
An Optimized Mature State Detection Model for 
Apple Flowers Under Complex Orchard 

 
Fengping Zhang, Yujing Yang, Li Xu, Weikuan Jia 

 
Abstract—Accurate assessment of apple flower maturity plays 

a pivotal role in ensuring successful pollination and subsequent 
fruit development. However, the inherently complex and 
unstructured orchard environment presents substantial 
challenges to reliable and efficient evaluation, limiting the 
application of intelligent agricultural technologies. To address 
this issue, we propose GLD‑Net, a customized detection 
framework built upon RT‑DETR, specifically adapted for 
fine‑grained recognition of flower maturity stages. In the feature 
fusion network, we incorporate a Global‑to‑Local Spatial 
Aggregation (GLSA) module to replace conventional lateral 
convolutions and input projections. This module enhances 
spatial representation by combining global contextual cues—
reflecting overall floral morphology—with fine‑grained local 
focus, which sharpens the delineation of petals and stamens. 
Additionally, to improve the model's sensitivity to diverse floral 
structures, we strengthened the standard RepC3 component 
with a Diversified Branch Block Convolutional (DBBC3) 
module, utilizing multi‑branch convolutions for comprehensive 
multi‑scale feature extraction and deep‑level information 
integration. We further introduce the AppleFlowers dataset, 
which includes flower images taken under a range of natural 
lighting and scene variations, enabling robust benchmarking in 
real orchard environments. Experimental results show that 
GLD‑Net achieves a precision of 88.2%, a recall of 78.2%, and 
a mAP50 of 86.0%, confirming its effectiveness and applicability 
in precision horticultural systems. 
 

Index Terms—Maturity state, Apple flowers, GLD‑Net, 
Object detection 
 

I. INTRODUCTION 
HE apple flowers mark the inception of the apple 
production cycle, with anthesis heralding the onset of 
fruit development; consequently, precision and 

efficiency in flower maturation assessment are pivotal for 
securing successful pollination and maximizing final yield [1].  
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In the pre‑anthesis phase, meticulous selection of healthy, as 
pollen viability and vigor directly dictate fertilization 
outcomes. Upon reaching maturity‑defined by approximately 
20% petal opening, bees can be released to ensure effective 
bee‑mediated pollination and enhance fruit‑set rates [2]. 
Precision assessment of apple flower maturity is currently 
undermined by variability in illumination, weather conditions, 
and floral posture, resulting in both low accuracy and limited 
throughput [3]. Moreover, studies explicitly targeting the 
detection of flower maturity remain scarce, with existing 
efforts largely confined to flower identification and 
pollination‑status evaluation [4]. Consequently, the 
development of robust, high‑precision methodologies 
capable of accurately discerning flower maturity under 
complex and dynamic orchard environments represents an 
urgent and unresolved challenge. Researchers have made 
notable progress in enhancing the accuracy of flower 
recognition and pollination‑state assessment. For instance, 
Zhang et al. [5] introduced a flower classification framework 
that incorporates spatial and channel attention mechanisms 
into the Xception network, along with a multi‑loss function 
combining Triplet Loss and Softmax Loss. This design 
effectively minimizes intra‑class variance while maximizing 
inter‑class separability in the feature space, thereby 
improving classification performance. To address the 
challenge of flower detection in cluttered backgrounds, Lodh 
et al. [6] proposed an automated segmentation strategy based 
on color mean and variance. They extracted features using 
color moments and GIST descriptors, followed by 
classification with a support vector machine (SVM), 
achieving significant improvements in recognition accuracy 
over traditional methods. Deng et al. [7] developed a Mask 
R‑CNN–based detection network featuring a 
ResNeXt‑50‑FPN backbone to enhance multi‑scale 
representation. A class‑agnostic mask branch was introduced 
to simplify the training process, and instance segmentation 
was employed to accurately detect citrus flowers, overcoming 
difficulties associated with their small size and dense 
distribution. Xiao et al. [8] improved the YOLOv5 
architecture by deepening feature pyramids and refining path 
aggregation. Anchor boxes were optimized via K‑means++ 
clustering, and the CBAM attention module was incorporated 
to better capture features of tiny floral targets like 
Phalaenopsis buds. Zhang et al. [9], on the other hand, 
proposed a streamlined detection model by replacing the 
YOLOv8n backbone with VanillaNet, reducing model 
complexity while maintaining detection efficacy. The 
integration of the LSKA module into the neck component of 
the architecture strengthens the model's ability to distill 
critical spatial features. Beyond empirical gains in detection 
accuracy, the proposed framework offers theoretical value for 
advancing future research in flower maturity analysis. 
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Recent progress in object detection technologies—
spanning convolutional neural networks (CNNs), model 
pruning strategies, and clustering algorithms—has markedly 
enhanced detection accuracy and efficiency across diverse 
application domains. These approaches have demonstrated 
considerable success in fruit recognition [10, 11], medical 
image analysis [12], and intelligent transportation 
systems [13], and have also inspired advances in apple flower 
detection. For instance, Dias et al. [14] developed a flower 
recognition system robust to clutter and illumination variation, 
employing a pre‑trained CNN for feature extraction from 
fine‑tuned apple flowers images, followed by classification 
via a support vector machine. In subsequent work, Dias et 
al. [15] applied a fully end‑to‑end residual CNN for semantic 
segmentation, fine‑tuned for apple flowers to enhance 
recognition sensitivity, and employed refinement strategies to 
improve segmentation precision and better delineate 
individual floral instances. Wu et al. [16] proposed a 
YOLOv4‑based deep learning algorithm with channel 
pruning, built on the CSPDarknet53 framework. Fine‑tuning 
with a dataset of 2,230 manually annotated apple blossom 
images enabled rapid and precise real‑time detection. Zhang 
et al. [17] introduced a detection network optimized with 
generative modules and pruning‑based inference, 
incorporating data augmentation and automatic deactivation 
of redundant network components. This significantly 
improved both detection accuracy and inference speed. 
Khanal et al. [18] utilized K‑means clustering to identify 
centroids of individual flowers—both open and unopened—
and associate them with floral clusters, facilitating accurate 
floral instance detection. Wang et al. [19] proposed YO‑AFD, 
by embedding a novel ISAT attention mechanism into the C2f 
module to form C2f‑IS, the model markedly enhances 
multi‑scale feature representation and integration. 

While the aforementioned algorithms have demonstrated 
promising performance in handling variations in flower shape 
and size, they often fall short in addressing challenges posed 
by occlusion and overlapping at flower edges. The 
introduction of the DETR algorithm [20] marked a paradigm 
shift in object detection by reframing it as a direct set 
prediction problem. Leveraging the self‑attention mechanism 
of the Transformer architecture [21], DETR predicts object 
categories and bounding boxes in a fully end‑to‑end manner, 
enabling superior preservation of occluded object boundaries 
and thereby enhancing detection accuracy. With the growing 
adoption of DETR, numerous variants have emerged to adapt 
the framework to more diverse and complex scenarios. For 
example, Zhang et al. [22] proposed the DINO model, which 
improves DETR's performance through contrastive denoising 
training, hybrid query selection, and a dual look‑ahead 
mechanism, achieving more robust end‑to‑end detection.  
Ma et al. [23] proposed an enhanced OptiDETR model, 
integrating a Swin Transformer‑based encoder to improve 
feature extraction and capture both local and global context. 
The model introduces an IoU‑aware query selection 
mechanism to prioritize object queries based on their 
localization quality, addressing the challenges of slow 
convergence and small‑object detection in UAV images. 
Although DETR and its variants have achieved considerable 

success in general object detection, autonomous driving, 
video surveillance, and medical image analysis, their 
limitations in small object detection remain a significant 
bottleneck for agricultural applications. Nevertheless, the 
continued evolution of deep learning—particularly the 
incorporation of Transformer architectures into detection 
pipelines—has fueled further innovation in this domain. The 
recently proposed RT‑DETR model [24] retains the core 
advantages of DETR while introducing a high‑efficiency 
hybrid encoder and a minimum uncertainty query selection 
mechanism. This enables end‑to‑end real‑time object 
detection without reliance on non‑maximum suppression, 
while also supporting flexible trade‑offs between detection 
speed and model complexity. These improvements render 
RT‑DETR particularly well‑suited for agricultural scenarios, 
notably in the context of precise apple flower detection. To 
address the specific challenges posed by tiny flower buds, 
occlusion, and dense overlapping of floral structures, we 
propose GLD‑Net—an enhanced detection framework based 
on RT‑DETR, optimized for assessing the maturity status of 
apple flower. The main contributions of our method are as 
follows: pipelines—has fueled further innovation in this 
domain. The recently proposed RT‑DETR model preserves 
the core strengths of DETR while incorporating a 
high‑efficiency hybrid encoder and a minimum uncertainty 
query selection strategy, enabling end‑to‑end real‑time 
detection without reliance on non‑maximum suppression. 
These advances support flexible trade‑offs between speed and 
complexity, making RT‑DETR particularly suitable for 
precision tasks in agriculture, such as apple flower detection. 
To tackle challenges such as tiny buds, occlusions, and dense 
floral overlap, we propose GLD‑Net—an RT‑DETR‑based 
framework optimized for assessing apple flower maturity. 
The main contributions are as follows: 

(1) To better capture both the fine‑grained local features of 
small flower buds and stamens, as well as the global structural 
characteristics of entire flowers, we introduce the GLSA 
module. This module facilitates effective feature fusion and 
enhancement by replacing horizontal convolutions, thereby 
improving the representation of spatial and channel 
information and enriching the descriptive power of feature 
maps. Moreover, by substituting conventional input 
projection mechanisms, GLSA strengthens the contextual 
representation of input features, further promoting efficient 
integration across spatial hierarchies. 

(2) To enhance the model's capacity for representing 
complex scene features, we integrate a Diversified Branch 
Block (DBB) module as an optimized version of the original 
RepC3 architecture. This modification deepens the fusion of 
multi‑level features and substantially improves the model's 
ability to capture intricate visual patterns under diverse and 
challenging environmental conditions. 

(3) To assess the performance of our model for apple 
flower maturity detection, we construct a new benchmark 
dataset named AppleFlowers. It consists of high‑resolution 
images captured in complex orchard environments, 
encompassing a broad range of real‑world conditions such as 
varying lighting, occlusions, and complex backgrounds
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Fig.1. Overall architecture of apple flower maturity detection model 
 

II. GLD‑NET DETECTION MODEL 
To enhance the accuracy and efficiency of apple flower 

maturity detection, we propose an improved detection 
framework built upon the RT‑DETR architecture, as 
illustrated in Fig.1. The overall network is composed of three 
primary components. First, the backbone module extracts rich 
semantic and spatial features through a series of 
convolutional and pooling operations, producing multi‑scale 
feature maps. Next, the neck module refines and aggregates 
these multi‑scale features using upsampling, attention 
mechanisms, and feature fusion strategies to capture both 
high‑level semantics and fine‑grained details. Finally, the 
detection head employs the RT‑DETR decoder to perform 
end‑to‑end prediction of object categories and bounding box 
coordinates, leveraging the integrated features from the neck 
module to enable precise localization and classification. 

To further enhance the model's representational capacity, 
the conventional horizontal convolution layers within the 
neck module are replaced with the GLSA module. This 
substitution significantly improves the encoding of spatial 
and channel‑wise information in the feature maps. In addition, 
the input projection layers are also replaced with GLSA 
modules to strengthen contextual information extraction from 
the input features, thereby promoting more effective semantic 
integration. Furthermore, the model integrates a DBB module 
to improve the original RepC3 structure within the neck. 
Multiple DBB instances are deployed in parallel, each 
comprising a set of heterogeneous convolutional branches 
that process the input features through diverse receptive fields. 
This design facilitates deeper and more comprehensive 
feature fusion, resulting in enhanced feature representations 
that are better suited for complex detection scenarios. 

A.  Global‑to‑local spatial aggregation module 
To enhance the representation of spatial and channel‑wise 

information within feature maps, as well as to improve the 
contextual encoding of input features, we replace three 
conventional convolutional layers in the original 
architecture—including the horizontal convolution and input 
projection components—with the Global‑to‑Local Spatial 
Aggregation (GLSA) module [25]. Unlike standard attention 

mechanisms, the GLSA module features a more sophisticated 
design that enables adaptive channel adjustment—a 
capability rarely observed in conventional implementations. 

The GLSA framework comprises two complementary 
attention units: Global Spatial Attention (GSA) and Local 
Spatial Attention (LSA). Specifically, the input feature set 
{Xi | i ∈ {2, 3, 4}} is evenly divided into two subgroups, 
denoted as X1 

i  and X2 
i , each corresponding to distinct spatial 

feature dimensions. This division allows the model to 
independently capture global structural cues and local 
discriminative details. The first subgroup is processed by the 
GSA module to extract holistic floral representations, while 
the second is passed through the LSA module, which focuses 
on enhancing localized features, such as petal and stamen 
edge characteristics. The outputs of both branches are 
subsequently fused and further refined via a 1×1 
convolutional layer to ensure effective integration and 
dimensional alignment, as illustrated in Fig.2. 

This is done to achieve feature fusion and dimensional 
adaptation. The following formula can mathematically 
express these operations: 

𝑋𝑋𝑖𝑖1, 𝑋𝑋𝑖𝑖2 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑋𝑋𝑖𝑖)             (1) 

𝑋𝑋𝑖𝑖′ = 𝐶𝐶1×1(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐺𝐺(𝑋𝑋𝑖𝑖1), 𝐿𝐿(𝑋𝑋𝑖𝑖2)))     (2)  

Where G indicates global attention and L indicates local 

attention. Xi
'∈R 

H
8 X W8  X 32 represents the output feature map 

after processing and fusion. 
The GSA and LSA modules are described below, focusing 

on their roles in processing local and global spatial features.   
(1) GSA Module: The GSA module is designed to enhance 

long‑range spatial dependencies between pixels across the 
entire image. By capturing such non‑local interactions, GSA 
effectively complements the LSA mechanism, thereby 
enriching the model's ability to represent complex spatial 
structures. This extended spatial awareness plays a crucial 
role in boosting the descriptive power of the learned feature 
representations. The operation of the GSA module can be 
formally defined as follows: 

𝐴𝐴𝐴𝐴𝑡𝑡𝐺𝐺(𝑋𝑋𝑖𝑖1) = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆((𝐶𝐶1𝑥𝑥1(𝑋𝑋𝑖𝑖1)))      (3) 

𝐺𝐺𝑠𝑠𝑠𝑠(𝑋𝑋𝑖𝑖1) = 𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴𝐴𝐴𝑡𝑡𝐺𝐺(𝑋𝑋𝑖𝑖1) ⊗ 𝑋𝑋𝑖𝑖1) + 𝑋𝑋𝑖𝑖1     (4) 
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Fig.2. GLSA module structure diagram. 
 

Global attention weights across the feature maps are 
generated using a 1×1 convolution followed by Softmax 
normalization, effectively capturing the spatial distribution of 
salient features. These weights, denoted as AttG ( X1 

i ), are 
applied to the input features via element‑wise multiplication, 
enabling the network to selectively emphasize informative 
regions. The reweighted features are subsequently passed 
through a multi‑layer perceptron (MLP), which consists of 
two fully connected layers separated by a normalization layer 
and a ReLU activation. The first layer expands the feature 
dimensionality by a factor of two to enrich the representation, 
while the second projects it back to the original dimension to 
ensure consistency in the output feature space. Finally, a 
residual connection adds the transformed features back to the 
original input, facilitating effective information fusion. 
Through this mechanism, the GSA module constructs an 
attention map G that not only preserves the intrinsic structure 
of the input feature map X 1 

i , but also integrates global 
contextual cues highlighted by the attention mechanism. This 
integration significantly enhances the model's capacity to 
interpret complex visual scenes and supports more accurate 
inference in challenging vision tasks. 

(2) The LSA module is specifically designed to enhance 
the detection of small objects by effectively capturing 
fine‑grained local spatial features within the feature maps. To 
compute the local spatial attention response tensor L ∈

 R 
H
8 X W8  X 32, the module takes the input feature map X2 

i  and 
applies a series of operations tailored to preserve detailed 
spatial cues.  

𝐴𝐴𝐴𝐴𝐴𝐴𝐿𝐿 (𝑋𝑋𝑖𝑖2) = 𝜎𝜎(𝐶𝐶1×1(𝑋𝑋𝑐𝑐(𝑋𝑋𝑖𝑖2)) + 𝑋𝑋𝑖𝑖2))      (5) 

𝐿𝐿 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐿𝐿 (𝑋𝑋𝑖𝑖2) ⊙ 𝑋𝑋𝑖𝑖2 + 𝑋𝑋𝑖𝑖2           (6) 

The component Fc consists of a sequence of three 1×1 
convolutional layers followed by three 3×3 depthwise 
convolutional layers, collectively projecting the feature 
channels to a fixed dimensionality of 32. Within this 
framework, AttL refers to the local attention mechanism, σ 
denotes the Sigmoid activation function, and ⊙ signifies 
element‑wise multiplication. 

The GLSA module integrates both global and local spatial 
attention mechanisms to holistically capture diverse and 
discriminative visual cues across varying spatial scales. This 
dual‑attention design enhances the representational capacity 
of the model, particularly improving its sensitivity to subtle 
and small‑scale features. In the context of the AppleFlowers 

dataset, the strengthened local spatial attention mechanism 
enables the model to better capture fine‑grained details and 
edge structures, which are critical for accurate small object 
detection. Moreover, by employing a channel‑split strategy, 
the GLSA module effectively balances computational 
overhead with representational fidelity, facilitating 
high‑precision feature extraction without compromising 
inference efficiency. 

B. Diversified convolutional branch module 
To enhance the expressiveness of feature representations, 

we propose a novel module for the feature pyramid network 
(FPN), termed the Diversified Branch Block Convolutional 
(DBBC3) [26], which improves the conventional RepC3 
module. The core component DBB, is specifically designed 
to improve the representational richness of FPNs by 
introducing a set of heterogeneous convolutional branches. 
Drawing inspiration from the Inception architecture [27‑28], 
DBB employs a multi‑path topology to expand the 
representational capacity of the feature space, akin to the 
human visual system's capability to process multi‑scale 
information in parallel. By aggregating convolutional paths 
of varying receptive fields and computational complexities, 
DBB strengthens the ability of a single convolutional layer to 
capture diverse spatial patterns and semantic contexts. The 
architectural design of DBBC3 is illustrated in Fig.3. 
Consider an input feature map I composed of C channels. 
DBB aims to convert this input into an output feature map O 
while promoting feature diversity. The DBB process can be 
expressed as: 

𝑂𝑂 = ℱ(𝐼𝐼)                (7) 

In this context, F represents a sequence of convolutions and 
nonlinear operations within DBB. 

The DBBC3 module, a vital element of the Feature 
Pyramid Network, enables the fusion of multi‑scale features 
through repeated applications of DBB. This design includes 
an input channel C1, an output channel C2, and an 
intermediate hidden channel C', with e denoting the 
expansion factor, calculated as follows： 

𝐶𝐶′ = int(𝐶𝐶2 × 𝑒𝑒)             (8) 

The DBBC3 module contains n DBBs, each designed to 
progressively refine and integrate feature maps. The 
operation within the k‑th DBB can be described as follows:  

𝐼𝐼out
(𝑘𝑘) = ℱ𝑘𝑘(𝐼𝐼in

(𝑘𝑘))             (9) 
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Fig.3. DBBC3 module structure diagram. 
 
I(k) 

in  denotes the input feature maps to the k‑th DBB while I(k) 
out  

represents the corresponding output feature maps. The 
transformation functions within the k‑th DBB are represented 
by Fk, which include both convolutional operations and 
nonlinear activations. By sequentially applying these 
transformations, the DBB module converts the input feature 
maps into their output counterparts. 

In the DBBC3 module, feature integration is carried out by 
successively combining and enhancing the output feature 
maps from multiple DBBs. These hierarchically organized 
outputs are subsequently unified to generate a comprehensive 
and informative feature representation, providing a solid 
foundation for subsequent apple flower detection tasks. 
While the integration of DBBs increases model complexity 
during the training phase, this overhead is mitigated via 
structural reparameterization, which converts the 
multi‑branch structure into an equivalent single convolutional 
operation at inference. This approach allows the DBBC3 
module to harness diverse and informative features during 
training, while maintaining high inference efficiency—a vital 
characteristic for precision agriculture tasks such as apple 
flower maturity detection. 

C. Loss Function 
The formulation of an effective loss function is a critical 

component in achieving accurate detection of apple flower 
maturity during training. In this study, the total loss function 
Ltotal comprises three essential components: the bounding box 
regression loss Lbox, the classification loss Lcls, and the L1 
norm loss LL1. These elements collectively guide the model 
to refine spatial localization, enhance class discrimination, 
and enforce numerical stability. The complete loss 
formulation is detailed in Equation (10). 

𝐿𝐿total = 𝐿𝐿box + 𝐿𝐿cls + 𝐿𝐿L1         (10) 

The bounding box regression component adopts the 
Generalized Intersection over Union (GIoU) loss, which 
extends beyond conventional overlap metrics by 
incorporating both the spatial intersection and the geometric 
alignment—specifically, the relative shape and size—of 
predicted and ground truth boxes. This design is particularly 
well‑suited for detecting small‑scale objects such as apple 
flowers, which are often embedded within visually complex 

backgrounds. Owing to its sensitivity to geometric 
discrepancies, the GIoU loss maintains robust localization 
performance across varying flower morphologies, ensuring 
high detection accuracy even under shape deformations. The 
formulation of the GIoU loss is provided as follows: 

  LGIoU = 1 - IoU +  1
2

( Δw
W+ϵ

 + Δh
H+ϵ

)        (11) 

In this formulation, IoU represents the Intersection over 
Union, while Δw and Δh correspond to the differences in 
width and height between the predicted and ground truth 
boxes, respectively. The variables W and H denote the width 
and height of the ground truth box, and ϵ is a small constant 
introduced to ensure numerical stability. 

The detection of apple flower maturity is framed as a 
binary classification task. To quantify the classification 
performance, the cross‑entropy loss function is employed. A 
low loss value is achieved when the predicted probability 
closely aligns with the true label, whereas a significant 
discrepancy between the predicted and actual labels results in 
a higher loss. The formula for calculating the classification 
loss is as follows: 

𝐿𝐿cls = −(𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 (𝑝𝑝) + (1 − 𝑦𝑦)𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑝𝑝))   (12) 

Here, y represents the true label, typically taking values of 0 
or 1. The variable p indicates the probability assigned by the 
model for the sample belonging to category 1, while 1−p 
represents the probability of the sample being classified as 
belonging to category 0. 

The L1 norm loss quantifies the absolute difference 
between the predicted and actual values. In the context of 
apple flower maturity detection, the L1 loss is employed for 
bounding box regression, where it aids in predicting the 
spatial location of the object. The formula for the L1 loss is 
as follows: 

𝐿𝐿L1 = ∑ |𝑁𝑁
𝑖𝑖=1 𝑦𝑦𝑖𝑖 − 𝑦𝑦

^
𝑖𝑖|           (13) 

The integration of these three loss functions endows the 
model with the ability to effectively adapt to diverse 
conditions, maintaining high accuracy and robustness in 
detecting variations across different lighting environments, 
background complexities, and flower developmental stages. 

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 3895-3907

 
______________________________________________________________________________________ 



 
(a) Immature apple flower                          (b) Imature apple flower                       (c) Apple flower bud 

Fig.4. Examples of the maturity of some apple flowers. 
 

TABLE I 
SUMMARY OF STATISTICS ON THE NUMBER OF APPLE FLOWERS IN DIFFERENT MATURITY STATES. 

Area Immature apple flowers Mature apple flowers All 

Training 1320 1469 2789 

Val 633 634 1267 

Total 1953/48.15% 2103/51.85% 4056 

III. DATASET 
This study introduces the AppleFlowers dataset, 

specifically designed for detecting the maturity of apple 
flower under natural environmental conditions. Serving as a 
valuable resource for research in intelligent agriculture, the 
dataset is characterized by its complex and dynamic 
environments, diverse floral morphologies, and wide 
pplicability. By utilizing the AppleFlowers dataset in apple 
flower detection, this work aims to facilitate the development 
of more advanced intelligent orchard management systems, 
thereby contributing to the advancement of smart orchard 
technology. 

A. Characteristic analysis of apple flowers 
The petals and stamens of apple flowers exhibit distinct 

differences in both color and texture. Typically, apple flowers 
consist of five white petals arranged in a plum‑flower pattern. 
In the early stages, the buds are pink or light pink, with the 
petals remaining closed. During the unripe phase, the anthers 
appear pale yellow and are clustered together. As the flowers 
mature, the anthers gradually transition from pale yellow to 
orange, with their arrangement shifting from a clustered form 
to a radiating pattern, extending outward in a chuan‑like 
configuration, as depicted in Fig.4. 

B. AppleFlowers dataset 
To assess the changes in the maturity of apple flowers from 

a multi‑scale and multi‑modal perspective and to evaluate the 
performance of models in detecting and classifying apple 
flower maturity, we have developed a novel dataset, 
AppleFlowers. The dataset was constructed using an 
intelligent monitoring system designed to simulate an orchard 
environment. Images were captured from multiple 
perspectives to ensure the dataset's applicability and diversity. 
The following section provides a detailed description of the 

image acquisition process and the construction of the 
AppleFlowers dataset. 

The specific parameters for image capture are as follows: 
Location: Zhangjiazhuang Village, Yuezhuang Town, 

Yiyuan County, Zibo City, Shandong Province (118°29'N, 
36°23'E) 

Apple cultivar: Red Fuji 
Image capture period: Late April to early May 2024 
Capture hours: 06:00 to 22:00 
Capture device: HUAWEI Nova 7 smartphone 
Image resolution: 3456 x 4608 pixels and 4608 x 3456 

pixels 
Storage format: JPG 
All images were captured in the natural environment of the 

apple orchard, with the surrounding soil, sky, and trees 
providing the background. A variety of photographic 
techniques were utilized, including front lighting, 
backlighting, close‑up shots, long‑range perspectives, as well 
as downward and upward angles. The dataset covers a broad 
spectrum of natural conditions, including clear skies, overcast, 
fog, rain, post‑rain, daytime, and nighttime scenes. 

C. Dataset production 
A total of 1,286 raw images were initially collected. After 

a rigorous screening process to remove duplicates and images 
with excessively blurred petal edges, 1,000 images were 
retained. These images were annotated using LabelImg 
software. A selection of original images from the dataset is 
shown in Fig.5. The dataset was then randomly divided into 
training and test sets at a 7:3 ratio. The distribution of flowers 
with different labels in both sets was analyzed. The statistical 
breakdown of flower labels in the training and test sets is 
presented in Table 1. The distribution of immature and 
mature apple flowers in the dataset is 48.15% and 51.85%, 
respectively.
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a Sunny Day b Rainy Day c Rainy night 

   
d Foggy day e Cloudy day f Night after rain 

   
g Clear night h Backlight i Frontlight 

Fig.5. Some sample images from AppleFlowers 

IV. EXPERIMENTS AND RESULTS 
To evaluate the effectiveness of RT‑DETR in detecting the 

maturity state of apple flowers, a series of experiments were 
conducted. We first describe the experimental platform and 
detail the model's implementation during both training and 
testing. The model was trained on the AppleFlowers dataset, 
and the best‑performing version was selected for evaluation 
on the test set, followed by a comprehensive analysis. Finally, 
under identical conditions, several state‑of‑the‑art detection 
models were evaluated and compared, with a subsequent 
analysis of the differences observed in their performance. 

A. Experimental platform and evaluation indicators 
All experiments in this study were conducted on an 

identical server system configured with Ubuntu 18.04 
(64‑bit), an NVIDIA GeForce RTX 3090 24GB GPU, and a 
CUDA V11.4 environment. The models were developed 
using Python 3.8 and PyTorch 1.10.0, with the model 
components built using the MMdetection v3.0.0 library. 

The initial learning rate was set to 0.0001, with a weight 
decay of 0.0001 to mitigate overfitting. To optimize the 
network parameters and efficiently minimize the loss 
function, the AdamW optimizer was employed with a 
momentum of 0.9. The RT‑DETR model was trained for 100 
epochs. The final precision‑recall curve for the model, based 
on the AppleFlowers dataset, are illustrated in Fig.6. 

In this experiment, precision and recall, commonly used 
metrics for binary classification, were employed to assess the 

efficiency of the detection model. Precision indicates the 
proportion of true positives among predicted positives, as 
defined in Equation (14), while recall measures the 
proportion of actual positives correctly identified, as 
described in Equation (15). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

× 100%            (14) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

× 100%             (15) 
TP is the number of true positive examples, FP is the number 
of false positive examples, FN is the number of false negative 
examples, and TN is the number of true negative examples. 

To comprehensively evaluate the model's detection 
performance, three key metrics were additionally employed 
in this study: Average Precision (AP), Average Recall (AR), 
and mean Average Precision (mAP). These were computed 
using Equations (16), (17), and (18), respectively, under 
specified IoU thresholds. 

AP = 1
𝑁𝑁
∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 𝑁𝑁
𝑘𝑘=1          (16)  

           AR = 1
N
∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 101
𝑘𝑘=1           (17) 

         mAP = 1
𝑁𝑁
∑ AP𝑖𝑖 𝑁𝑁
𝑖𝑖=1             (18) 

Here, N is the number of classes and APi denotes the average 
precision for the i‑th class. The mAP is computed as the mean 
AP across all classes. In this study, N = 2, reflecting the two 
maturity stages of apple flowers. 
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Fig.6. Precision‑recall curve. 
 

TABLE II 
EVALUATION RESULTS OF DETECTING TWO TYPES OF MATURE STATES. 

Type Precision Recall mAP50 mAP50‑95 

Immature 83.7% 82.2% 87.1% 76.7% 

Mature 92.8% 74.3% 84.8% 72.3% 

A detection is considered valid if the predicted class of the 
apple flower's maturity state is correct and the IoU exceeds a 
predefined threshold, which was set to 0.5 in this study. The 
model's evaluation results for detecting the two distinct 
maturity stages in the AppleFlowers dataset are summarized 
in Table 2. The corresponding detection performance for each 
maturity category is visually illustrated in Fig.7. 

B. Ablation experiment 
In order to verify the effectiveness of the GLSA module 

and the DBBC3 module, ablation experiments were 
conducted in this section to compare the effects of GLSA and 
DBBC3 based on the original backbone network, which 
further verified the effectiveness of the two methods. The 
results are shown in Table 3.  

As detailed in Table 3, the baseline RT‑DETR model—
without any additional architectural modifications—achieved 
mAP scores of 79.9% at IoU=0.5 and 67.4% across IoU 
thresholds from 0.5 to 0.95, with a computational complexity 
of 56.9 GFLOPs. Upon replacing the original convolutional 
layers in the Neck with the GLSA module, detection 
performance showed a marked improvement: mAP50 
increased by 3.1% and mAP50–95 by 2.6%. Further 
performance gains were observed with the addition of the 
DBBC3 module, yielding a 5.1% rise in mAP50 and a 6.7% 
increase in mAP50–95, thereby validating the module's 
effectiveness in enhancing feature representation. The 
integration of both GLSA and DBBC3 into the baseline 
architecture resulted in a substantial boost in detection 
accuracy, achieving mAP50 and mAP50–95 scores of 86.0% and 
74.5%, respectively. These findings affirm the efficacy of the 
proposed architectural enhancements and highlight the 
improved discriminative capacity of the modified RT‑DETR 
model in classifying apple flower maturity states. 

In terms of model complexity, the baseline configuration 
comprised 19.87 million parameters. Incorporating the GLSA 
module increased the parameter count by 2.08 million and 

added 6.8 GFLOPs to the computational load, primarily 
because of the attention mechanisms and graph convolution 
operations intrinsic to GLSA. These components introduce 
additional computational steps during both forward and 
backward propagation to facilitate more abstract and 
context‑aware feature encoding. Notably, the integration of 
the DBBC3 module incurred no further increase in parameter 
count or computational complexity. However, its synergy 
with GLSA contributed to a significant enhancement in 
model performance, suggesting a complementary interaction 
that supports more robust object detection under varied and 
complex orchard conditions. 

C. Algorithm comparison 
To further assess the detection performance of the 

improved RT‑DETR model, a comprehensive comparative 
analysis was conducted against a suite of both classical and 
state‑of‑the‑art object detection algorithms. This evaluation 
encompassed two‑stage detectors—including Faster R‑CNN 
[29], RetinaNet [30], Cascade R‑CNN [31], EfficientNet [32], 
FCOS [33], YOLOF [34], and DDQ [35]—as well as leading 
one‑stage models, namely YOLO v10 [36] and YOLO 
v11[37]. For the YOLO series, due to their smaller number of 
layers, the YOLO v10l and YOLO v11l models were selected, 
enabling a more balanced comparison in terms of parameters 
and complexity. All models were trained and evaluated under 
identical experimental conditions and computational 
environments to ensure consistency and fairness. 

As shown in Table 4, the proposed model demonstrates 
outstanding performance across key evaluation metrics, 
achieving mAP50, mAP75, and mAP50–95 scores of 86.0%, 
79.3%, and 74.5%, respectively, thereby substantially 
outperforming existing state‑of‑the‑art detectors. Compared 
to representative two‑stage models, GLD‑Net surpasses the 
EfficientNet by 5.4% in mAP50 and achieves a notable 15.5% 
improvement in AP over the anchor‑free FCOS model. In 
addition, relative to the advanced one‑stage YOLOv11l. 
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a Immature apple flowers 

    
b Mature apple flowers 

Fig.7. Apple flowers maturity status detection results 
 

TABLE III 
THE INFLUENCE OF GLSA AND DBBC3 ON EXPERIMENTAL RESULTS. 

Model GLSA DBBC3 Precision Recall mAP50 mAP50‑95 Params Flops/GFlpos 

RT‑DETR 

  82.6% 78.8% 79.9% 67.4% 19.87M 56.9 

  86.1% 78.1% 83.0% 70.0% 21.95M 63.7 

  82.2% 79.1% 85.0% 74.1% 19.87M 56.9 

Ours   88.2% 78.2% 86% 74.5% 21.95M 63.7 

TABLE IV 
THE DETECTION RESULTS OF EACH DETECTION MODEL 

Types Model AP(%) AR(%) ARmax=100(%) mAP50(%) map75(%) mAP50‑95(%) 

Two-stage 

Faster R‑CNN 68.4 70.6 54.7 72 48 43.9 

RetinaNet 71.5 57.0 63.3 76.7 53.7 48.4 

Cascade R‑CNN 71.6 76.2 62.8 79.4 57.1 51.2 

EfficientNet 74.3 68.1 68.1 80.6 60 52.9 

FCOS 72.7 55.9 63.3 78.2 48.1 46.4 

YOLOF 68.1 76.3 65.5 76.5 53.8 49.2 

DDQ 70.6 74.9 83.6 76.7 65.5 61.1 

One-stage 

YOLO v10l 84.4 79.2 79.6 85.9 73.1 66.4 

YOLO v11l 84 79.7 82.6 85.5 76.2 71.8 

Ours 88.2 78.2 80.2 86 79.3 74.5 
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TABLE Ⅴ 
COMPARISON OF NUMBER OF PARAMETERS AND COMPUTATIONAL OVERHEAD 

Model Faster R‑CNN RetinaNet Cascade R‑CNN EfficientNet FCOS YOLOF DDQ YOLO v10l YOLO v11l Ours 

Params/M 41.37 36.35 119 54.4 32.11 42.36 48.3 25.71 25.3 21.95 

GFlops 91.47 81.74 69.15 18.36 78.58 39.19 119 126.3 87.3 63.7 

     
Ⅰ apple flower bud image Ⅱ Overlapping apple flower 

image 
Ⅲ Upward‑looking apple 

flower image 
Ⅳ Distant view apple flower 

image 
Ⅴ Nighttime apple flower 

image 
a) Original apple flower images 

     
b) Ours 

     
c) Faster R‑CNN 

     
d) RetinaNet 

     
e) Cascade R‑CNN 
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f) EfficientNet 

     
g) FCOS 

     
h) YOLOF 

     
i) DDQ 

     
j) YOLO v10l 

     
k) YOLO v11l 

Fig.8. Comparison of detection results on the AppleFlowers dataset.  
Note: In the two‑stage model images, red boxes indicate mature apple flowers, while green boxes denote immature apple flowers. In the one‑stage model 
image, the pink boxes represent mature apple flowers, while the red boxes represent immature apple flowers. 
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detector, GLD‑Net achieves improvements of 4.2% in AP 
and 0.5% in mAP50. In terms of ARmax=100, its performance 
trails the leading DDQ model by a marginal 3.4%. 

Although detection accuracy is paramount, model 
efficiency—characterized by parameter count and 
computational complexity—plays a crucial role in the 
practical applicability of detection frameworks. At an input 
resolution of 640×640, Table 5 summarizes the parameter 
count and computational overhead for each model. GLD‑Net 
contains only 21.95 million parameters, offering superior 
parameter efficiency relative to other models. It further 
maintains a low computational cost of 63.7 GFLOPs, 
suggesting modest resource demands while preserving high 
detection accuracy. 

The comparative experimental results highlight that our 
model not only maintains high detection accuracy but also 
achieves a low parameter count and computational 
complexity, making it highly suitable for deployment in field 
environments with constrained computational resources.  
Fig.8 presents a visual comparison of the detection results 
produced by various state‑of‑the‑art algorithms on the 
AppleFlowers dataset, covering challenging scenarios such 
as occlusion, upward‑looking views, long‑shot perspectives, 
and nighttime conditions. While our model demonstrates 
promising performance in the current experiment, future 
work will focus on further optimizing the model's speed and 
efficiency to better accommodate the requirements of 
real‑time or near‑real‑time detection applications. 

V. CONCLUSION 
This study addresses the challenge of detecting the 

maturity states of apple flower by proposing an optimized 
RT‑DETR‑based detection model. By integrating the GLSA 
and DBBC3 modules, the model significantly enhances both 
detection accuracy and robustness. The GLSA module 
enriches the feature maps by improving channel and spatial 
information representation, while also providing contextual 
information for the input features. In parallel, the DBBC3 
module enhances the representational capacity of individual 
convolutional layers by integrating multiple convolutional 
branches with varying scales and complexities. Experimental 
results on the AppleFlowers dataset demonstrate the model's 
high precision and recall for detecting apple flower maturity 
states, achieving AP and mAP50 scores of 88.2% and 86%, 
respectively. While the model has shown notable 
improvements in detection accuracy, future work could 
explore further optimization, focusing on lightweight design 
and accelerated performance to meet the demands of 
real‑time applications. With ongoing advancements in deep 
learning and the modernization of agriculture, the proposed 
model holds substantial promise for advancing precision 
agriculture and intelligent detection, offering significant 
potential for future research and deployment. 
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