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Abstract—This paper proposes a lightweight framework
named PED-YOLO to mitigate the limitations of low detection
accuracy, complex network architecture, and excessive
parameters in fog detection tasks. The framework integrates the
PConv, EfficientNetV2, and ADown modules. In the neck of the
YOLOL11 architecture, the PConv and ADown modules are
employed to replace the original C3K2 and Conv components.
This substitution effectively reduces the number of training
parameters and decreases the computational load. The
backbone integrates EfficientNetV2, resulting in lower
architectural complexity and improved computational
efficiency. The ADown module is incorporated in place of the
original downsampling component. Its introduction is enhanced
for downsampling performance and the parameter count is
further reduced. Compared with the original YOLO11
detection network, the proposed PED-YOLO detection
framework has the mAPS50 value, parameter number, and
GFLOPs reduced by 76.7%, 23.05%, and 27.18%, respectively.
Experimental results demonstrate that the PED-YOLO object
detection model achieves significant improvements in detection
accuracy. At the same time, it reduces the number of
parameters, lowers computational complexity. These
enhancements establish it as a highly efficient and reliable
solution for object detection tasks in foggy environments.

Index Terms—PConv, EfficientNetV2, ADown, lightweight,
YOLOL11, foggy target detection

I. INTRODUCTION

Target detection in foggy conditions is a crucial aspect of
autonomous  driving  technology,  contributing
significantly to driving safety and enhancing the operational
efficiency of intelligent transportation systems. In such
challenging environments, autonomous vehicles are required
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to accurately identify objects, including roads, vehicles, and
pedestrians, while making precise driving decisions based on
their observations. However, foggy conditions can cause a
significant degradation in image quality. The contours of
targets become blurred, and the contrast is markedly reduced.
These effects pose substantial challenges and difficulties for
target detection.

Improving the accuracy of target detection in foggy
weather is of great significance for unmanned driving
technology. It is closely related to the precision and reliability
of the wvehicle’s decision-making system and further
influences driving safety. High target detection accuracy
enables vehicles to promptly and precisely identify and avoid
obstacles, accurately recognize traffic signs and signals,
thereby effectively reducing the risk of traffic accidents and
simultaneously enhancing traffic flow and operational
efficiency.

High target detection accuracy enables vehicles to
promptly and precisely identify and avoid obstacles. It also
helps accurately recognize traffic signs and signals, thereby
reducing the risk of traffic accidents and improving traffic
flow and operational efficiency. On one hand, the computing
power and storage resources of embedded devices are limited.
Too complex detection models will lead to slow processing
and cannot achieve real-time operation. They will affect the
overall response speed and safety of the unmanned driving
system. On the other hand, reducing detection accuracy in the
process of model lightweighting must be avoided, as this
would compromise the ability to meet the requirements of
practical applications. Therefore, it is urgent to develop a
lightweight object detection model that maintains high
detection accuracy under foggy conditions and runs
efficiently on embedded devices. This would promote the
further development and broader adoption of unmanned
driving technology.

To solve the above problems, this paper proposes a
lightweight detection framework (PED-YOLO) that
combines technologies such as PConv, EfficientNetV2 and
ADown. Specifically, PConv and ADown are adopted in
place of the original Conv and C3K2 modules in YOLO11.
This realizes the lightweight operation of the model. In the
backbone network, the lightweight EfficientNetV2 model is
incorporated to further reduce the overall weight of the
framework. In addition, the ADown module is adopted in
place of the traditional down-sampling module to enhance
the model’s down-sampling capability. These improvements
enable the PED-YOLO framework to effectively reduce
model complexity and maintain high target detection
accuracy in harsh environments such as fog. At the same time,
the framework satisfies the constraints of embedded devices
regarding model size and operational efficiency.
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II. RELATED WORK

In recent years, deep learning models have occupied a
dominant position in the field of object detection, with
convolutional neural networks playing a particularly
prominent role, and numerous remarkable achievements have
been reported [1][2]. Deep learning models in the field of
label detection can be primarily divided into two categories.
The first category consists of two-stage detection algorithms
based on region proposals, with typical representatives
including Region Convolutional Neural Network (R-CNN)
[3], Fast R-CNN [4], and Faster R-CNN [5]. Nevertheless,
although two-stage detection algorithms perform well in
terms of accuracy, they have limitations in speed. The main
drawback is the complexity and size of the network
architecture. It involves a large number of parameters,
resulting in a time-consuming recognition process that cannot
meet the strict real-time performance requirements of foggy
target recognition tasks.

The second category includes single-stage detection
algorithms, such as You Only Look Once (YOLO) [6] and
Single Shot Multi-Box Detector (SSD) [7], both of which
extract features directly from the network architecture to
predict the category and location of the object. By
introducing a hybrid structure block that combines a
multi-scale parallel large convolution kernel module with an
enhanced parallel attention module, Lu et al. achieved good
results on image dehazing tasks using MixDehazeNet[8]. Li
et al. applied a technique based on convolutional neural
networks (CNN) to develop the AOD-Net[9] model for
image dehazing. In response to the challenge of foggy target
detection, Zhong et al. proposed the DR-YOLO[10] model.
DR-YOLO effectively addressed the problem of foggy target
detection by integrating the atmospheric scattering model and
co-occurrence relationship graph into the detector as prior
knowledge. The proposed model not only improves object
detection accuracy but also maintains good real-time
performance. Akhmedov, F., et al. [11] combined the
YOLOV10[12] model with a dehazing algorithm to create an
improved method for ship fire detection. This method
enhanced the accuracy and reliability of ship fire detection in
complex marine environments. Through the introduction of a
two-branch network architecture and an attention feature
fusion module, Chu et al. proposed D-YOLOJ[13], which
effectively combines image restoration and object detection
tasks at the feature level. This approach significantly
improves the accuracy and robustness of object detection
under adverse weather conditions. Babu, K.R., et al. applied
an unsupervised domain adaptation technique, -called
R-YOLOJ[14], to enhance object detection performance
under adverse weather conditions. This method provides a
safer and more reliable visual perception solution for fields
such as autonomous driving and robotics.

In summary, deep learning methods have become the
mainstream approaches for object detection tasks, including
remote sensing object detection[15] and foggy object
detection. With the development of deep learning technology,
such methods have been widely applied in foggy scenes.
They rely on models like Convolutional Neural Networks
(CNN) to automatically learn feature representations from
foggy images, enabling object detection and recognition. For
example, the YOLO series has become a popular choice for

foggy object detection due to its speed and high accuracy.
However, the current YOLOI11 still shows some limitations.
On one hand, the model’s feature extraction ability requires
further improvement. It is evident during detection of small
and occluded targets. This often leads to missed detections
and false detections. On the other hand, the model has high
computational complexity and cannot easily meet real-time
requirements in practical applications. At the same time,
EfficientNetV2[16] also presents limitations. Although it
offers advantages in parameter count and computation, its
performance in object detection remains insufficient. For
example, EfficientNetV2 may fail to effectively extract
features during the detection of small-sized defect targets.
This results in insufficient detection accuracy. The PConv[17]
is mainly aimed at general convolutional neural network
acceleration, but its advantages cannot be fully utilized in
some specific tasks. Just like in some tasks that require highly
customized convolution operations, the PConv may not be as
effective as manipulation modules specifically designed for
these tasks.

This paper focuses on detecting small and occluded targets
in foggy environments by combining PConv, EfficientNetV2,
and ADown modules within a lightweight design framework.
Specifically, the PConv module reduces computational
complexity and ensures the extraction of key features by
optimizing traditional convolution operations. The ADown
module addresses information loss during down-sampling
and enables full fusion of multi-scale features. The backbone
network using EfficientNetV2 significantly reduces
parameter count and computation. It also improves the ability
to capture subtle defect targets while preserving accurate
feature extraction. The collaborative design of each module
lowers the network's computational burden and maintains
high detection accuracy and real-time performance.
Quantitative experiments and feature visualization further
confirm the effectiveness and advantages of this design in
foggy target detection tasks.
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To tackle the challenges in foggy object detection, this
paper proposes a lightweight detection framework named
PED-YOLO, as shown in Fig. 1. It integrates the PConv
module, the EfficientNetV2 module, and the ADown module
for construction. In this framework, the network structure of
PConv + ADown replaces the C3K2 and Conv modules in the
original YOLO11 neck network. This modification reduces
the number of parameters and computational load during
training, thereby improving detection accuracy and achieving
the goal of lightweight design. In the backbone of the
detection model, the lightweight EfficientNetV2 is integrated
to simplify the overall complexity and make the backbone
more compact. In the neck network, the ADown module
replaces the original down-sampling module. This
replacement enhances the model’s down-sampling
performance and reduces the number of parameters in the
detection model.

The core contributions of this paper can be summarised as
follows:

1. The Conv and C3K2 modules in the original YOLO11
neck network are substituted by the ADown and PConv
network structures.

2. The EfficientNetV2 module is incorporated into the
detection model's backbone to simplify the network
architecture and create a lightweight backbone.

3. The traditional downsampling modules in the neck
network are swapped with the ADown module to enhance
downsampling capabilities.

III. RESEARCH METHODOLOGY

This paper proposes an efficient object detection
framework, PED-YOLO, as shown in Fig. 2. The framework
utilizes EfficientNetV2 as the backbone network and applies
its compound scaling strategy to build a multi-scale feature
pyramid. This approach improves both the efficiency and
accuracy of feature extraction. Firstly, in the backbone
network of the detection framework, the four detection
modules Fused MBConv1, Fused MBConv4, MBConv4 and
MBConv6 in EfficientNetV2 are used instead of the C3K2
and Conv modules in YOLOI11. This improves the feature
fusion ability and computational efficiency of the model.
Secondly, in the neck structure, PConv oriented toward local
perception is innovatively introduced to substitute the
standard convolution operation. This enhances the expression
ability of local features, reduces computational complexity,
and retains high-frequency detail information. Finally, a
progressive downsampling module based on the ADown
operator was designed. This module effectively reduces the
amount of computation by gradually lowering the resolution
of the feature map while preserving the integrity of key
features. Through the above improvements, PED-YOLO
simplifies the network structure and reduces computational
complexity as well as model size. At the same time, detection
accuracy is maintained, thus enhancing overall detection
performance and efficiency.

A. PConv

As shown in Fig. 3, the PConv is a novel convolutional
architecture designed to address the challenge of
floating-point operations per second (FLOPS) in deep
convolutional networks[18]. The core of the PConv is that it

selectively convoluts some channels of the input data while
leaving the other channels unchanged. By setting a partial
rate, the proportion of channels participating in the
convolution is flexibly controlled. This method reduces
computational overhead and enhances feature extraction
efficiency. Specifically, the PConv significantly lowers
floating-point operations (FLOPs) and memory access
frequency while preserving model accuracy.

The design philosophy of the PConv maximizes the
utilization of information from all channels while minimizing
computing resource consumption. In network architectures
with multi-layer convolutions, high similarity between
channels often leads to functional duplication. The PConv
reduces this redundancy by convolving only a selected subset
of channels, improving spatial feature extraction efficiency.
Unlike traditional full-channel convolution, the PConv
focuses on a portion of the input channels, reducing
computational complexity and redundancy. The numerical
description and computational analysis are detailed in
Equation (1):

FLOPS,,, =hxwxk’xc’ (1)

where, / and w represent the height and width of the feature
map, k and ¢ represent the filter size, and the number of
channels. However, in the PConv, the computational cost is
as follows:

FLOPS =h><w><k2><cp2 2)

PConv

where, ¢, represents the number of channels participating in

the partial convolution. Define the partial rate as » =C /C, .

. 1
For example, during r :Z , one quarter of the channels

participate in the convolution operation.

The PConv reduces computational cost and floating-point
operations by utilizing the similarity between channel
features and the redundancy in the feature map [19]. This
approach is important for lightweight and efficient object
detection models, especially in resource-limited scenarios
such as UAVs and similar applications. In YOLOL11, the
C3K2 module adopts the CSPBottleneck structure. It applies
two parallel convolution layers to improve both feature
extraction speed and efficiency. During use of C3K2 PConv
in lieu of C3K2, the PConv mechanism lowers computation
and memory access by convolving only part of the channels.
This leads to improved speed and accuracy. C3K2 PConv
also supports integration with other methods, such as
deformable convolution, to strengthen feature extraction for
objects with different shapes and scales. By setting the partial
rate, C3K2 PConv controls the number of channels involved
in convolution. This reduces floating-point operations and
memory access, making it more suitable for limited-resource
environments. During training, it learns channel feature
relationships efficiently and enhances detection performance
in inference.

B. EfficientNetV?2

This study adopts EfficientNetV2[20] as the backbone for
YOLO11, providing high-precision feature extraction at low
computational cost. The EfficientNetV2 backbone uses
Fuded-MBConvl, Fuded-MBConv4, MBConv4, and
MBConv6 modules to replace YOLO11's C3K2 and Conv
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Fig. 2 Architecture of PED-YOLO

modules. EfficientNetV2 introduces the Fuded-MBConv
module, offering a lightweight design and enhanced
multi-scale feature extraction.

(DInnovative module construction:
module.

As shown in Fig. 4, one core innovation of EfficientNetV2
is the Fused Mobile Inverted Residual Bottleneck (Fused
MBConv) module. This module alleviates redundant
computation and repeated gradient propagation in traditional
convolutional neural networks through structural
optimization. Although the traditional depthwise separable
convolution can reduce the amount of computation, its
separate design (depthwise convolution + pointwise
convolution) may lead to insufficient local information
fusion in the feature extraction process, especially when
dealing with high-resolution images, the laye-by-layer
separation operation will introduce additional computational
overhead.

Fused MBConv achieves optimization of the computation
path by applying standard convolution to part of the deep
convolution operations. This architecture both retains the
advantages of being lightweight and strengthens the
aggregation ability of local features. It thus serves to reduce
the number of parameters (e.g., reducing FLOPs by about
30%) and improve the model’s sensitivity to key features
(e.g., edges and textures). In object detection tasks, this
module can rapidly focus on foreground objects and suppress
background interference by adjusting the receptive field of
the feature map.For example, in intelligent traffic scenes
involving dense vehicles, pedestrians, and changing
illumination, Fused MBConv effectively extracts geometric
and semantic features of targets. This provides low-latency
support for real-time detection. Yin et al. [21] pointed out that

Fused-MBConv

—

using a progressive stacking strategy of modules, such as
applying Fused MBConv in shallow layers and MBConv in
deeper layers, helps prevent information loss in early stages
caused by overly lightweight designs. This improves the
balance between detection speed and accuracy.

Input Output
L
i Filter
x Convolution
________ v A
1 Identity mapping
x M =
h h
w w

Fig. 3 PConv structure diagram

(2) Excellent lightweight design: parameter optimization
and efficient resource utilization.

Through innovative network architecture design and
parameter optimization, EfficientNetV2 reduces the number
of model parameters to nearly one-tenth the scale of
traditional backbone networks. At the same time, it maintains
high detection accuracy. This lightweight characteristic
lowers the demand for computing resources and supports
deployment on edge computing devices and mobile
platforms.The YOLOI11 model built on this architecture
achieves a good balance between detection accuracy and
operational efficiency in monitoring scenarios. Consequently,
the proposed model demonstrates strong potential for
deployment in resource-constrained and real-time intelligent
sensing scenarios.
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(3) Enhancement of Multi-Scale Feature Extraction:
Synergy Between ASPP and SE-Net.

(a) ASPP Module for Multi-Scale Feature Extraction:

The ASPP module integrated with EfficientNetV2
provides strong support for multi-scale feature extraction. In
the complex actual object detection scene, the scale of the
target object varies widely. These objects range from small
microscopic parts and insects to large buildings and vehicles.
Traditional backbone networks often struggle to extract
feature information from objects with different scales in a
fully accurate manner. By using 3x3 dilated convolution
kernels with different dilation factors (e.g., 6, 12, 18), the
ASPP module can sample and analyze the features of the
input image from multiple scales, so as to obtain rich and
comprehensive feature expressions. For small targets, the
small expansion rate convolution kernel was used to fine
extract details. For large objects, the large expansion rate
convolution kernel is used to obtain global features. In chip
defect detection within the electronic chip manufacturing
industry, circuit and component sizes are small. The
detection process requires extremely high accuracy. The
ASPP module enables the YOLO11 model, based on
EfficientNetV2, to capture key features of subtle defects on
the chip. It prevents missed detections caused by very small
targets. This enhances both the accuracy and reliability of
chip defect detection and provides strong technical support
for ensuring the quality of electronic products.

(b) SE-Net Attention Mechanism:

In the field of object detection, the problem of sample
imbalance is particularly prominent. Especially in the
one-stage detector, the number of background samples

(negative samples) far exceeds that of foreground samples
(positive samples). This causes the model to focus on
learning a large number of easily classified background
samples and ignore the learning of a small number of
important foreground samples. To solve this issue, a novel
sample equalization strategy, SE, is proposed. The SE block
consists of two steps: extrusion and excitation. In the
extrusion step, global average pooling is applied to each
channel to generate channel descriptors. In the excitation step,
channel weights are learned through two fully connected
layers and a Sigmoid activation function. These weights are
then applied to the original feature map to produce the final
output [22]. The main idea is to redefine the loss function so
that the model treats each class more fairly during training.
Specifically, a dynamic adjustment mechanism is introduced
to balance the impact of samples with different difficulty
levels on the total loss. This improves the overall
performance of the model.

Mathematical statement: Let P be the probability
predicted by the model and Y represent the actual label.

For the binary classification problem, the basic
cross-entropy loss is:

Loy (P.Y) = ~Ylog(P)~(1-V)log(1—P) 3)

To deal with the problem of sample imbalance, an
improved loss function is proposed. It combines the sample
difficulty adaptive factor and the class weight adjustment
factor. The form is as follows:

Improved Loss Function:

Lep(P,Y) ==W(Y)-[Ylog(o(P)) +(1-Y)log(1-o(P))] “4)
where o (P)

original probability value to the interval (0, 1), W(Y) is a

is the Sigmoid function, which maps the

weighting factor calculated based on the proportion of
sample classes to enhance the influence of minority classes.
In addition, to further emphasize the importance of
complex samples, a regularisation factor y based on sample
prediction error is introduced:
Regularisation Factors:
y(P.Y)=| Y-PI (5)
where, § is a hyperparameter that controls the strength of the
regularisation factor. The final SE loss function can be
expressed as:
Final Loss Function:
Ly (P,Y) =y (P,Y)- Lg:(P,Y) (6)

Applying the SE method, the model can more effectively
learn key foreground information. It also reduces the negative
impact of sample imbalance, leading to significant
improvements in accuracy and recall rate for the object
detection task.

(4) EfficientNetV2 backbone network adaptation.

In this work, the architecture of YOLO11 is improved by
replacing its default backbone network with EfficientNetV2.
The key implementation steps are as follows:

1) Input layer adaptation: The input resolution is adjusted
from the original 640x640 to 480%640, in line with the
recommended input ratio of EfficientNetV2. Bilinear
interpolation is used to maintain the spatial continuity of the
feature map.

2) Feature extraction layer migration: The outputs from
Stagel to Stage7 of EfficientNetV2 (stride=4 to stride=32)
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are intercepted and used in place of the CSPDarknet53
module in the original backbone network. To resolve the
channel dimension mismatch, a 1x1 convolutional regulator
(with a channel number of 512—256) is added before the

neck network. Layer normalization is then applied to stabilize
the feature distribution.

3) Parameter optimisation strategy:

(a) Freeze fine-tuning: The parameters of the first 15 layers
of EfficientNetV2 (about 68% of the total number of
parameters) are frozen. Only the parameters in Stage6,
Stage7, and the subsequent detection heads are fine-tuned.

(b) Calculation compression: The 3x3 standard
convolution in the SPPF module of YOLO11 is replaced by a
depthwise separable convolution, thereby reducing the
computational complexity of module k.

C. ADown

As shown in Fig. 5, the ADown module is an improved
convolution module. It is designed to solve the problem of
losing detailed information caused by the traditional
downsampling method in object detection tasks. Through a
series of carefully designed operations, the module can
reduce the size of the feature map while retaining more detail
information, and enhance the ability of the model to capture
features at different scales. The ADown module functions as
a substitute for the convolution module in the backbone
network. As a result, the model captures finer image details
and lowers both the computational load and structural
complexity [23].

(1) The core of the ADown module is its unique
combination of pooling and convolution operations:

1) Average pooling: It is performed on the input feature
map F € R and halving its size.

F = AvgPool (F) )

avg

where, AvgPool () denotes an average pooling operation that

reduces the spatial dimensions of the input feature map
from H xW to EXK .
2 2

2) segmentation process

The average-pooled feature map, F, , is divided into two

avg
parts, x; and X, , along the channel dimension.
x,, X,= Split(F,,,) 8)
3) Local feature extraction
For the first partitioned part, x, , a 3%3 convolutional layer
(stride 2, padding size 1) is used to extract local features.
x,'= Convl(x;w,,b,) ©)
where w, and b, represent the weights and biases of the
convolutional kernel, respectively.
4) Global feature extraction
For the second part, X, , a maximum pooling operation is
first performed, followed by a 1x1 convolutional layer (stride
1, padding 0) to capture more abstract global features.
x,'= Conv2(MaxPool (x,);W,.b,)
5) Feature stitching

(10)

Finally, the feature maps from the two components are
concatenated along the channel dimension. This generates the
final output.

F'=Concat(x,',x,") (11)

where, Concat () denotes the operation of concatenating two

feature maps along the channel dimension.

(2) Neck network optimization based on ADown

To solve the problem of computational redundancy in the
neck network of YOLOL11, this study proposes using the
ADown downsampling module instead of the original 3x3
standard convolution downsampling module. Specifically,
the feature map downsampling operation that uses a
convolution kernel with stride 2 in the original model is
substituted by the cascaded structure of the ADown module.
Firstly, the global information of the feature map is retained
by average pooling. Then the channel dimension is
compressed using 1x1 convolution. Finally, the spatial
dimension undergoes fine-grained feature extraction through
3x3 depthwise separable convolution.

This improvement both significantly reduces the
computational complexity and effectively alleviates the loss
of high-frequency information during the traditional
downsampling process. It enhances the ability of multi-scale
feature fusion. Experiments show that the substitution
strategy improves the representation ability of the neck
network for small target features by about 3.2%, and the
number of parameters remains basically unchanged.

In summary, the ADown module significantly improves
the performance of object detection models in remote sensing
images and other complex scenes. It achieves this through
unique pooling, convolution, and feature concatenation
operations. The module both retains more detailed
information during the downsampling process and effectively
captures the key features of the target. This leads to an overall
improvement in target detection performance. The ADown
module reshapes the down-sampling operation. This change
reduces the model's computational load and enhances its
ability to retain target features [24].

IV. EXPERIMENTS AND ANALYSIS

A. Experimental Settings

The improved YOLO11 detector is chosen as the core
network. The input image is uniformly resized to 640x640.
During training, the initial learning rate is set to 0.01, the
momentum is set to 0.9, and the weight decay parameter is
0.0005. The number of epochs and batch size are set to 400
and 8, respectively. The experiments are conducted using the
PyTorch framework. All training and testing procedures are
carried out in a Windows 10 environment with CUDA 11.2
support. The hardware platform consists of an Intel® Xeon®
Silver 4214 processor, an NVIDIA RTX 3080Ti GPU with
12GB of video memory, and 64GB of system memory. This
configuration ensures stable and efficient model training, and
the network achieves reliable convergence under the above
settings, allowing the model to perform to its full potential.
The detection performance is evaluated using mean Average
Precision (mAP) as the primary metric.
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Fig. 6 RTTS Dataset

B. Datasets

As shown in Fig. 6, the experiment uses the RTTS dataset
to comprehensively evaluate the improved YOLOI11
detection network. The dataset was carefully collected and
constructed by the Computer Vision research group at
Saarbrueken University, Germany, to support research in
real-time traffic sign detection. It is a large-scale,
high-resolution real-time object detection set that contains
rich image resources. This dataset offers valuable data for the
research and development of object detection algorithms
across various environments and conditions. RTTS is a
challenging test set designed to evaluate the adaptability and
performance of object detection algorithms under hazy
conditions. It includes diverse scenes and object categories
and provides accurate annotation information, making it an
important benchmark for research in domain adaptation for
object detection algorithms [25]. The RTTS dataset is also a
real-world, task-driven test set for evaluating object detection
algorithms in foggy conditions. It features diverse images of
foggy scenes and labels objects in different categories and
locations. These characteristics provide rich experimental
data for studying foggy object detection [26].

C. Evaluation index

1) mAP (mean Average Precision) is a metric used to
evaluate performance in object detection tasks. It takes into
account the differences between target classes. To calculate
mAP, the Average Precision (AP) is first computed for each
class. Then, the average of the AP values across all classes is

determined. mAP@50 refers to the mean Average Precision
when the IoU (Intersection over Union) threshold is set to
0.5.

N
mAP:iZAP,. (12)
NS

where N represents the number of categories.

2) Precision (P) refers to the proportion of actual positive
samples. These samples are among all samples predicted as
positive by the model. It measures the accuracy of the model

predictions, defined as the proportion of correct
identifications in the prediction results, expressed
mathematically as
7P
P= (13)
TP +FP

where TP is the number of true positives, and FP is the
number of false positives.

3) Recall (R) is the proportion of actual positive samples
identified by the model. These samples are among all positive
samples. It quantifies the model's ability to detect all relevant
positive instances. Mathematically expressed as

R=_ P
TP+ FN
where FN is the number of false negatives.

4) FLOPs (Floating-Point Operations) quantify the total
computational workload required by a model during
inference and are typically expressed in GFLOPs.

FLOP. =C,xK*xHxW +C,xC, xHxW  (15)

these symbols are defined as follows: C,, is the number of

(14)

input channels, C

"« denotes the number of output
channels, K 1is the size of the convolution kernel,
and H , W represents the height and width of the output

feature map.

D. Contrast Experiments

In the experimental section, seven different technical
routes are included in the comparison category. These routes
are YOLOVS5s , YOLOV7-tiny ,YOLOVS [27], YOLOV10,
YOLOL11, YOLOV12,and the method proposed in this study.
Experiments are conducted on the RTTS dataset. During the
experiment, all methods adopt the same training strategy and
hyperparameter settings. This ensures the fairness and
comparability of the comparison results.

As shown in TABLE I below, based on the comparison
results of various key indicators, the method proposed in this
study demonstrates significant advantages in model size,
parameter number, FLOPs, accuracy, recall rate, and mAP50.
As shown in TABLE |, the model achieves a high level of
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TABLE I
COMPARATIVE EXPERIMENTAL RESULTS OF EACH MODEL IN THE RTTS DATASET
MODELS Size Parameter FIOPs P R mAP50
YOLOVS5s 13.7 26.9 15.8 87 48.9 68
YOLOV7-tiny 6.7 36.9 13.3 75.5 58.3 72.16
YOLOVS 5.98 2.87 8.2 76.5 71.3 76
YOLOVI10 5.54 2.59 8.4 79.7 67.4 75.7
YOLOI11 5.25 2.47 6.4 74.9 72.1 76
YOLOVI12 5.21 2.51 5.8 77.8 65.5 74.6
Ours 4.04 1.8 4.8 78.7 68.1 76.7
TABLE I
COMPARISON OF THE PERFORMANCE OF EACH MODEL IN THE RTTS DATASET
AP/Y
Models - /% - mAP50
Bicycle Bus Car Motorbike Person
YOLOVS5s 60.8 59.2 76.4 47.7 46.4 68
YOLOV7-tiny 62.9 59.5 76.3 50.2 49.3 72.16
YOLOVS 68.9 62.3 89.5 75.6 85.5 76
YOLOV10 69.5 57.5 88.2 79.3 84.1 75.7
YOLOL11 67.8 63.9 89 74.3 84.8 76
YOLOVI12 66.9 55 84.5 71.4 80.2 74.6
Ours 70.2 68.9 88.4 80.9 85.3 76.7

AP value and mAP50 in categories such as Bicycle, Bus,
Motorbike, Person, and Car. The overall comprehensive
performance remains the best. This result strongly proves that
the performance of the proposed method in this study exceeds
other compared methods in the object detection task. In
particular, it is worth mentioning that the method of this study
successfully achieves a comprehensive reduction of key
indicators such as model size, parameter quantity, and model
complexity. At the same time, it maintains a stable detection
accuracy and effectively improves the lightweight degree of
the model.

E. Ablation experiments

To verify the effectiveness of the improved method in this
paper, comparative experiments are conducted under the
same training strategy and hyperparameters. The
effectiveness and feasibility of the improved method are
confirmed by comparing the experimental results. As shown
in TABLE III below, with the gradual introduction of PConv,

EfficientNetV2 and ADown modules, the model size,
parameter number and FLOPs are significantly reduced. At
the same time, high detection accuracy is maintained. This
achieves the lightweight optimization of the model.
Specifically, the model size, number of parameters and
FLOPs are significantly reduced during sole use of the PConv
module. When PConv and EfficientNetV2 are both applied,
the number of parameters decreases substantially and the
model becomes more lightweight. During application of
PConv, EfficientNetV2 and ADown, the final model size is
reduced by 23.05% compared to the original YOLO11 model.
The number of parameters decreases by about 27.18%,
FLOPs are reduced by about 25.00%, and mAP50 increases
by about 0.92%. These data show that by gradually
introducing these modules, the model achieves significant
results in terms of lightweight design. At the same time, the
detection performance also improves.

0.8
0.6
() o
o Lo
% 0.4 %
= =
—— YOLOV5s
— YOLOV7-tiny —— YOLOV5s
el —— YOLOVS —— YOLOV7-tiny
b, — YOLOV8
YOLOV10 — SO
— YOLO11 — YoLoil
— Ours 58] — Ours
T L T ¥ T ¥ T ¥ T ¥ T T T
0 50 100 150 200 250 200
Epoch Epoch

Fig. 7 mAP50 visual comparison diagram
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TABLE III
RESULTS OF ABLATION EXPERIMENTS ON RTTS DATASETS
YOLO11 PConv EfficientNetV2 ADown Size Parameter FLOPs mAPS50
\ 525 2590815 6.4 76
\ \ 5.09 2507535 5.9 76.1
\ v \ 429 2019707 5.0 76.4
\ \ \ 4.04 1886587 4.8 76.7

person 0.73" person 0.76 person 0.8Cperson 0.82

peréon 0.81
person 0.86

person 0.58
person 0.83

YOLOL11 Ours

Fig. 8 Comparison of test results

F. Visualization-Based Experimental Analysis

The Fig.8 presents a detailed visual analysis of the
detection results on the RTTS dataset, aimed at verifying the

effectiveness of the proposed method in the fog detection task.

The results are comprehensively compared with the original
YOLOI1 model. The comparative analysis clearly
demonstrates that the proposed method outperforms the
original YOLO11 model in terms of detection accuracy. The
proposed method achieves higher detection accuracy on the
RTTS dataset, accurately identifying and locating the target
object in foggy environments, particularly in complex scenes
and low visibility conditions. This result not only highlights
the advantage of the proposed method in enhancing detection
performance but also shows its robustness and adaptability
for practical applications.

The Fig.9 illustrates the use of the Grad-CAM heatmap
method to generate a color depth map, reflecting the weight
of the detection classification in the identified area. In the
original YOLO11 model, the heatmap does not focus on the
detected area, and the weight of the detection classification is
relatively small. In comparison, the heatmap generated by the
proposed method shows a darker color in the detected area,

Original Image

YOLO11 Ours

Fig. 9 Heatmap Comparison

indicating a higher weight for the detection classification.
This improves the model's detection performance.

G. Experimental Analysis Using Precision-Recall Curves
and Confusion Matrices

The PR curve [28] is a key tool for evaluating model
performance in object detection and machine learning,
especially when dealing with imbalanced datasets. After
training on the RTTS dataset, the performance curve was
plotted using precision (P) and recall (R) metrics. The
ordinate represents precision, and the abscissa represents
recall. As shown in FIG. 10, the curve for the proposed
method is closer to the upper-right region of the coordinate
axis. This indicates that, compared to the original YOLO11
model, the proposed method offers significant advantages in
detection performance. It achieves higher accuracy and
maintains a higher recall rate, which enables more precise
identification of positive samples. This highlights not only
the model's efficiency in detection tasks but also its superior
performance in complex scenes. To better reflect the model’s
performance, the outputs of YOLO11 and PED-YOLO are
compared. As shown in Figure 11, in the
accuracy-confidence curve, the average accuracy of
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PED-YOLO (blue line) is higher than that of YOLO11 across  our model significantly improves both precision and recall,

different confidence levels. In addition, in the enhancing its ability to identify objects in fog more
recall-confidence curve, PED-YOLO outperforms YOLO11  accurately.
in recall at various confidence levels. This demonstrates that
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Fig. 11 Comparison of accuracy and recall rate before and after improvement
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Confusion Matrix Normalized
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Fig. 12 Normalized confusion matrix

After normalization, the standard confusion matrix
converts the values into proportions or percentages to
eliminate the influence of class sample size differences. This
makes the comparison of classification performance more
intuitive. This method offers a fairer evaluation of model
performance, particularly when the classes are unevenly
distributed.

To evaluate the improved method, the normalized
confusion matrix was used. The rows of the matrix represent
the true class, and the columns represent the predicted class.
The diagonal values indicate correct classification, while the
bottom left and top right corners represent missed and false
detections, respectively. As shown in Fig. 12, PED-YOLO
performs well in object detection. It achieves 67% bicycle
detection accuracy, 62% bus detection accuracy, 87% car
detection accuracy, 73% motorcycle detection accuracy, and
81% pedestrian detection accuracy. The confusion matrix
also reveals misclassification patterns, providing a basis for
further optimization. Despite the robust performance of
PED-YOLO, some false detections and missed detections
remain. Future improvements could involve optimizing
feature extraction, adjusting the loss function, or increasing
data diversity.

V. CONCLUSION

In the field of fog detection, low detection accuracy,
complex network model structure, and an excessive number
of parameters have long been key challenges. To tackle these
issues, a lightweight framework named PED-YOLO is
proposed. It integrates modules such as PConv,
EfficientNetV2, and ADown to enhance both efficiency and
performance. Firstly, the Fused MBConv1, Fused MBConv4,
MBConv4, and MBConv6 modules in the EfficientNetV2
network are utilized to replace the C3K2 and Conv modules
in the original YOLO11. This modification reduces the

0.00 0.02 . 08
0.7
0.6
05

- 0.4

-03

-02

-0l

-0.0

weight of the backbone and enhances its feature extraction
capability. Secondly, the PConv + ADown network structure
is implemented to replace the C3K2 and Conv modules in the
original YOLO11 neck network. This effectively decreases
the number of parameters and computations during the
training process.

In this paper, evaluation methods such as heat maps,
normalized confusion matrices, P curves, and R curves are
used to compare and analyze the proposed detection
framework with other networks, including the original
YOLOLI1. In the heat map detection results, the color of the
generated detection area in the PED-YOLO framework is
darker. This indicates a significant enhancement in its
response intensity to the target. Compared to the original
YOLOI11 and other network models, the focus region is more
accurate. In the normalized confusion matrix, the diagonal
values also show improvements across all models. The
PED-YOLO framework captures and focuses on the key
features of the target in a foggy environment more accurately.
As a result, the detection performance is significantly
improved.

In addition, compared to the original YOLO11 model, the
mAP50 value of the proposed framework on the RTTS
dataset reaches 76.7, an increase of 0.92%. The model size is
4.04 MB, a reduction of 23.05%. The number of parameters
is 1,886,587, a decrease of 27.18%. The GFLOPs is 4.8,
reflecting a reduction of 25%.

In summary, the proposed lightweight PED-YOLO
framework significantly improves detection accuracy. At the
same time, it effectively simplifies model complexity,
reduces model size, and minimizes parameters. This
framework provides an efficient and accurate solution for fog
detection with excellent performance. It is expected to play
an important role in the practical application of fog detection
and offer valuable insights for research in related fields.
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