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Abstract—Let G be a simple connected graph with n vertices
and m edges. In this article, we introduce the concept of the
general degree product matrix and the general degree product
energy of a graph G and obtain the bounds for the general
degree product eigenvalues and general degree product energy
of any connected graph G. Further, we obtain the general degree
product energy of a new family of graphs from an existing base
graph, such as the duplication graph, R-graph, and middle
graph.

Index Terms—Degree product matrix, duplication graph, R-
graph, middle graph.

I. INTRODUCTION

GRAPHS considered here are simple, finite, undirected,
and connected with the vertex set VG = V (G) and edge

set EG = E(G). Motivated by work on the degree product
energy of graphs [12], we define the general degree product
matrix of G denoted by Dα(G) as the square matrix of order
n whose (i, j)th entry is given by

Dα(G)ij =

{
(didj)

α; if i ̸= j

0; otherwise,

for any real number α.
For a graph G, the general degree product characteristic

polynomial of G is f(Dα(G), x) = det(xIn − Dα(G)) and
its zeros are the general degree product eigenvalues of G.
DαE(G) represents the general degree product energy, which
is the sum of every eigenvalue of the general degree product
matrix’s absolute values.

The first Zagreb energy of graphs of various graph prod-
ucts are discussed in article [9]. The results on the spectral
properties and the determinant of the ISI matrix are derived
in [7]. Atom bond connectivity index for graph with self-
loops and its application are discussed in [14].

The Laplacian and signless Laplacian adjacency spectra
of the R-edge neighborhood corona, the R-vertex neighbor-
hood corona, R-edge corona, and R-vertex corona for an
arbitrary graph H and a regular graph G are discussed in
2015 [8], according to G and H’s corresponding spectra (as
well as some other quantities). The duplication edge corona,
duplication neighborhood corona, and duplication corona of
two graphs have been demonstrated, and their adjacency
spectrum was examined by Adiga et al. [1] in 2018.
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Let A be the block-form description of the matrix of order
n.

A =

N11 .... N1l
...

. . .
...

Nl1 .... Nll


n×n

,

where for any 1 ≤ i, j ≤ l and n = n1+ · · ·+nl, the blocks
Nij are ni×nj matrices. A square matrix A has an equitable
partition D if each diagonal block has square order and each
block of the partitioned matrix has constant row sums. An
equitable partition is represented by a quotient matrix B
of a square matrix A, a matrix with constant row sums of
the corresponding blocks of A as its entries. The theory of
graph spectra depends on equitable partitions because of the
following result.

Theorem I.1. [5] Let A be a real symmetric matrix and B
is its quotient matrix, then the characteristic polynomial of
A is divided by the characteristic polynomial of B.

The rest of the paper is organized as follows: In Section II,
a few preliminary results on the bounds for the eigenvalues
and energy of the general degree product matrix are dis-
cussed. Further, the expression for the general degree product
energy of a k-regular graph, path, and complete bipartite
graphs are obtained in the same section. The results on the
general degree product energy of a new family of graphs,
which are obtained by taking the base graph as the R-graph,
duplication graph, and middle graph, are presented in Section
III.

II. PRELIMINARY RESULTS

In this section, we first obtain the expression for the
general degree product energy of a few standard graphs.
Further, we obtain some results related to the eigenvalues
and energy of the general degree product matrix.

Theorem II.1. Let G be a k-regular graph of order n. Then

DαE(G) = 2k2α(n− 1).

Proof: As Dα(G) = k2αA(Kn), the result follows by
noting that

Spec(Dα(G)) =
(
−k2α k2α(n− 1)
n− 1 1

)
.

Theorem II.2. Suppose that Pn is a path graph on n
vertices. Then

DαE(Pn) = 1+4α(n−3)+
√

4α+1(n− 1) + (1 + 4α(n− 3))2.

Proof: Observe that Dα(Pn) can be expressed as,

Dα(Pn) =

(
A(K2) 2αJ2,n−2

2αJn−2,2 4αA(Kn−2)

)
.
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By performing row operations on det(xIn − Dα(Pn)) and
solving quotient matrix of Dα(Pn), we get

Spec(Dα(Pn)) =

(
−1 −4α ζ1 ζ2
1 n− 3 1 1

)
,

where (ζ1, ζ2) =
1+4α(n−3)±

√
4α+1(n−1)+(1+4α(n−3))2

2 .

Theorem II.3. Suppose that Kn1,n2 is a complete bipartite
graph on n vertices. Then
DαE(Kn1,n2 ) = (n2 − 1)n2α

1 + (n1 − 1)n2α
2

+
√

4(n1n2)2α(n1 + n2 − 1) + ((n2 − 1)n2α
1 + (n1 − 1)n2α

2 )2.

Proof: The general degree product matrix of Kn1,n2 is
expressed as,

Dα(Kn1,n2
) =

(
n2α
2 A(Kn1) (n1n2)

αJn1,n2

(n1n2)
αJn2,n1

n2α
1 A(Kn2

)

)
.

By performing row operations on det(xIn − Dα(Kn1,n2
))

and solving quotient matrix of Dα(Kn1,n2
), we get

Spec(Dα(Kn1,n2
)) =

(
−n2α

2 −n2α
1 ζ1 ζ2

n1 − 1 n2 − 1 1 1

)
,

where (ζ1, ζ2) =
1
2
((n2 − 1)n2α

1 + (n1 − 1)n2α
2

+
√

4(n1n2)2α(n1 + n2 − 1) + ((n2 − 1)n2α
1 + (n1 − 1)n2α

2 )2).

The following lemma is one of the basic properties of gen-
eral degree product eigenvalues. We omit the proof because
it is straightforward.

Lemma II.1. Suppose ζ1 ≥ ζ2 ≥ · · · ≥ ζn are the general
degree product eigenvalues of graph G with n vertices. Then

(i)
n∑

i=1

ζi = 0.

(ii)
n∑

i=1

ζ2i = 2N , where N =
∑
i<j

(didj)
2α.

Lemma II.2 (Cauchy-Schwartz inequality). If
(α1, α2, . . . , αt) and (β1, β2, . . . , βt) are real t-vectors
then, (

t∑
k=1

αkβk

)2

≤

(
t∑

k=1

α2
k

)(
t∑

k=1

β2
k

)
.

In all the results discussed below, N =
∑
i<j

(didj)
2α. Using

the Cauchy-Schwarz inequality, the bound for the largest
general degree product eigenvalue is given in the following
theorem.

Theorem II.4. Let G be any graph with n vertices. Then

ζ1 ≤
√

2N (n− 1)

n
.

Proof. Choosing αi = 1, βi = ζi for i = 2, 3, . . . , n, in
the Lemma II.2, we get(

n∑
i=2

ζi

)2

≤ (n− 1)
n∑

i=2

ζ2i . (1)

From Lemma II.1, we know
n∑

i=2

ζi = −ζ1 and
n∑

i=2

ζ2i =

−ζ21 + 2N .
Then Eq. (1) becomes

(−ζ1)
2 ≤ (n− 1)(2N − ζ21 )

ζ1 ≤
√

2N (n− 1)

n
.

A few further bounds for the general degree product energy
of graphs are discussed below.

Theorem II.5. Let G be any graph with n vertices. Then
√
2N ≤ DαE(G) ≤

√
2nN .

Proof: Replacing αi = 1 and βi = |ζi| in the Lemma
II.2, we get (

n∑
i=1

|ζi|

)2

≤ n
n∑

i=1

ζ2i

(DαE(G))2 ≤ 2nN
DαE(G) ≤

√
2nN

Now, (DαE(G))2 =

(
n∑

i=1

|ζi|
)2

≥
n∑

i=1

|ζi|2 = 2N ,

DαE(G) ≥
√
2N .

Theorem II.6. Let G be any graph with n vertices, and ∆ be
the absolute value of the determinant of the general degree
product matrix Dα(G). Then,√

2N + n(n− 1)∆
2
n ≤ DαE(G) ≤

√
2nN .

Proof: Let

(DαE(G))2 = (
n∑

i=1

ζi)
2 = 2N +

∑
i̸=j

|ζi||ζj |. (2)

Since the geometric mean is smaller than the arithmetic mean
for non-negative numbers,

1

n(n− 1)

∑
i̸=j

|ζi||ζj | ≥

∏
i̸=j

|ζi||ζj |

 1
n(n−1)

=

n∏
i=1

|ζi|
2
n

= ∆
2
n . (3)

Consider,

T =
n∑

i=1

n∑
j=1

(|ζi| − |ζj |)2

= 4nN − 2(DαE(G))2

Since T ≥ 0,

4nN − 2(DαE(G))2 ≥ 0.

Hence,

DαE(G) ≤
√
2nN . (4)

Combining Equations (2), (3), and (4), we obtain the lower
and upper bounds.

A few results that are useful for proving further results on
the bounds of the general degree product energy are given
below.

Theorem II.7. [11] Suppose αk and βk, 1 ≤ k ≤ t are
non-negative real numbers. Then

t∑
k=1

α2
k

t∑
k=1

β2
k ≤ 1

4

(√
P1P2

Q1Q2
+

√
Q1Q2

P1P2

)2(
t∑

k=1

αkβk

)2

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 3908-3915

 
______________________________________________________________________________________ 



where P1 = max
1≤k≤t

(αk); P2 = max
1≤k≤t

(βk); Q1 = min
1≤k≤t

(αk)

and Q2 = min
1≤k≤t

(βk).

Theorem II.8. [10] Let αk and βk, 1 ≤ k ≤ t are positive
real numbers. Then

t∑
k=1

α2
k

t∑
k=1

β2
k −

(
t∑

k=1

αkβk

)2

≤ t2

4
(P1P2 −Q1Q2)

2

where P1 = max
1≤k≤t

(αk); P2 = max
1≤k≤t

(βk); Q1 = min
1≤k≤t

(αk)

and Q2 = min
1≤k≤t

(vk).

Theorem II.9. [2] Let αk and βk, 1 ≤ k ≤ t are non-
negative real numbers. Then∣∣∣∣∣t

t∑
k=1

αkβk −
t∑

k=1

αk

t∑
k=1

βk

∣∣∣∣∣ ≤ χ(t)(Q− P )(S −R).

where P , Q, R and S are real constants, that for each k,
1 ≤ k ≤ t, P ≤ αk ≤ Q and R ≤ βk ≤ S. Further,
χ(t) = t

⌈
t
2

⌉ (
1− 1

t

⌈
t
2

⌉)
.

Theorem II.10. [4] Let αk and βk, 1 ≤ k ≤ t be non-
negative real numbers. Then

t∑
k=1

β2
k +KL

t∑
k=1

α2
k ≤ (K + L)

(
t∑

k=1

αkβk

)
,

where K and L are real constants, so that for each k, 1 ≤
k ≤ t, holds Kαk ≤ βk ≤ Lαk.

Theorem II.11. For any graph G with n vertices. Then

DαE(G) ≥
√

2nN − n2

4
(ζ1 − ζmin)2

where ζ1 = ζmax = max
1≤i≤n

|ζi| and ζmin = min
1≤i≤n

|ζi|.

Proof: For Dα(G), let ζ1, ζ2, . . . , ζn be its eigenvalues.
According to Theorem II.8, we assume that αi = 1 and
βi = |ζi|, this implies

n∑
i=1

12
n∑

i=1

|ζi|2 −

(
n∑

i=1

|ζi|

)2

≤ n2

4
(ζ1 − ζmin)

2

2nN − (DαE(G))2 ≤ n2

4
(ζ1 − ζmin)

2

DαE(G) ≥
√
2nN − n2

4
(ζ1 − ζmin)2.

Theorem II.12. If Dα(G) does not have zero as an eigen-
value, then

DαE(G) ≥
2
√
2nN

√
ζ1ζmin

ζ1 + ζmin

where ζ1 = ζmax = max
1≤i≤n

|ζi| and ζmin = min
1≤i≤n

|ζi|.

Proof: Let Dα(G) have eigenvalues ζ1, ζ2, . . . , ζn. As-
suming αi = |ζi| and βi = 1, we can infer from Theorem

II.7

n∑
i=1

|ζi|2
n∑

i=1

12 ≤ 1

4

(√
ζ1

ζmin
+

√
ζmin

ζ1

)2(
n∑

i=1

|ζi|

)2

2nN ≤ 1

4

(
(ζ1 + ζmin)

2

ζ1ζmin

)
(DαE(G))2

DαE(G) ≥ 2
√
ζ1ζmin

√
2nN

ζ1 + ζmin
.

Theorem II.13. Let G be a graph of order n and ζ1 ≥ ζ2 ≥
· · · ≥ ζn be the eigenvalues of Dα(G). Then

DαE(G) ≥
2N + nζ1ζmin

ζ1 + ζmin

where ζ1 = ζmax = max
1≤i≤n

|ζi| and ζmin = min
1≤i≤n

|ζi|.

Proof: Suppose βi = |ζi|, ui = 1, L = |ζ1|, and K =
|ζmin|. Theorem II.10 yields:

n∑
i=1

|ζi|2 + ζ1ζmin

n∑
i=1

12 ≤ (ζ1 + ζmin)
n∑

i=1

|ζi|

2N + nζ1ζmin ≤ (ζ1 + ζmin)DαE(G)

DαE(G) ≥ 2N + nζ1ζmin

ζ1 + ζmin
.

Theorem II.14. Let G be a graph of order n and ζ1 ≥ ζ2 ≥
· · · ≥ ζn be the eigenvalues of Dα(G). Then

DαE(G) ≥
√
2nN − α(n)(ζ1 − ζmin)2,

where ζ1 = ζmax = max
1≤i≤n

|ζi| and ζmin = min
1≤i≤n

|ζi| and

χ(n) = n
⌈
n
2

⌉ (
1− 1

n

⌈
n
2

⌉)
.

Proof: Assuming αi = |ζi| = βi, Q ≤ |ζi| ≤ S, and
P ≤ |ζn| ≤ R, we obtain the following using Theorem (II.9):∣∣∣∣∣∣n

n∑
i=1

|ζi|2 −

(
n∑

i=1

|ζi|

)2
∣∣∣∣∣∣ ≤ χ(n)(ζ1 − ζmin)

2

|2nN − (DαE(G))2| ≤ χ(n)(ζ1 − ζmin)
2

DαE(G) ≥
√
2nN − χ(n)(ζ1 − ζmin)2.

III. GRAPH OPERATIONS

In this section, we obtain the general degree product
energy of a new family of graphs from an existing base graph
such as duplication graph, R-graph and middle graph.

A. Duplication graph

Definition III.1. [13] The duplication graph Du(G) is a
bipartite graph with vertex partition sets VG = {v1, . . . , vn}
and UG = {u1, . . . , un}, where viuj is an edge if and only
if vivj is an edge in G.

Definition III.2. [1] The duplication corona G1⊕G2 of two
graphs G1 and G2 is the graph obtained by taking one copy
of Du(G1) and |VG1 | copies of G2, and then joining vertex
vi of Du(G1) to every vertex in the ith copy of G2.
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Definition III.3. [1] The duplication neighborhood corona
G1 ⊠ G2 of two graphs G1 and G2 is the graph obtained by
taking one copy of Du(G1) and |VG1

| copies of G2 and then
joining the neighbors of the vertex vi of Du(G1) to every
vertex in the ith copy of G2.

Definition III.4. [1] The duplication edge corona G1 ⊞ G2

of two graphs G1 and G2 is the graph obtained by taking one
copy of Du(G1) and |EG1

| copies of G2 and then joining a
pair of vertices vi and vj of Du(G1) to every vertex in the
kth copy of G2 whenever vivj = ek ∈ EG1 .

Theorem III.1. Suppose that k-regular graph G has order
n. Then

DαE(Du(G)) = 2(2n− 1)k2α.

Proof: As Dα(Du(G)) = k2αA(K2n), the result follows
by noting that

Spec(Dα(Du(G))) =
(
k2α(2n− 1) −k2α

1 (2n− 1)

)
.

Theorem III.2. Suppose G1 and G2 be k1, k2-regular graphs
with n1, n2 vertices. Then DαE(G1 ⊕ G2) =

∑3
i=1 |ζi| +

(n1n2 − 1)(k2 + 1)2α + (n1 − 1)
(
k2α1 + (k1 + n2)

2α
)
,

where ζ1, ζ2, ζ3 are the roots of the polynomial of x3−((k2+
1)2α(n1n2−1)+(k2α1 +(k1+n2)

2α)(n1−1))x2−((n1n2+
n1 − 1)(k2α1 + (k1 + n2)

2α)(k2 +1)2α + (2n1 − 1)(k1(k1 +
n2))

2α)x− (n1n2 + 2n1 − 1)(k1(k1 + n2)(k2 + 1))2α = 0.

Proof: The general degree product matrix of duplication
corona of two graphs G1 and G2 be expressed as a block
matrix as follows:

Dα(G1 ⊕ G2) =(k2 + 1)2αA(Kn1n2 )
(kα

1 (k2+1)α

Jn1n2,n1 )
((k1+n2)

α

(k2+1)αJn1n2,n1
)

kα
1 (k2+1)αJn1,n1n2 k2α1 A(Kn1 ) kα1 (k1 + n2)αJn1

((k1+n2)
α

(k2+1)αJn1,n1n2 )
kα
1 (k1+n2)

αJn1 (k1 + n2)2αA(Kn1 )


The following is an expression for Dα(G1⊕G2)’s character-
istic polynomial:

f(Dα(G1 ⊕ G2), x) =∣∣∣∣∣∣∣∣
(xIn1n2−(k2+1)2α

A(Kn1n2
))

−kα
1 (k2+1)αJn1n2,n1

−((k1+n2)
α(k2+1)α

Jn1n2,n1 )

−(kα
1 (k2+1)α

Jn1,n1n2
) xIn1 − k2α1 A(Kn1 ) −kα1 (k1 + n2)αJn1

−((k1+n2)
α(k2+1)α

Jn1,n1n2
) −kα1 (k1 + n2)αJn1

(xIn1
−(k1+n2)

2α

A(Kn1
))

∣∣∣∣∣∣∣∣
By performing, Ri → Ri − Rn1n2 ;Rj → Rj −
Rn1n2+n1

;Rl → Rl − Rn1n2+2n1
, where 1 ≤ i ≤ (n1n2 −

1); (n1n2 + 1) ≤ j ≤ (n1n2 + n1 − 1); (n1n2 + n1 + 1) ≤
l ≤ (n1n2 + 2n1 − 1) we get,

f(Dα(G1 ⊕ G2), x) =

(x+ (k2 + 1)2α)n1n2−1(x+ k2α1 )n1−1(x+ (k1 + n2)
2α)n1−1|M |,

where |M | is the remaining quantity of the f(Dα(G1 ⊕ G2), x) after
taking out common factors. Now we get all the eigenvalues except 3
of the matrix, and the remaining 3 eigenvalues are obtained from the
quotient matrix of Dα(G1 ⊕ G2). Therefore, Q(Dα(G1 ⊕ G2)) =(k2+1)2α(n1n2−1) kα1 (k2 + 1)αn1

((k1+n2)
α

(k2+1)αn1)

kα1 (k2 + 1)αn1n2 k2α1 (n1 − 1) kα1 (k1 + n2)αn1
((k1+n2)

α

(k2+1)αn1n2)
kα1 (k1 + n2)αn1 (k1 + n2)2α(n1 − 1)


The characteristic equation of the matrix Q(Dα(G1 ⊕ G2)) is expressed
as x3 − ((k2 + 1)2α(n1n2 − 1) + (k2α1 + (k1 + n2)2α)(n1 − 1))x2 −
((n1n2 +n1 −1)(k2α1 +(k1 +n2)2α)(k2 +1)2α +(2n1 −1)k2α1 (k1 +
n2)2α)x− (n1n2 + 2n1 − 1)k2α1 (k1 + n2)2α(k2 + 1)2α = 0.
By Theorem I.1, we conclude that the remaining 3 eigenvalues ζ1, ζ2, ζ3
are the roots of the above characteristic equation of the quotient matrix.
Hence, the result follows by noting that

Spec(Dα(G1 ⊕ G2)) =(
−(k2 + 1)2α −k2α1 −(k1 + n2)2α ζ1 ζ2 ζ3
n1n2 − 1 n1 − 1 n1 − 1 1 1 1

)
.

Theorem III.3. Suppose G1 and G2 be k1, k2-regular graphs
with n1, n2 vertices. Then DαE(G1⊠G2) =

∑3
i=1 |ζi|+(k1+

k2)
2α(n1n2 − 1) + k2α1 (n1 − 1)

(
1 + (n2 + 1)2α

)
,

where ζ1, ζ2, ζ3 are the roots of the polynomial of x3−((k1+
k2)

2α(n1n2−1)+(1+(n2+1)2α)k2α1 (n1−1))x2−((n1n2+
n1−1)(1+(n2+1)2α)k2α1 (k1+k2)

2α+(2n1−1)k4α1 (n2+
1)2α)x− (n1n2 + 2n1 − 1)k4α1 (k1 + k2)

2α(n2 + 1)2α = 0.

Proof: The general degree product matrix of duplication
neighborhood corona of two graphs G1 and G2 be expressed
as a block matrix as follows:

Dα(G1 ⊠ G2) =(k1 + k2)2αA(Kn1n2 )
(kα

1 (k1+k2)
α

(n2+1)αJn1n2,n1
)

(kα
1 (k1+k2)

α

Jn1n2,n1
)

(kα
1 (k1+k2)

α

(n2+1)αJn1,n1n2 )
k2α
1 (n2+1)2αA(Kn1

) k2α1 (n2 + 1)αJn1

kα1 (k1 + k2)αJn1,n1n2 k2α1 (n2 + 1)αJn1 k2α1 A(Kn1 )


By performing row operations on det(xIn1n2+2n1

−
Dα(G1 ⊠ G2)) and solving quotient matrix of
Dα(G1 ⊠ G2), we get Spec(Dα(G1 ⊠ G2)) =(
−(k1 + k2)

2α −k2α1 (n2 + 1)2α −k2α1 ζ1 ζ2 ζ3
n1n2 − 1 n1 − 1 n1 − 1 1 1 1

)
,

where the quotient matrix’s characteristic equation has
ζ1, ζ2, ζ3 as its roots.

Theorem III.4. Suppose G1 and G2 be k1, k2-regular graphs
with n1, n2 vertices. Then DαE(G1⊞G2) =

∑3
i=1 |ζi|+(k2+

2)2α(n2m1 − 1) + (n1 − 1)(k2α1 + (k1 + k1n2)
2α),

where ζ1, ζ2, ζ3 are the roots of the polynomial of x3−((k2+
2)2α(n2m1 − 1) + (k2α1 + (k1 + k1n2)

2α)(n1 − 1))x2 −
((n2m1+n1−1)(k2α1 +(k1+k1n2)

2α)(k2+2)2α+(2n1−
1)k4α1 (n2 +1)2α)x− (n2m1 +2n1 − 1)k4α1 (k2 +2)2α(n2 +
1)2α = 0.

Proof: The general degree product matrix of duplication
edge corona of two graphs G1 and G2 be expressed as a block
matrix as follows:

Dα(G1 ⊞ G2) = (k2+2)2αA(Kn2m1
)

(kα
1 (k2+2)α(n2+1)α

Jn2m1,n1 )
(kα

1 (k2+2)α

Jn2m1,n1 )
(kα

1 (k2+2)α(n2+1)α

Jn1,n2m1
)

k2α
1 (n2+1)2αA(Kn1 ) k2α1 (n2 + 1)αJn1

kα
1 (k2+2)αJn1,n2m1 k2α1 (n2 + 1)αJn1 k2α1 A(Kn1 )


By performing row operations on det(xIn2m1+2n1 −

Dα(G1 ⊞ G2)) and solving the quotient matrix
of Dα(G1 ⊞ G2), we get Spec(Dα(G1 ⊞ G2) =(
−(k2 + 2)2α −(k1 + k1n2)

2α −k2α1 ζ1 ζ2 ζ3
n2m1 − 1 n1 − 1 n1 − 1 1 1 1

)
,

where the quotient matrix’s characteristic equation has
ζ1, ζ2, ζ3 as its roots.

B. R- Graph

Definition III.5. [3] The R-graph of G, denoted by RG is
the graph obtained from G by adding a vertex ue and joining
ue to the end vertices of e for each e ∈ EG .

Here, consider IG to be the set of newly added vertices,
i.e., IG = VRG\VG . and let us consider G1 and G2 be two
vertex-disjoint graphs.

Definition III.6. [8] The R-vertex corona of G1 and G2,
denoted by G1⊙G2, is the graph obtained from vertex-disjoint
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RG1 and |VG1 | copies of G2 by joining the i-th vertex of VG1

to every vertex in the i-th copy of G2.

Definition III.7. [8] The R-edge corona of G1 and G2,
denoted by G1 ⊖ G2, is the graph obtained from the vertex-
disjoint RG1 and |IG1 | copies of G2 by joining the i-th vertex
of IG1 to every vertex in the i-th copy of G2.

Definition III.8. [8] The R-vertex neighborhood corona of
G1 and G2, denoted by G1 ⊡ G2, is the graph obtained from
vertex-disjoint RG1 and |VG1 | copies of G2 by joining the
neighbors of the i-th vertex of G1 in RG1 to each vertex in
the i-th copy of G2.

Definition III.9. [8] The R-edge neighborhood corona
of G1 and G2, denoted by G1 ⊟ G2, is the graph obtained
from vertex-disjoint RG1 and |IG1 | copies of G2 by joining
neighbors of the i-th vertex of IG1

in RG1
to every vertex in

the i-th copy of G2.

Theorem III.5. Suppose that k-regular graph G has order

n and size m. Then DαE(RG) = 22α
(
k2α(n − 1) + (m −

1) +
√
(k2α(n− 1) + (m− 1))2 + 4k2α(m+ n− 1)

)
.

Proof: The general degree product matrix of the R-
graph is expressed as a block matrix as follows:

Dα(RG) =

(
(2k)2αA(Kn) (4k)αJn,m
(4k)αJm,n 22αA(Km)

)
By performing row operations on det(xIn+m−Dα(RG) and
solving quotient matrix of Dα(RG), we have the following
result noting that

Spec(Dα(RG)) =

(
−(2k)2α −22α ζ1 ζ2
n− 1 m− 1 1 1

)
,

where (ζ1, ζ2) = 2(2α−1)(k2α(n − 1) + (m − 1)) ±√
(k2α(n− 1) + (m− 1))2 + 4k2α(m+ n− 1).

Theorem III.6. Suppose G1 and G2 are k1, k2-regular
graphs with m1,m2 edges and n1, n2 vertices. Then
DαE(G1⊙G2) =

∑3
i=1 |ζi|+(k2+1)2α(n1n2−1)+22α(m1−

1) + (2k1 + n2)
2α(n1 − 1),

where ζ1, ζ2, ζ3 are the roots of the polynomial of x3−((k2+
1)2α(n1n2−1)+22α(m1−1)+(2k1+n2)

2α(n1−1))x2−
((n1n2 +m1 − 1)22α(k2 + 1)2α + (n1n2 + n1 − 1)(2k1 +
n2)

2α(k2+1)2α+(n1+m1−1)22α(2k1+n2)
2α)x−(n1n2+

n1 +m1 − 1)22α(k2 + 1)2α(2k1 + n2)
2α = 0.

Proof: The general degree product matrix of R-vertex
corona of two graphs G1 and G2 be expressed as a block
matrix as follows:

Dα(G1 ⊙ G2) =
(k2+1)2αA(Kn1n2

)
((k2+1)α(2k1+n2)

α

Jn1n2,n1 )
(2α(k2+1)α

Jn1n2,m1 )
((k2+1)α(2k1+n2)

α

Jn1,n1n2 )
(2k1+n2)

2αA(Kn1
)

(2α(2k1+n2)
α

Jn1,m1 )
(2α(k2+1)α

Jm1,n1n2 )
2α(2k1+n2)

αJm1,n1 22αA(Km1
)


By performing row operations on det(xIn1n2+n1+m1

−
Dα(G1 ⊙ G2)) and solving quotient matrix of
Dα(G1 ⊙ G2), we get Spec(Dα(G1 ⊙ G2) =(
−(k2 + 1)2α −22α −(2k1 + n2)

2α ζ1 ζ2 ζ3
n1n2 − 1 m1 − 1 n1 − 1 1 1 1

)
,

where the quotient matrix’s characteristic equation has
ζ1, ζ2, ζ3 as its roots.

Theorem III.7. Suppose G1 and G2 are k1, k2-regular
graphs with m1,m2 edges and n1, n2 vertices. Then
DαE(G1 ⊖ G2) =

∑3
i=1 |ζi| + (k2 + 1)2α(n2m1 − 1) +

(2k1)
2α(n1 − 1) + (2 + n2)

2α(m1 − 1),
where ζ1, ζ2, ζ3 are the roots of the polynomial of x3−((k2+
1)2α(n2m1−1)+22αk2α1 (n1−1)+(2+n2)

2α(m1−1))x2−
((n2m1+n1− 1)22αk2α1 (k2+1)2α+(n2m1+m1− 1)(2+
n2)

2α(k2 + 1)2α + (n1 + m1 − 1)22αk2α1 (2 + n2)
2α)x −

(n2m1 + n1 +m1 − 1)22αk2α1 (k2 + 1)2α(2 + n2)
2α = 0.

Proof: The general degree product matrix of R-edge
corona of two graphs G1 and G2 be expressed as a block
matrix as follows:

Dα(G1 ⊖ G2) =
(k2+1)2αA(Kn2m1 )

((2k1)
α(k2+1)α

Jn2m1,n1
)

((2+n2)
α(k2+1)α

Jn2m1,m1
)

((2k1)
α(k2+1)α

Jn1,n2m1
)

(2k1)
2αA(Kn1 )

((2k1)
α(2+n2)

α

Jn1,m1
)

((2+n2)
α(k2+1)α

Jm1,n2m1
)

((2k1)
α(2+n2)

α

Jm1,n1
)

(2+n2)
2αA(Km1 )


By performing row operations on det(xIn2m1+n1+m1 −
Dα(G1 ⊖ G2)) and solving quotient matrix of
Dα(G1 ⊖ G2), we get Spec(Dα(G1 ⊖ G2) =(
−(k2 + 1)2α −22αk2α1 −(2 + n2)

2α ζ1 ζ2 ζ3
n2m1 − 1 n1 − 1 m1 − 1 1 1 1

)
,

where the quotient matrix’s characteristic equation has
ζ1, ζ2, ζ3 as its roots.

Theorem III.8. Suppose G1 and G2 are k1, k2-regular
graphs with m1,m2 edges and n1, n2 vertices. Then
DαE(G1 ⊡ G2) =

∑3
i=1 |ζi| + (k2 + 2k1)

2α(n1n2 − 1) +
k2α1 (2 + n2)

2α(n1 − 1) + 22α(n2 + 1)2α(m1 − 1),
where ζ1, ζ2, ζ3 are the roots of the polynomial of x3−((k2+
2k1)

2α(n1n2 − 1) + k2α1 (2 + n2)
2α(n1 − 1) + 22α(n2 +

1)2α(m1 − 1))x2 − (k2α1 (2 + n2)
2α(k2 + 2k1)

2α(n1n2 +
n1 − 1) + 22α(k2 + 2k1)

2α(n2 + 1)2α(n1n2 + m1 − 1) +
22αk2α1 (n2+1)2α(2+n2)

2α(n1+m1−1))x−22αk2α1 (k2+
2k1)

2α(2 + n2)
2α(n2 + 1)2α(n1n2 + n1 +m1 − 1) = 0.

Proof: The general degree product matrix of R-vertex
neighborhood corona of two graphs G1 and G2 be expressed
as a block matrix as follows:

Dα(G1 ⊡ G2) =
(k2+2k1)

2αA(Kn1n2
)

((k1(k2+2k1)(2+n2))
α

Jn1n2,n1 )
((2(n2+1)(k2+2k1))

α

Jn1n2,m1 )
(k1(k2+2k1)(2+n2))

α

Jn1,n1n2
) (k1(2+n2))

2αA(Kn1
)

((2k1(n2+1)(2+n2))
α

Jn1,m1
)

((2(n2+1)(k2+2k1))
α

Jm1,n1n2
)

((2k1(n2+1)(2+n2))
α

Jm1,n1
) (2(n2+1))2αA(Km1 )


By performing row operations on det(xIn1n2+n1+m1 −Dα(G1 ⊡ G2))

and solving quotient matrix of Dα(G1⊡G2), we get Spec(Dα(G1⊡G2) =(
−(k2 + 2k1)

2α −(k1(2 + n2))
2α −(2(n2 + 1))2α ζ1 ζ2 ζ3

n1n2 − 1 n1 − 1 m1 − 1 1 1 1

)
,

where the quotient matrix’s characteristic equation has ζ1, ζ2, ζ3 as its
roots.

Theorem III.9. Suppose G1 and G2 are k1, k2-regular
graphs with m1,m2 edges and n1, n2 vertices. Then
DαE(G1⊟G2) =

∑3
i=1 |ζi|+(k2+2)2α(n2m1−1)+(2k1+

k1n2)
2α(n1 − 1) + 22α(m1 − 1),

where ζ1, ζ2, ζ3 are the roots of the polynomial of x3 −
((k2+2)2α(m1n2−1)+k2α1 (2+n2)

2α(n1−1)+22α(m1−
1))x2−(k2α1 (2+n2)

2α(k2+2)2α(m1n2+n1−1)+22α(k2+
2)2α(m1n2+m1−1)+22αk2α1 (2+n2)

2α(n1+m1−1))x−
22αk2α1 (k2 + 2)2α(n2 + 1)2α(m1n2 + n1 +m1 − 1) = 0.
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Proof: The general degree product matrix of R-edge
neighborhood corona of two graphs G1 and G2 be expressed
as a block matrix as follows:

Dα(G1 ⊟ G2) = (k2+2)2αA(Kn2m1
)

((k2+2)α(2k1+k1n2)
α

Jn2m1,n1
)

(2α(k2+2)α

Jn2m1,m1
)

((k2+2)α(2k1+k1n2)
α

Jn1,n2m1 ) (2k1+k1n2)
2αA(Kn1

)
(2α(2k1+k1n2)

α

Jn1,m1 )

2α(k2+2)αJm1,n2m1
2α(2k1+k1n2)

αJm1,n1 22αA(Km1
)


By performing row operations on det(xIn2m1+n1+m1

−
Dα(G1 ⊟ G2)) and solving quotient matrix of Dα(G1 ⊟ G2),
we have the following result noting that Spec(Dα(G1⊟G2) =(
−(k2 + 2)2α −(2k1 + k1n2)

2α −22α ζ1 ζ2 ζ3
n2m1 − 1 n1 − 1 m1 − 1 1 1 1

)
,

where the quotient matrix’s characteristic equation has
ζ1, ζ2, ζ3 as its roots.

C. Middle graph

Definition III.10. [6] The middle graph MG of a graph G is
the graph in which the vertex set is VG∪EG and two vertices
are adjacent if and only if either they are adjacent edges of
G or one is a vertex of G and the other is an edge incident
with it.

Motivated by the corona operations based on the R -graph
and duplicate graph, we define four new corona operations
based on the middle graph as follows.

Definition III.11. The middle vertex corona of G1 and G2,
denoted by G1⊚G2, is the graph obtained from vertex-disjoint
MG1

and |VG1
| copies of G2 by joining the i-th vertex of VG1

to every vertex in the i-th copy of G2.

Definition III.12. The middle edge corona of G1 and G2,
denoted by G1⊖G2, is the graph obtained from vertex-disjoint
MG1

and |IG1
| copies of G2 by joining the i-th vertex of IG1

to every vertex in the i-th copy of G2.

Definition III.13. The middle vertex neighborhood corona
of G1 and G2, denoted by G1 ⊗ G2, is the graph obtained
from vertex-disjoint MG1

and |VG1
| copies of G2 by joining

the neighbors of the i-th vertex of G1 in MG1 to every vertex
in the i-th copy of G2.

Definition III.14. The middle edge neighborhood corona
of G1 and G2, denoted by G1 ⊛ G2, is the graph obtained
from vertex-disjoint MG1 and |IG1 | copies of G2 by joining
neighbors of the i-th vertex of IG1

in MG1
to every vertex

in the i-th copy of G2.

Note that, G1 and G2 have n1, n2 vertices and m1, m2

edges respectively. Then, the graph G1 ⊚ G2 has n1 +m1 +
n1n2, G1⊖G2 has n1+m1+m1n2, G1⊗G2 contains n1+
m1+n1n2, and G1⊛G2 includes n1+m1+m1n2 vertices.
The graphs C3, C4 and MC4 are given in Figures 1-3. The
middle vertex corona, middle edge corona, middle vertex
neighborhood corona and middle edge neighborhood corona
operations of C3 and C4 have been depicted pictorially in
Figures 4- 7.

Figure 1: C3

Figure 2: C4 Figure 3: MC4

Figure 4: C4 ⊚ C3

Figure 5: C4 ⊖ C3

Figure 6: C4 ⊗ C3

Figure 7: C4 ⊛ C3

Theorem III.10. Let G be a k-regular graph of order n and
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size m. Then

DαE(MG) = k2α
(
(n− 1) + 22α(m− 1)

+
√
((n− 1) + 22α(m− 1))2 + 22α+2(n+m− 1)

)
.

Proof: The middle graph’s general degree product ma-
trix can be represented as a block matrix in this way:

Dα(MG) =

(
k2αA(Kn) 2αk2αJn,m
2αk2αJm,n (2k)2αA(Km)

)
.

By performing row operations on det(xIn+m−Dα(MG) and
solving quotient matrix of Dα(MG), we have

Spec(Dα(MG)) =

(
−k2α −(2k)2α λ1 λ2

(n− 1) (m− 1) 1 1

)
,

where (λ1, λ2) =
k2α

2

(
(n − 1) + 22α(m − 1) ±√

((n− 1) + 22α(m− 1))2 + 22α+2(n+m− 1)

)
.

Hence, the proof follows.
Next, we obtain the general degree product energy of G1⊚

G2, G1 ⊖ G2, G1 ⊗ G2 and G1 ⊛ G2, where G1 and G2 are
regular graphs.

Theorem III.11. Suppose G1 and G2 are k1, k2-regular
graphs with m1,m2 edges and n1, n2 vertices. Then
DαE(G1 ⊚G2) =

∑3
i=1 |ζi|+ (k2 +1)2α(n1n2 − 1)+ (k1 +

n2)
2α(n1 − 1) + (2k1)

2α(m1 − 1),
where ζ1, ζ2, ζ3 are the roots of the polynomial of x3−((k2+
1)2α(n1n2−1)+(k1+n2)

2α(n1−1)+(2k1)
2α(m1−1))x2−

((n1n2+m1−1)(2k1)
2α(k2+1)2α+(n1n2+n1−1)(k1+

n2)
2α(k2 + 1)2α + (n1 +m1 − 1)(2k1)

2α(k1 + n2)
2α)x −

(n1n2 + n1 +m1 − 1)(2k1)
2α(k2 + 1)2α(k1 + n2)

2α = 0.

Proof: The general degree product matrix of the middle
vertex corona of two graphs G1 and G2 be expressed as a
block matrix as follows:

Dα(G1 ⊚ G2) = (k2+1)2αA(Kn1n2 )
((k2+1)α(k1+n2)

α

Jn1n2,n1
)

((2k1)
α(k2+1)α

Jn1n2,m1
)

((k2+1)α(k1+n2)
α

Jn1,n1n2 ) (k1+n2)
2αA(Kn1

)
((2k1)

α(k1+n2)
α

Jn1,m1 )

(2k1)
α(k2+1)αJm1,n1n2

((2k1)
α(k1+n2)

α

Jm1,n1
) (2k1)

2αA(Km1
)


By performing row operations on det(xIn1n2+n1+m1 −
Dα(G1 ⊚ G2)) and solving quotient matrix of
Dα(G1 ⊚ G2), we have Spec(Dα(G1 ⊚ G2) =(
−(k2 + 1)2α −(2k1)

2α −(k1 + n2)
2α ζ1 ζ2 ζ3

n1n2 − 1 m1 − 1 n1 − 1 1 1 1

)
,

where the quotient matrix’s characteristic equation has
ζ1, ζ2, ζ3 as its roots.

Theorem III.12. Suppose G1 and G2 are k1, k2-regular
graphs with m1,m2 edges and n1, n2 vertices. Then
DαE(G1⊖G2) =

∑3
i=1 |ζi|+(k2+1)2α(n2m1−1)+k2α1 (n1−

1) + (2k1 + n2)
2α(m1 − 1),

where ζ1, ζ2, ζ3 are the roots of the polynomial of x3−((k2+
1)2α(n2m1−1)+k2α1 (n1−1)+(2k1+n2)

2α(m1−1))x2−
((n2m1 + n1 − 1)k2α1 (k2 + 1)2α + (n2m1 +m1 − 1)(2k1 +
n2)

2α(k2+1)2α+(n1+m1−1)k2α1 (2k1+n2)
2α)x−(n2m1+

n1 +m1 − 1)k2α1 (k2 + 1)2α(2k1 + n2)
2α = 0.

Proof: The general degree product matrix of the middle
edge corona of two graphs G1 and G2 be expressed as a block
matrix as follows:

Dα(G1 ⊖ G2) = (k2+1)2αA(Kn2m1 ) kα
1 (k2+1)αJn2m1,n1

((2k1+n2)
α(k2+1)α

Jn2m1,m1
)

kα
1 (k2+1)αJn1,n2m1 k2α

1 A(Kn1
)

(kα
1 (2k1+n2)

α

Jn1,m1 )
((2k1+n2)

α(k2+1)α

Jm1,n2m1
)

kα
1 (2k1+n2)

αJm1,n1 (2k1+n2)
2αA(Km1 )


By performing row operations on det(xIn2m1+n1+m1

−
Dα(G1 ⊖ G2)) and solving quotient matrix of
Dα(G1 ⊖ G2), we have Spec(Dα(G1 ⊖ G2) =(
−(k2 + 1)2α −k2α1 −(2k1 + n2)

2α ζ1 ζ2 ζ3
n2m1 − 1 n1 − 1 m1 − 1 1 1 1

)
,

where the quotient matrix’s characteristic equation has
ζ1, ζ2, ζ3 as its roots.

Theorem III.13. Suppose G1 and G2 are k1, k2-regular
graphs with m1,m2 edges and n1, n2 vertices. Then
DαE(G1 ⊗ G2) =

∑3
i=1 |ζi| + (k1 + k2)

2α(n1n2 − 1) +
k2α1 (n1 − 1) + (2(k1 + n2))

2α(m1 − 1),
where ζ1, ζ2, ζ3 are the roots of the polynomial of x3−((k1+
k2)

2α(n1n2 − 1) + k2α1 (n1 − 1) + (2(k1 + n2))
2α(m1 −

1))x2−((k1(k1+k2))
2α(n1n2+n1−1)+(k1+k2)

2α(2(k1+
n2))

2α(n1n2+m1−1)+(2k1(k1+n2))
2α(n1+m1−1))x−

(2k1(k1 + k2)(k1 + n2))
2α(n1n2 + n1 +m1 − 1) = 0.

Proof: The general degree product matrix of the middle
vertex neighborhood corona of two graphs G1 and G2 be
expressed as a block matrix as follows:

Dα(G1 ⊗ G2) = (k1+k2)
2αA(Kn1n2

)
((k1(k1+k2))

α

Jn1n2,n1
)

((2(k1+k2)(k1+n2))
α

Jn1n2,m1
)

(k1(k1+k2))
αJn1,n1n2 k2α

1 A(Kn1
) (2k1(k1+n2))

αJn1,m1
((2(k1+k2)(k1+n2))

α

Jm1,n1n2 )
((2k1(k1+n2))

α

Jm1,n1 ) (2(k1+n2))
2αA(Km1

)


By performing row operations on det(xIn1n2+n1+m1 −
Dα(G1 ⊗ G2)) and solving quotient matrix of
Dα(G1 ⊗ G2), we have Spec(Dα(G1 ⊗ G2) =(
−(k1 + k2)

2α −k2α1 −(2(k1 + n2))
2α ζ1 ζ2 ζ3

n1n2 − 1 n1 − 1 m1 − 1 1 1 1

)
,

where the quotient matrix’s characteristic equation has
ζ1, ζ2, ζ3 as its roots.

Theorem III.14. Suppose G1 and G2 are k1, k2-regular
graphs with m1,m2 edges and n1, n2 vertices. Then
DαE(G1 ⊛ G2) =

∑3
i=1 |ζi| + (k2 + 2k1)

2α(n2m1 − 1) +
(k1 + k1n2)

2α(n1 − 1) + (2k1)
2α(m1 − 1),

where ζ1, ζ2, ζ3 are the roots of the polynomial of x3−((k2+
2k1)

2α(m1n2−1)+(k1+k1n2)
2α(n1−1)+(2k1)

2α(m1−
1))x2−((k1(1+n2)(k2+2k1))

2α(m1n2+n1−1)+(2k1(k2+
2k1))

2α(m1n2+m1−1)+(2k21(n2+1))2α(n1+m1−1))x−
(2k21(k2 + 2k1)(n2 + 1))2α(m1n2 + n1 +m1 − 1) = 0.

Proof: The general degree product matrix of the middle
edge neighborhood corona of two graphs G1 and G2 be
expressed as a block matrix as follows:

Dα(G1 ⊛ G2) =(k2+2k1)2αA(Kn2m1
)

((k1(k2+2k1)(1+n2))α

Jn2m1,n1
)

((2k1(k2+2k1))α

Jn2m1,m1
)

((k1(k2+2k1)(1+n2))α

Jn1,n2m1 ) (k1(1+n2))2αA(Kn1
)

((2k2
1(1+n2))α

Jn1,m1
)

((2k1(k2+2k1)α)
Jm1,n2m1 ) (2k2

1(1+n2))αJm1,n1 (2k1)
2αA(Km1

)


By performing row operations on det(xIn2m1+n1+m1

−
Dα(G1 ⊛ G2)) and solving quotient matrix of
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Dα(G1 ⊛ G2), we have Spec(Dα(G1 ⊛ G2) =(
−(k2 + 2k1)2α −(k1(1 + n2))2α −(2k1)2α ζ1 ζ2 ζ3

n2m1 − 1 n1 − 1 m1 − 1 1 1 1

)
,

where the quotient matrix’s characteristic equation has
ζ1, ζ2, ζ3 as its roots.

IV. CONCLUSION

In this article, the general degree product energy of a new
family of graphs from an existing base graph such as the
duplication graph, R-graph, and middle graph are discussed.
One can try to obtain the general degree product energy of a
new family of graphs by taking the base graph as the central
graph.
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