Analysis: Algorithms like
Decision Tree demonstrate high accuracy metrics but lim-
ited analysis performance. They are suitable for scenarios
prioritizing accuracy, although they may require additional
optimization to enhance efficiency and complexity manage-
ment.

Suboptimal Models: Algorithms like Linear SVM do not
excel in either accuracy or performance analysis, making
them less suitable for most practical applications. These
models would require significant improvements before being
considered for implementation.

Efficient but Inaccurate Models: Algorithms such as Lo-
gistic Regression and Nearest Neighbors are efficient and
perform well in performance analysis but do not achieve high

levels of accuracy. They are helpful in applications where
operational efficiency is more critical than absolute accuracy.

The comparison between the algorithms highlights the
importance of choosing the appropriate model based on the
dataset’s characteristics and the application’s specific require-
ments. This study emphasizes that there is no universally
superior model; the choice of algorithm should be based on
a trade-off between accuracy, efficiency, and generalizability.

In conclusion, this study’s results offer clear and prac-
tical guidance for selecting machine learning algorithms,
emphasizing the need to consider technical performance and
operational efficiency. The ability to choose a suitable model
can significantly impact the effectiveness and success of
machine learning applications in real-world scenarios, which
is the focus of this paper.
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