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Abstract—Message passing, as the core mechanism of 

Heterogeneous graph neural networks, can efficiently capture 
the latent relationships between nodes in the disease diagnosis 
task. However, the heterogeneity and complexity of medical 
data make it challenging for conventional message passing to 
accurately distinguish key information from noise, leading to 
semantic confusion, over-smoothing, and gradient vanishing 
issues. To address these challenges, we propose MPEA4DD, a 
heterogeneous graph neural network that integrates a custom 
message passing process combining dynamic edge attention 
with a state selection mechanism. We construct a medical 
heterogeneous graph from EMRs in MIMIC-III and 
MIMIC-IV, encode nodes and edges into a unified feature space, 
and apply our message-passing module, in which an edge 
attention network dynamically adjusts edge weights and a 
state-selection network assigns each node one of three 
interaction states (aggregation, dissemination, or integration) to 
mitigate the interference of irrelevant neighboring information. 
Furthermore, to mitigate gradient vanishing and excessive 
smoothing in deep architectures, we combine contextual 
semantic fusion with residual connections on GATv2 attention 
aggregation, achieving effective global information integration 
and stable gradient propagation in deep layers.  Thus, 
evaluations on both MIMIC-III and MIMIC-IV demonstrate 
that MPEA4DD significantly outperforms other baseline 
models in disease diagnosis accuracy. 

 
Index Terms—Message Passing, Attention, Disease Diagnosis, 

Electronic Medical Records, Medical Heterogeneous Graph 
 

I. INTRODUCTION 

ith the advancement of medical informatization, 
Electronic Medical Records (EMRs)[1] have become 

increasingly critical as primary data sources for disease 
diagnosis and therapeutic decision-making. EMRs contain 
patients' basic information, medications, procedures, and 
laboratory test results, providing strong support for 
personalized medicine. However, the high-dimensional 
heterogeneity and complex relational structures of medical 
data [2-3] pose significant challenges for shallow machine 
learning approaches to fully extract latent information. 
Achieving efficient disease diagnosis using heterogeneous 
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graph data remains a significant challenge. 
Graph Neural Networks (GNNs) [4] have demonstrated 

formidable capabilities in modeling complex relational 
networks. In particular, Heterogeneous Graph Neural 
Networks (HGNNs) [5-6] exhibit unique advantages in 
modeling diverse medical entities and their 
interrelationships ，  thereby significantly advancing 

EMR-based disease diagnosis research. 
Heterogeneous graph-based disease diagnosis models 

establish a new model for clinical decision-making by 
integrating multi-typed medical entities, including patients, 
drugs, and procedures. However, such models fail to 
explicitly distinguish the semantics of different types of 
medical entities during message passing, leading to feature 
confusion during propagation. Different patients' medical 
records may carry varying diagnostic significance, but 
conventional aggregation mechanisms fail to distinguish 
their roles in disease diagnosis, allowing irrelevant 
information to interfere with the model's discriminative 
capability. Related work [7] introduces a relation-aware 
attention mechanism; however, its use of static feature 
projection and lack of type constraints still fail to effectively 
preserve the semantic specificity of nodes. Theoretical 
studies have shown that as the number of node types in a 
heterogeneous graph increases, the neighborhood 
aggregation of conventional GNNs significantly weakens 
feature distinguishability, further exacerbating the issue of 
semantic confusion. 

Existing medical graph models enhance diagnosis 
performance through local neighborhood aggregation; 
however, their short-range message passing mechanism is 
fundamentally limited in capturing long-range dependencies 
within patient disease trajectories. Conventional GNNs, 
constrained by limited receptive fields, struggle to model 
such cross-temporal dependencies. This challenge is 
particularly acute in heterogeneous graph scenarios, where a 
patient’s disease progression often involves multiple medical 
events. Conventional neighborhood aggregation may restrict 
interactions between different types of information, making it 
difficult to comprehensively capture contextual semantic 
information. Models such as HAN [8] and HGT [9], which 
rely on fixed meta-paths or static attention mechanisms, are 
fundamentally incapable of effectively modeling dynamic 
entity relationships in medical scenarios. As a result, they 
difficulty capture time-sensitive clinical interaction patterns. 
Although FastGTN [10] employs a graph transformation 
network to capture high-order adjacency relationships and 
SlotGAT [11] leverages a slot allocation mechanism to 
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mitigate global information loss, their static designs still fail 
to effectively handle time-sensitive interactions, increasing 
the risk of misdiagnosis in complex cases.  

In deep graph neural networks for medical scenarios, as the 
number of GNN layers increases, gradient vanishing [12] 
leads to the failure of deep node feature updates, significantly 
impacting the modeling of long-term treatment pathways. In 
medical data, variations in diagnostic standards across 
institutions, examination errors, and other noise factors 
interfere with the stability of model convergence. Moreover, 
the scarcity of rare disease samples in EMR data exacerbates 
class imbalance, further impairing model discriminability for 
minority categories. GIN [13] proposes to balance 
information propagation and feature stability through 
residual connections and normalization regularization 
strategies. However, its static optimization mechanism fails 
to adapt to the dynamic complexity of medical scenarios, 
ultimately leading to performance degradation in deep layers. 

To address semantic confusion, global dependency 
omission, and gradient stability issues in medical 
heterogeneous graphs, we propose MPEA4DD, a 
heterogeneous graph neural network-based disease diagnosis 
model that not only resolves semantic confusion but also 
enhances diagnostic accuracy and generalization capability. 
The primary contributions can be outlined as follows: 
 We propose a dynamic neighbor selection mechanism, 

which employs a dynamic decision module based on node 
states and neighborhood features to effectively filter 
neighborhood information. An edge attention mechanism 
is introduced to dynamically assign weights to edge 
attributes within the same dimension. By leveraging a 
discrete selection strategy and the edge weights obtained 
from edge attention, the model effectively filters out 
non-critical neighbors, reducing semantic confusion in 
heterogeneous feature propagation and enhancing its 
ability to capture critical relationships. 

 The attention computation is improved based on the 
GATv2 architecture to more accurately capture contextual 
semantic relationships between nodes. A context fusion 
strategy and residual connections are incorporated to 
enhance cross-layer information flow, mitigating gradient 
vanishing and over-smoothing [14] issues in deep GATv2 
architectures. By integrating multi-level semantic 
representations, the model enhances the stability and 
accuracy of the disease diagnosis task. 

 We conduct a series of experiments and comparative 
analyses to evaluate the effectiveness of our proposed 
model in the disease diagnosis task, training and testing it 
on two real-world datasets: MIMIC-III and MIMIC-IV. 
Experimental comparisons with baseline models 
confirmed the superiority of the MPEA4DD model in 
disease diagnosis. 

II. RELATED WORK 

A. Heterogeneous Graph Neural Networks 

Recent advances in HGNNs seek to deliver both semantic 
richness and computational efficiency on complex 
heterogeneous graphs. HGNNs extend standard GNNs to 
handle multiple node and edge types by incorporating 
type-specific aggregation and attention. HAN uses a 

meta-path–based attention mechanism to aggregate along 
predefined semantic routes, but its fixed paths limit 
adaptability and can cause semantic mixing. HetGNN [15] 
applies random walks for neighborhood sampling and 
BiLSTM encoders to capture local heterogeneous features, 
yet it lacks a global context perspective and may miss 
cross-type interactions. RGCN [16] introduces 
relation-specific weight matrices to propagate features across 
different edge types, but deep models tend to over-smooth 
and suffer vanishing gradients, weakening feature 
discrimination. 

B. Message Passing Mechanism 

The message passing mechanism [17] is one of the core 
design principles in GNNs. It updates node representations 
by repeatedly passing and aggregating information between 
nodes and their neighbors. The conventional homogeneous 
graph GCN [18] and GraphSAGE [19] often use fixed 
aggregation functions to integrate neighbor features. 
However, in heterogeneous graphs, different types of nodes 
and edges often have their own semantic features. If a single 
aggregation strategy is still used, it can easily lead to 
semantic confusion or information redundancy, making it 
difficult to fully utilize the richness of heterogeneous 
relationships. 

In recent years, researchers have begun to introduce more 
flexible message passing mechanisms in heterogeneous 
graphs. CoGNN [20] proposes a collaborative learning 
approach across multiple subnetworks to dynamically adjust 
the interaction between nodes and their neighbors. Similarly, 
SlotGAT introduces a representation allocation mechanism 
to provide independent attention spaces for different types of 
nodes and edges, thereby alleviating feature confusion. 
Currently, message passing should not be merely a simple 
aggregation; instead, it needs to dynamically assign 
appropriate weights to each edge or neighbor to capture finer 
semantic differences in heterogeneous graphs. 

C. Attention Mechanisms 

Attention mechanisms [21], by dynamically assigning 
weights, empower the model with the ability to focus on key 
information and have become an important tool in graph 
neural networks for handling complex structures. GAT [22] 
is the first to introduce self-attention into graph learning, 
calculating neighborhood weights based on node feature 
similarity to achieve weighted aggregation of local 
information. The attention mechanism of GAT uses fixed 
parameters that cannot accommodate the diverse feature 
distributions of heterogeneous nodes, resulting in semantic 
mixing across types. To address this limitation, GATv2 [23] 
is the first to introduce a dynamic attention mechanism, 
which adjusts the weight computation function in real-time 
based on input features, significantly enhancing the model's 
ability to express heterogeneous relationships. Although 
GATv2 still has limitations in flexible modeling of 
multi-type nodes and edges, the dynamic nature of the 
attention mechanism and the computational complexity in 
complex heterogeneous graphs remain challenging research 
problems.   

While GATv2 improves flexibility, it still cannot model 
long-range dependencies, motivating Transformer-based, 
global attention. Graph Transformer [24], as a novel attention 
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mechanism, has demonstrated excellent performance in 
modeling complex structures and long-range dependencies. It 
overcomes the limitations of GAT and GATv2 in local 
weighted aggregation by introducing a Transformer-based 
global attention mechanism, effectively capturing semantic 
relationships between distant nodes in heterogeneous graphs. 
Recently, AGHINT [25] employs a Transformer-based 
architecture with an attribute-guided module and a relation 
encoder fused via multi-head self-attention. However, like 
other Transformer-based models, it faces high computational 
complexity, which limits its efficiency on large-scale 
heterogeneous graphs. Therefore, how to achieve accurate 
dynamic modeling of medical heterogeneous relationships 
while maintaining efficient computation remains the core 
direction for optimizing attention mechanisms. 

D. Diagnosis of Diseases 

The disease diagnosis models based on GNNs have made 
significant progress in recent years, particularly in the 
modeling of heterogeneous medical data and patient status 
diagnosis [26-27]. Since patient medical records contain 
multimodal information such as medications, procedures, 
and tests, effectively integrating these heterogeneous features 
is one of the key challenges. H-GCN [28] learns patient 
features by performing convolution operations on 
heterogeneous medical graphs, but it faces issues of feature 
over-smoothing and gradient vanishing. To improve the 
accuracy and efficiency of disease diagnosis, some 
researchers integrate genome or protein interaction networks 
with clinical EMR, gaining a more comprehensive 
understanding of disease diagnosis and development. 
Therefore, graph neural networks have also shown great 
potential in fields such as medical image analysis and drug 
discovery. Subsequent research should explore scaling GNNs 
to large-scale, high-dimensional, and highly heterogeneous 
medical datasets to enable more precise and personalized 
diagnosis and treatment. 

In conclusion, although existing research has made gradual 
progress in the disease diagnosis task, there are still many 
challenges in handling complex heterogeneous data, 
especially in terms of semantic confusion, over-smoothing, 
and gradient vanishing issues. Striking a balance between 
rich multimodal feature extraction and computational 
scalability is essential for truly efficient diagnosis. 

III. DISEASE DIAGNOSIS FRAMEWORK 

Fig.1 illustrates the model framework of MPEA4DD, a 
heterogeneous graph neural network for disease diagnosis 
based on message passing and edge attention. 

First, a medical heterogeneous graph is constructed based 
on EMR data. A node encoder and an edge-type encoder are 
then used to obtain representations of nodes such as patients, 
drugs, and procedures, as well as representations of edges 
such as patient-drug and patient-procedure relationships. In 
the convolutional layer, edge attention scores are fused with 
dynamically generated weights to establish adaptive message 
passing. This process leverages a state generation neural 
network to compute the retention probability of edge weights, 
enabling different types of nodes to interact optimally based 
on their states (aggregation, broadcasting, and integration). 
The edge attention network encodes edge attributes and 
dynamically adjusts base edge weights through an attention 
mechanism. The resulting attention coefficients refine and 
integrate these weights before message aggregation, yielding 
node representations that incorporate information from 
neighboring nodes. 

 After two convolutional layers, the model incorporates 
contextual information fusion and residual connections to 
enhance the stability of message passing, prevent feature 
over-smoothing, and improve the interaction capabilities 
across different types of nodes. Finally, the patient node 
representations are extracted and normalized to obtain the 
final disease diagnosis results. The following subsections 
detail each module's implementation. 

A. Medical Heterogeneous Graph Construction 

To facilitate accurate disease diagnosis, we construct a 
medical heterogeneous graph from EMR data to extract 
diagnostic information by capturing complex relationships 
among heterogeneous nodes. 

The medical heterogeneous graph is defined as 
, ,G V E  （ , ）,  where V represents the set of nodes, E 

represents the set of edges, Φ( )  and Ψ( )  denote the 

node-type mapping function and edge-type mapping function, 
respectively. Each node v V  has a mapping relation 

( )v vΦ , which assigns a specific type to the node. 

Similarly, each edge e E  has a mapping relation ( )e eΨ , 

which determines the type of relationship between connected 
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nodes. The patient node set is defined as 
1 2{ , ,..., }mP P P P  

where m denotes the total number of patients. The patient 
node set is defined as 

1 2{ , ,..., }mP P P P  where m denotes the 

total number of patients. The drug node set is defined as 

1 2{ , ,..., }nD D D D  where n denotes the total number of 

drugs. And the procedure node set is defined as 

1 2{ , ,..., }kO O O O  where k denotes the total number of 

procedures. It includes two edge types: patient-drug edges 
(P-D) for prescribed drugs and patient-procedure edges (P-O) 
for medical procedures performed. The heterogeneous graph 

G is defined such that  and  represent the sets of node 

types and edge types, respectively, satisfying the condition 
| | | | 2   . The adjacency matrix M is constructed by 

setting 1ijM   ,  if a patient is connected to a prescribed drug 

or 
nD a medical procedure 

kO , and 0ijM  otherwise. 

Since heterogeneous nodes have different feature 
dimensions, a type-specific linear mapping matrix is used to 
initialize the features of all node types. For each node v and 
each type { , , }t P D O , the feature initialization formula is 

given by:  
(0)

(0), , if ( )

0, if ( )
t t v

v

W x t v
h

t v

   
 

 

 

 
                (1) 

Where R vd
vx  represents the original feature vector of 

node v, and 1(0) R vd d
tW   is the type-specific mapping 

matrix for type t, which transforms the feature dimension to 

1d . The mapping function ( )v  maps each node to its 

corresponding type identifier, such as P, D, or O. 

B. Message passing based on fusion of edge attention score 
and state selection weight 

1) State generating neural network 
This module generates the retention probability of the edge 

R e
uve   based on the current node features R d

vh （ ）  and 

the features of its neighboring nodes { | ( )}vh u v（ ）  . 

These edge weights are used to dynamically adjust the 
weights of edges in the graph, optimizing the information 
propagation process. First, the weighted sum of the features 
of the neighboring nodes is computed to obtain the 
aggregated features of node v from its neighbors: 

( )
v agg u

u v

h W h


   （ ）


                          (2) 

Where ( )v denotes the neighbor set of node v, and 

aggW  is the aggregation weight matrix, which controls the 

contribution of the neighboring node features. After 
obtaining the aggregated neighbor feature, the current node 

feature uh （ ） is concatenated with the aggregated neighbor 

feature vh  and fed into a fully connected network to compute 

the probability distribution over three states (AGGREGATE, 
DISSEMINATE, and INTEGRATE): 

( ) ( [ || ])v a v v ap Softmax W h h b    （ ）         (3) 

Where 3 2R d
aW   is the weight matrix, 3Rab   is the 

bias vector, and 2[ || ] R d
v vh h  （ ）  represents the 

concatenation of the current node feature and the aggregated 
neighbor feature. The neural network ultimately outputs the 

state probability distribution ( ) 3[ , , ] Rv A D Ip P P P  . 

To sample a discrete selection vector ( )
va  from the output 

probability distribution ( )
vp , the graph structure is 

dynamically adjusted to enable more effective patient node 
classification. Directly using argmax for sampling is 
non-differentiable and prevents gradient optimization. 
Therefore, Gumbel-Softmax sampling [29] is used to achieve 
a differentiable discrete selection. The Gumbel-Softmax 
formula is as follows: 

( ) ( )(log( ), )  
v vGumbel - Softmax p τ         (4) 

which is equivalent to: 
( )
,( )

( )
,

{ , , }

exp((log ) / )

exp((log ) / )













v i i
v

v j j
j A D I

p g

p g

τ
τ

                (5) 

Where (0,1)ig Gumbel  is sampled from the Gumbel 

distribution, introducing randomness to simulate sampling 
from a discrete distribution. The temperature parameter 
τ governs the smoothness of the sampling process: When 

0τ , the output sharply converges to a one-hot vector, 
mimicking deterministic argmax selection; conversely, as 
τ , the output becomes a uniform distribution where all 

states are equally probable, effectively maximizing entropy. 
2) Feature selection neural network 

The goal of the message passing neural network is to 
update node features based on adjacency matrix information, 
thereby optimizing the representation of patient nodes. At 

each layer  , this process relies on the current node feature 
( )
vh  and the selection vector ( ) 

v  obtained through 

Gumbel-Softmax sampling. In heterogeneous graphs, 
connections between different node types serve distinct 
functional roles, necessitating the computation of base edge 

weights ,( )base
uvw  for each edge ( , )e u v . This weight is 

determined by the state vectors ( ) 
u  and ( ) 

v  of the 

connected nodes: 
,( ) ( ) ( )( , )   base

uv u vw f                     (6) 

Where ( )f  is the edge weight computation function, 

which determines the importance of the edge in the message 
passing process. A higher edge weight means that the edge 
has a greater influence on the target node during propagation, 
while a lower edge weight may result in the information from 
that edge being diminished. After calculating the edge 
weights, it is necessary to aggregate information from the 
neighboring nodes in order to update the current node's 
feature representation. 

To achieve this, a weighted summation is performed over 

the filtered neighbor set v  to construct the node's 

neighborhood representation: 
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( ) ,( ) ( )



    

v

base
v uv e u

u

m w W h


                (7) 

Here, R  d d
eW  is the edge-type-related weight matrix, 

ensuring that different types of relationships have distinct 

impacts on information aggregation, ( )
uh  is the feature 

vector of the neighboring node u at layer  , and ( )
vm  

represents the information gathered from the neighbors by 
the current node, where key neighbors have their influence 
amplified and irrelevant neighbors’ influence suppressed. 

After completing the neighbor feature aggregation, the 

current node feature ( )
vh  is combined with the aggregated 

neighbor feature ( )
vm  for updating, to generate the node 

representation for the next layer: 
( 1) ( ) ( )ˆ ( [ || ] )     
v u v v uh ReLU W h m b        (8) 

Where uW  is the update parameter matrix, and ub  is the 

bias vector. This update mechanism ensures that node 
features can dynamically adjust to changes in the network 
structure, thereby improving the accuracy of patient node 
classification. Through the role of the environment necural 
network, the model can better aggregate key information and 
suppress noise, thereby enhancing overall performance. 

3) Edge attention network 
This module is mainly used to encode edge attributes and, 

through the attention mechanism, dynamically adjust the 
base edge weights, thereby more finely aggregating neighbor 
information to update node features. For edge attribute 

encoding, each edge attribute uve  is first transformed into an 

embedding vector via an embedding layer: 

( ) R  ed
uv uve Embedding e                 (9) 

Next, the embedded vector uve  passes through a fully 

connected layer for a linear transformation, adjusting it to the 
fixed dimension required by the model. A reshape operation 
is then applied to format it appropriately for attention 
computation, facilitating subsequent inner product operations 
and attention score calculations. Mapping the embedded 
vector to the attention space: 

( , ( , ))  EAT
uv e uv ee reshape W e H d          (10) 

Where H is the number of attention heads, defaulting to 1, 

and EAT
eW  is the weight matrix for edge attribute encoding.  

Next, the encoded edge attribute 
uve  is used to compute 

the initial edge attention score by taking the inner product 

with the learnable parameter edge : 

, uv uv edgeee e                        (11) 

The scores are then processed with a LeakyReLU 
activation function and normalized across all edges 
originating from the same source node u, yielding the final 
edge attention coefficients: 

exp( ( ))

exp( ( ))








( )

uv
uv

uv
v u

LeakyReLU e

LeakyReLU e


           (12) 

Finally, the adjusted edge weight is obtained by integrating 

the base edge weight ,( )base
uvw  from the previously 

mentioned Gumbel-Softmax with the edge attention score 
( ) h
uv : 

,( ) ( ) ,( )

1




 
K

EAT k base
uv uv uv

k

w w                   (13) 

Where K is the number of attention heads. Next, the 
adjusted edge weights are used to re-aggregate neighbor 
information: 

( ) ,( ) ( )



    

v

EAT
v uv e u

u

m w W h


             (14) 

Following this computational stage, the edge attribute 
information is not only effectively encoded but also weighted 
and adjusted through the attention mechanism. This enhances 
the influence of key edges, providing richer and more precise 
information support for subsequent node feature updates. 

C. Residual Connections Based on GATv2 Node 
Representations 

1) GATv2 Aggregation 
After adjusting the edge weights and aggregating neighbor 

information, the model then processes the node features using 
GATv2 to enhance the ability to capture contextual 
information. GATv2 improves upon the original GAT 
mechanism, making the attention computation more robust to 
changes in input features, thereby enhancing the model's 
ability to capture complex relationships in heterogeneous 
graphs. 

( 1) ( 1)
,

ˆ2 ( , _ )  
v context vx GATv Conv h edge index   (15) 

This process is equivalent to: 
( 1) ( ) ( ) ( 1)
, 1

ˆ|| ( ) 
   H h h

v context h uv vx a W h           (16) 

Where H  is the number of attention heads in GATv2, 
( )h
uva  is the attention weight, representing the importance of 

neighboring node u to the target node v, ( )hW  is the 
transformation matrix corresponding to the h-th attention 
head,   is the nonlinear activation function. Unlike the 
mean or weighted sum aggregation models in standard GNNs, 
GATv2 allows the model to assign different attention weights 
to each neighboring node. This enables the model to 
emphasize the information from key neighbors and suppress 
the interference from irrelevant nodes. Finally, the context 
features aggregated by GATv2, context embedding features 

( 1)
,


v contextx  will be used for subsequent node feature fusion and 

the final disease diagnosis task. This allows patient nodes to 
better leverage neighbor information, thereby improving the 
accuracy of disease diagnosis. 

2)  Semantic-Fused Residual Links 
After obtaining the contextual information through 

GATv2, further fusion is performed to enhance the final node 
representation. This model introduces a residual connection 
mechanism and dynamically adjusts fusion weights for 
different sources of contextual semantics, ensuring gradient 
stability. 

First, the dynamic fusion weight ( 1) 
v  is computed as 

follows: 
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( 1) ( 1)
,( )    

v dyn v contextSigmoid W x          (17) 

Where dynW  is a learnable parameter matrix that 

determines how the fusion weight is computed. 
The dynamically computed fusion weights are then applied 

to perform a weighted residual connection between the 

contextual features ( 1)
,


v contextx  and the updated node features 

( 1)ˆ 
vh : 

( 1) ( 1) ( 1) ( 1) ( 1)
,

ˆ(1 )            v v v context v vh x h   (18) 

Where   denotes element-wise multiplication. This 

model allows to dynamically adjust the proportion of 
information from different sources, enhancing the flexibility 
of feature representation. The residual connections 
effectively preserve the original information while guiding 
the model to perform stable information updates across 
different layers, further enhancing the stability of the training 

process. Finally, the fused node feature ( 1)
vh  will serve as 

the input for the next layer, thereby enhancing the model's 
performance in the patient node classification task. 

D. Disease Diagnosis 

After completing node feature extraction and information 
fusion, the final representation of the patient node is 
processed to obtain the disease diagnosis results. To ensure 
feature stability and enhance the model's generalization 
capability, we first perform normalization on patient nodes 

 patientv V  : 

( )( ) L
vZ LayerNorm h                   (19) 

Here LayerNorm normalization adjusts the mean and 
variance of feature values, ensuring that features have a 
similar scale across different nodes. This helps mitigate 
issues like gradient explosion and vanishing gradients, 
thereby enhancing the stability of model training. Then, a 
linear transformation is applied to map the aggregated 
features to the final disease category: 

( ) 
c cy Softmax W Z b                   (20) 

where cW  represents the weight matrix of the 

classification layer, and cb  denotes the bias term. The 

Softmax function transforms the linear outputs into a 
probability distribution, representing the likelihood of the 
patient node belonging to each disease category. 

Finally, the cross-entropy loss function is employed to 
supervise the training process: 

i 1

log


  
（ ）

C

i iy y                        (21) 

Where C is the number of disease classes, 


iy is the 

predicted probability for class iii produced by the Softmax in 

Eq. (20), and iy  is the one-hot encoded ground-truth label. 

This loss measures the divergence between the predicted 
distribution and the true distribution, penalizing low 
confidence in the correct class and discouraging incorrect 
predictions. By minimizing   with a gradient-based 
optimizer, the model’s weights are iteratively adjusted so that 

its output distribution increasingly aligns with the true labels, 
thereby improving diagnostic accuracy and generalization. 

IV. EXPERIMENTS AND EVALUATION 

This study presents a detailed account of the experimental 
setup, including the datasets, evaluation metrics, baseline 
models, parameter configurations, and result analyses. The 
proposed model is rigorously evaluated through extensive 
experiments conducted on the MIMIC dataset. Furthermore, 
ablation studies, visualization analyses, and hyperparameter 
sensitivity evaluations are performed to comprehensively 
examine the individual contributions of each component 
within the model architecture. 

A. Dataset and Preprocessing 

The dataset used in this study is the Medical Information 
Mart for Intensive Care (MIMIC) electronic medical records 
database. This database, funded by the National Institutes of 
Health, was established in 2003 and jointly developed by the 
MIT Laboratory for Computational Physiology, Harvard 
Medical School’s Beth Israel Deaconess Medical Center, and 
Philips Healthcare. The MIMIC dataset includes basic 
information, clinical records, medications, procedures, and 
other key medical data, providing extensive support for 
clinical research and disease diagnosis in critically ill patients. 
We utilize the MIMIC-III and MIMIC-IV datasets, which 
cover different types of critical illnesses and medical 
procedures. To enhance the model’s generalization ability 
and evaluation effectiveness, representative disease data ate 
extracted from both datasets to construct a heterogeneous 
medical graph for the disease diagnosis task. The specific 
patient count statistics are shown in Table I. 

In the MIMIC-III dataset, we select five representative 
diseases as experimental data: Coronary Disease, 
Disseminated Infections, Respiratory Failure, Heart Failure, 
and Gastritis. The experiment focuses on 7,000 patients 
diagnosed with these diseases, involves 1,379 drugs, and 
includes 563 procedures with their corresponding medical 
record texts. And in the MIMIC-IV dataset, six diseases are 
selected: Septicemia, Heart Failure, Diabetes, Pneumonia, 
Myocardial Infarction, and Hypertension. The experiment 
focuses on 8,331 patients, involves 1,692 drugs, and includes 
843 procedures with their corresponding medical record 

TABLE I 
STATISTICS OF DATASETS 

Disease label 
MIMIC-III MIMIC-IV 

Number of patients Number of patients 

Coronary Disease 2750 0 

Pneumonia 0 1256 

Respiratory Failure 388 0 

Septicemia 0 2148 

Disseminated Infections 1830 0 

Myocardial Infarction 0 934 

Heart Failure 803 1629 

Respiratory Failure 1229 0 

Diabetes 0 1557 

Hypertension 0 807 

Total 7000 8331 
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texts. 

B. Evaluation Metrics 

We use Micro-F1 and Macro-F1 scores as evaluation 
metrics for the model’s disease diagnosis task in the 
experiment. The F1 score is a comprehensive metric that 
balances precision and recall, making it particularly suitable 
for multi-class classification tasks. In the medical 
heterogeneous graph node classification task, since class 
distributions are often imbalanced, using accuracy alone is 
prone to being dominated by the majority class. Therefore, 
this study adopts the F1 score to more comprehensively 
evaluate the mode’s performance. 

1) Micro-F1  
Micro-F1 evaluates model performance by merging the 

predictions of all classes into a single category and then 
calculating the precision and recall for this aggregated 
category. Micro-F1 effectively reflects the overall 
performance across all samples and demonstrates strong 
robustness, especially in cases of class imbalance. 

Its specific calculation formula is as follows: 
2

- 1
2




  
T P

M icro F
T P F P F N

         (21) 

Where TP represents true positive samples, FP represents 
false positive samples, and FN represents false negative 
samples. 

2) Macro-F1 
Macro-F1 is a metric that evaluates model performance by 

calculating the F1-score for each class and then averaging 
them. Unlike Micro-F1, Macro-F1 focuses more on the 
classification performance of each category. Therefore, it is 
more sensitive to the performance of minority class samples 
in imbalanced class distributions. The calculation formula is 
as follows: 

1

21
- 1

2




  
n

i

i i i i

TP
Macro F

n TP FP FN
          (22) 

By combining Micro-F1 and Macro-F1, the model's 
performance in the disease diagnosis task is able to be 
comprehensively evaluated. Micro-F1 emphasizes the overall 
sample accuracy, while Macro-F1 focuses on the balance of 
performance across different categories. In the subsequent 
experiments, both metrics are reported to more 
comprehensively reflect the model's performance across 
different task scenarios. 

C. Baselines 

To evaluate the model's performance, the following 
baseline models are compared with the MPEA4DD model 
proposed: 
 GCN[18] aggregates neighboring node features using 

spectral convolution through feature transformation based 
on the Laplacian matrix. 

 GAT[22] uses a self-attention mechanism to perform 
weighted aggregation of neighboring node features and 
introduces multi-head attention to enhance its 
performance. 

 HAN[8] introduces a hierarchical attention mechanism, 
which includes both node-level attention and 
semantic-level attention. These two attention mechanisms 
are associated with meta-paths and implemented using 
GAT. 

 GIN[13] updates node features by employing additive 
aggregation and multilayer perceptron (MLP), 
significantly enhancing the model's ability to improve 
node embedding representations. 

 HGT[9] employs a multi-head attention mechanism and 
node-type-specific projection operations to model 
different types of nodes and edges, improving performance 
on complex heterogeneous graph tasks. 

 HHGT[30] introduces a hierarchical Transformer 
architecture that separately models type-level and 
distance-level heterogeneity through (k, t)-ring 
neighborhoods, achieving improved representation 
learning in heterogeneous graphs. 

 FastGTN[10] automatically learns long-range 
dependencies and high-order adjacency relationships 
between nodes, significantly enhancing the model's ability 
to represent complex graph structures and enabling faster 
training. 

 SlotGAT[11] introduces a slot allocation mechanism, 
where independent slots are assigned to each node type, 
maintaining representations in their respective feature 
spaces. It also incorporates slot attention techniques in the 
final layer, improving the accuracy of heterogeneous graph 
classification tasks. 

 CoGNN[20] integrates a collaborative learning 
mechanism into heterogeneous graph node classification 
tasks, where the cooperative optimization of 
environmental networks and decision networks achieves 
dynamic adjustment and efficient aggregation of node 
features. 

D. Parameter Settings 

For these models, we use the original paper settings and 
report their best results. 

The MPEA4DD model uses the Adam optimizer for 
parameter optimization, with an initial learning rate set to 
0.001. The maximum number of training epochs is set to 200, 
and the batch size is set to 8. The node embedding layer 
dimension is set to 64, the hidden layer dimension is set to 16, 
and the number of convolution layers is set to 2. To prevent 
overfitting, dropout regularization is applied between layers 
with a dropout rate set to 0.5. The model uses the 
Gumbel-Softmax mechanism for differentiable discretization 
of decision probabilities, with an initial temperature 
parameter τ  set to 0.01 to control the discretization effect 
and prediction stability. 

The performance of MPEA4DD is evaluated through 
the disease diagnosis task. The experimental data is divided 
as follows: 50% as the training set for parameter learning, 
30% as the validation set for hyperparameter tuning, and 20% 
as the test set for final performance evaluation. This data split 
ensures sufficient training data while providing reliable 
verification of generalization ability. 

E. Experimental Results and Analysis 

The final experimental results of the MPEA4DD model 
and all baseline models are shown in Table II. The 
performance of conventional graph convolution models, 
GCN and GIN, is significantly lower in heterogeneous 
medical graphs compared to other models. Their local 
neighborhood aggregation mechanism struggle to effectively 
model the complex interactions between patients, drugs, and 
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procedures. The GAT model, which introduces an attention 
mechanism, improves performance through weighted 
aggregation, but still has significant limitations in cross-type 
semantic differentiation. Among the heterogeneous 
graph-specific models, HGT demonstrates robust 
performance through relation-specific design, but its 
adaptability to dynamic medical relationships is insufficient; 
SlotGAT further optimizes heterogeneous feature fusion 
through a slot allocation mechanism, but its static slot design 
limits the ability to model dynamic priorities. HHGT 
introduces a hierarchical attention structure, but its complex 
multi-level aggregation increases optimization difficulty and 
may lead to overfitting in limited-data medical scenarios. The 
CoGNN performs better in multi-source information 
integration, validating the effectiveness of dynamic 
interaction strategies, but the gradient stability issues during 
deep network training still limit performance improvement.  

The MPEA4DD proposes in this paper exhibit optimal 
performance on both datasets. On the MIMIC-III dataset, 
Micro-F1 and Macro-F1 reach 91.31 and 89.76, respectively; 
on the MIMIC-IV dataset, Micro-F1 and Macro-F1 reach 
88.85 and 89.44, respectively. The experimental results 
indicate that the MPEA4DD has achieved excellent 
performance on complex medical heterogeneous graphs and 
outperforms other baseline models in the disease diagnosis 
task. 

To further evaluate the statistical significance of the 
proposed model, we conduct 10 independent runs on both 
MIMIC-III and MIMIC-IV datasets with different random 
seeds. The average performance and 95% confidence 
intervals are reported as follows: on MIMIC-III, the 
Micro-F1 and Macro-F1 scores are 0.9131 ± 0.0010 and 
0.8976 ± 0.0015, respectively; on MIMIC-IV, the Micro-F1 
and Macro-F1 scores are 0.8885 ± 0.0009 and 0.8944 ± 

0.0009. These results demonstrate the model's strong 
generalization ability and consistent performance under 
different random initializations. 

F. Ablation Experiment 

To validate the effectiveness of the MPEA4DD 
architecture, four variant models are designed: 
MPEA4DD_nE, MPEA4DD_nG, MPEA4DD_T, and 
MPEA4DD_nR. MPEA4DD_nE removes the edge weight 
allocation mechanism and computes attention weights solely 
based on node features. MPEA4DD_nG removes the GATv2 

aggregation mechanism. MPEA4DD_T replaces the GATv2 
module with the standard Transformer self-attention 
mechanism. Finally, MPEA4DD_nR removes the residual 
connections and does not update node features through 
residual connections. 

This study compares the performance of these variant 
models with the original MPEA4DD model on the 
MIMIC-IV dataset. The results, as shown in Fig.2, lead to the 
following conclusions. 
 After removing the edge weight allocation mechanism, the 

performance of MPEA4DD_nE significantly declined. 
Due to the lack of capability in modeling complex 
relationships in the heterogeneous graph, both Micro-F1 
and Macro-F1 decrease. This indicates that the edge 
attention mechanism plays a crucial role in capturing the 
associations between heterogeneous node features and is a 
key component in enhancing model performance. 

 After removing the GATv2 aggregation mechanism, the 
performance of MPEA4DD_nG slightly declines. This 
indicates that GATv2 makes a significant contribution to 
contextual semantic aggregation, and its attention 
mechanism effectively enhances node feature 
representation in complex heterogeneous graph structures. 

 After replacing GATv2 with the Transformer 
self-attention mechanism, the performance of 
MPEA4DD_T declines. This suggests that in 
heterogeneous medical graphs, the dynamic attention 
mechanism of GATv2 is more advantageous than the 
standard self-attention mechanism, as it can more precisely 
capture the importance differences among neighboring 
nodes. Therefore, GATv2 plays an irreplaceable role in 
contextual feature fusion. 

 After removing the residual connections, the performance 
of MPEA4DD_nR drops significantly. This validates the 
importance of residual connections in deep models for 
mitigating gradient vanishing and long-range dependency 
issues. The residual mechanism effectively enhances the 
continuity of feature propagation through direct shortcut 
connections, helping to maintain the stability of node 
features. 
In summary, the above ablation experiments validate the 

necessity and effectiveness of each component in MPEA4DD. 
The edge attention mechanism, GATv2 aggregation 
mechanism, Transformer replacement mechanism, and 
residual connections all play crucial roles in enhancing model 

TABLE II 
PERFORMANCE COMPARISON OF DIFFERENT MODEL 

Models 
MIMIC-III MIMIC-IV 

Micro-F1 Macro-F1 Micro-F1 Macro-F1 

GCN 84.76 80.31 80.16 80.47 

GAT 86.43 84.21 82.16 82.86 

HAN 84.76 81.55 76.00 76.33 

GIN 86.90 83.43 80.84 81.49 

FastGTN 80.13 80.13 78.96 78.96 

HGT 85.81 82.30 77.28 78.25 

HHGT 85.09 81.88 78.64 79.26 

SlotGAT 87.62 85.22 82.12 82.49 

CoGNN 90.18 87.64 87.82 88.36 

MPEA4DD 91.31 89.76 88.85 89.44 
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performance. The intact model demonstrates superior 
performance in the medical heterogeneous graph node 
classification task. 

G. Visualization 

The t-SNE [31] is a dimensionality reduction algorithm. 
To intuitively evaluate the model's performance in the 
disease diagnosis task, t-SNE is used to map patient nodes 
from the MIMIC-IV test set into a two-dimensional space. 
The visualization results are shown in Fig.3, where different 
colors represent different types of disease labels. 

From this figure, it is observed that although GCN and 
GIN can cluster nodes of the same class relatively well, there 
is still significant mixing between nodes with different labels, 
making it difficult to form clear classification boundaries. 
GAT and HAN show slight improvements in node 
aggregation effectiveness, but there is still a significant 
degree of node mixing, making it difficult to achieve clear 
category separation. HGT shows improvements in capturing 
heterogeneous information, but still fails to completely 
resolve the issues of node stacking and mixing. The FastGTN, 
although demonstrating a certain degree of clustering 
effectiveness, still exhibits relatively unclear classification 
boundaries. 

MPEA4DD not only excels in the aggregation of nodes 
with the same label but also forms clear classification 
boundaries, effectively reducing the mixing areas of nodes 

from different categories. This demonstrates that MPEA4DD 
can better learn the embedding representations of patient 
nodes, exhibiting stronger discriminative power and 
generalization ability. 

H. Hyperparameters Study 

The performance of MPEA4DD varies significantly under 
different hyperparameter settings. In our experiment, all 
other parameters are kept constant, and only a single 
parameter value is changed at a time to study the impact of 
that parameter setting on the model, aiming to explore the 
optimal hyperparameter settings for the model's performance. 

1) Feature embedding dimension 
Feature embedding dimension is an important parameter 

that affects feature representation capability and model 
capacity. Five embedding dimensions, 16, 32, 64, 128, and 
256, were compared and the experimental results are 
presented in Table III. 

From the experimental results, it can be observed that as 
the embedding dimension increases, the model's performance 
first improves and then declines. The model performs best 
when the feature dimension is set to 64. This is because 
appropriately increasing the feature dimension enhances the 
model's ability to represent complex features. However, 
when the feature dimension becomes too large, it may lead to 
overfitting and noise accumulation, ultimately affecting 
performance. Therefore, choosing 64 as the embedding 

 
Fig.2 The comparison of MPEA4DD and its variant 

 
Fig.3 Visualization of the patient disease diagnosis 
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dimension is a reasonable decision. 

2) Convolutional layers 
Experiments were designed to compare models with 2, 3, 4, 

and 5 convolutional layers to verify the impact of model 
depth on classification performance. The experimental 
results are presented in Table IV. 

The results indicate that as the number of layers increases, 
the model's performance gradually declines. The best 
performance is achieved with 2 layers, suggesting that an 
appropriate number of layers can effectively capture the 
feature information of patient nodes. However, excessive 
layers may lead to gradient vanishing and over-smoothing, 
ultimately reducing classification performance. Therefore, 
choosing 2 layers as the model depth strikes a balance 
between performance and complexity.  

3) Dropout 
Four dropout rates 0.1, 0.3, 0.5, and 0.7 were compared to 

assess the impact of the dropout hyperparameter on 
classification performance and the results are presented in 
Table V. 

The experimental results indicate that as the dropout rate 
increases, the model's performance initially improves but 
declines after exceeding a certain threshold. When the 
Dropout rate is set to 0.5, the model achieves its best 
performance, demonstrating that an appropriate dropout rate 
can effectively prevent overfitting and enhance 
generalization. However, an excessively high dropout rate of 
0.7 causes the model to lose too much feature information, 
leading to a significant performance drop. Therefore, 0.5 is 
chosen as the optimal dropout rate, striking a good balance 

between regularization effectiveness and model performance. 

I. Convergence properties analysis 

Fig.4 presents the training and validation loss curves of the 
proposed model on the MIMIC-IV dataset over 120 epochs. 
Both curves show a steady decline, indicating effective 
model optimization and convergence. The validation loss 
closely tracks the training loss throughout the training 
process, with no significant divergence, suggesting strong 
generalization and the absence of overfitting. After 
approximately 90 epochs, the validation loss stabilizes, 
further confirming convergence. These results demonstrate 
that the proposed model achieves stable and reliable 
performance on the multi-class classification task, exhibiting 
consistent training dynamics and robust generalization 
capability. 

V. CONCLUSION 

To address the issues of semantic confusion, 
over-smoothing, and gradient instability encountered in 
disease diagnosis using EMRs within heterogeneous graph 
neural networks, we propose a novel disease diagnosis model, 
MPEA4DD. By employing a message passing mechanism 
with node state selection and a Gumbel-Softmax 
differentiable sampling strategy, along with an edge-dynamic 
attention mechanism, the proposed model dynamically filters 
neighborhood information, effectively reducing the 
interference of irrelevant neighbors on the model. Building 
upon GATv2 attention aggregation, a dynamic integration of 
contextual semantic fusion and residual connection strategies 
effectively alleviates the issues of gradient vanishing and 
over-smoothing in deep networks. Finally, on the MIMIC-III 
dataset, MPEA4DD improved Micro-F1 and Macro-F1 by 
1.13% and 2.12%, respectively, compared to the best 
baseline model. On the MIMIC-IV dataset, it achieved 
improvements of 1.03% and 1.08%, respectively, which 
demonstrates that our model significantly outperforms 
conventional baseline models in the disease diagnosis task. 
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