Engineering Letters

Hybrid Spiral Superb Fairy-wren Optimization
Algorithm for Economic Load Dispatch Problem

Xin-Yi Guan, Jie-Sheng Wang * Hao-Ming Song, Tia-Hui Zhao

Abstract—To address the limitations of the traditional
Splendid Fairy-wren Optimization Algorithm (SFOA) in
complex high-dimensional search spaces, namely, its
susceptibility to local optima and its slow convergence speed,
this paper proposes a novel Hybrid Spiral Splendid Fairy-wren
Optimization Algorithm (HSSFOA). The proposed algorithm
preserves the original three-phase behavioral model of chick
growth, foraging, and predator evasion, while integrating the
escape energy mechanism from the Harris Hawks Optimization
(HHO) algorithm to enhance global exploration capabilities.
Additionally, the spiral search strategy from the Whale
Optimization Algorithm (WOA) is incorporated to improve
local exploitation performance. To further enhance jump
diversity and convergence efficiency, five distinct spiral update
strategies are designed: sine spiral, phase-modulated spiral,
hyperbolic sine spiral, hyperbolic cosine spiral, and damped
spiral. To comprehensively evaluate the performance of the
proposed algorithm, it is initially tested on 30 benchmark
functions from the CEC-2017 suite to assess its performance in
high-dimensional optimization tasks. Subsequently, the
algorithm is applied to solve both a 6-unit and a 20-unit
Fconomic Load Dispatch (ELD) problem in a power system.
The results are compared with those from other state-of-the-art
optimization algorithms. Experimental results demonstrate that
HSSFOA significantly outperforms several contemporary
algorithms in terms of convergence speed, solution quality, and
robusiness across different problem scales. These findings
highlight the potential of HSSFOA as an efficient and scalable
optimization framework for real-time economic dispatch in
power sy stems.

Index Terms—Splendid Fairy-wren Optimization Algorithm,
Hybrid Spiral Strategy, Escape Energy Mechanism, Spiral
Search Strategy, Fconomic Load Dispatch

[. INTRODUCTION

I n contemporary engineering and scientific research,
complex high-dimensional optimization problems pervade
areas such as image processing, machine learning, network
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optimization, and energy scheduling. Economic Load
Dispatch (ELD) in power systems represents a prototypical
instance of a high-dimensional, tightly coupled, constrained
non-convex optimization problem. Its objective is to
minimize total generation cost while satisfying both power
balance constraints and the individual output limits of each
generating unit. With the increasing penetration of renewable
energy sources and the growing complexity of electricity
market transactions, the ELD problem exhibits pronounced
multimodality, nonlinearity, non-convexity, and high-
dimensional coupling. Classical gradient-based methods and
Lagrange multiplier techniques often fail to procure global
optimality or rapid convergence in large-scale, real-time
dispatch settings, owing to cost-function discontinuities,
forbidden operating zones, and valve-point effects [1].
Inrecent vears, meta-heuristic algorithms based on swarm
intelligence have garnered increasing attention due to their
simplicity, few control parameters, and ability to conduct
parallel exploration in large-scale search spaces. Algorithms
such as Particle Swarm Optimization (PSO) [2], Differential
Evolution (DE) [3] and Ant Colony Optimization (ACO) [4]
have demonstrated remarkable performance in a variety of
engineering applications. However, these algorithms often
suffer from premature convergence and local optima
entrapment when dealing with extremely complex and
high-dimensional multi-modal landscapes, leading to an
imbalance between global exploration and local exploitation.
To address the limitations associated with classical swarm
intelligence algorithms, such as premature convergence and
slow convergence speed, a variety of enhanced methods have
been proposed. Fang et al. introduced the multi-strategy
fusion dung beetle optimizer (MSFDBO), a novel approach
that mitigates these issues by expanding the search space
during the initial phase through refractive opposition-based
learning. This strategy prevents premature convergence to
local optima by incorporating an adaptive curve-based
population control mechanism. Additionally, triangular drift
strategies and fusion subtractive average optimizers were
integrated into the rolling and mating behaviors of dung
beetles, while an adaptive Gaussian-Cauchy hybrid
perturbation factor was employed to significantly improve
the overall performance of the algorithm [5]. Ina similar vein,
Wang et al. developed a reinforcement learning-enhanced
differential evolution algorithm. This method integrates
QQ-learning into differential evolution (DE) to dynamically
adjust algorithm parameters and select appropriate mutation
strategies, thus improving both adaptability and overall
optimization performance [6]. Xu et al. proposed an
enhanced variant of the Honey Badger Algorithm (HBA)
known as SHBA, which incorporates symbiotic mechanisms
based on cooperative interactions between honey badgers and
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honey guided birds. This symbiosis enhances population
diversity while maintaining the search capability of the
algorithm. Their approach demonstrated strong competitive
performance in experimental settings [7]. Chaib et al
introduced an innovative hybridization of the Crayfish
Optimization Algorithm (COA) with a fractional-order
chaotic map. This hybrid model includes an adaptive COA
parameter setting and a dimensional leaming-hunting search
scheme, leading to improvements in accuracy, consistency,
and convergence speed [8]. Similarly, Jia et al. enhanced the
COA by embedding a water-quality-based environmental
update mechanism and a ghost-antagonistic learning strategy,
which significantly bolstered the algorithm's ability to escape
local optima and enhance global search performance [9]. In
the context of marine ecosystem modeling, Ye et al
introduced an adaptive weight adjustment strategy and a
dynamic social learning mechanism into the Marine
Predators Algorithm (MPA). These innovations markedly
increased encounter rates and improved search efficiency,
which are essential for optimizing search strategies in
complex environments [10]. Qian et al. enhanced the
Chimpanzee Optimization Algorithm (ChOA) by combining
it with six spiral functions, yielding results that were highly
competitive compared to traditional methods, further
validating the algorithm's robustness [11]. Lastly, Huang et al.
addressed the shortcomings of the Aurora Optimization
Algorithm in terms of both population diversity and
convergence speed by introducing a pseudo-random lens
SPM chaotic nitialization strategy. They further proposed a
hybrid approach combining adaptive dynamics with a locally
exploitative reward-loss function and incorporated an
adaptive  t-distribution mutation mechanism. These
improvements significantly enhanced both population
diversity and the convergence speed of the algorithm [12].
Together, these advancements reflect the ongoing efforts to
refine swarm intelligence algorithms, making them more
adaptable, efficient, and capable of overcoming the inherent
limitations of classical approaches.

The Superb Fairy-wren Optimization Algorithm (SFOA)
[13] simulates the behavioral processes of chick development,
foraging, and predator evasion across three stages, exhibiting
good adaptability in solving multi-modal functions. By
dynamically adjusting search strategies through stage-wise
behavioral modeling, the algorithm enhances population
diversity during exploration. However, as the problem
dimensional and complexity increase, the original SFOA
reveals limitations in both global search efficiency and local
exploitation accuracy. Specifically, it tends to fall into local
optima in high-dimensional spaces and suffers from limited
convergence speed due to constraints inherent in its
behavior-driven search mechanisms.

To address these limitations, this paper proposes a Hybrid
Spiral  Multistage  Superb  Fairy-wren  Optimization
Algorithm (HSSFOA). Building upon the original three-
phase behavioral model, the proposed algorithm incorporates
the escape energy mechanism of the Harns Hawks
Optimization (HHO) algorithm [14] to enhance global
exploration capability. Simultaneously, it integrates the spiral
search strategy of the Whale Optimization Algorithm (WOA)
[15] to strengthen local search performance. Moreover, to
investigate the influence of movement trajectories on jump

diversity and convergence efficiency, five spiral update
strategies are introduced: sine spiral, phase-modulated spiral,
hyperbolic sine spiral, hyperbolic cosine spiral, and damped
spiral. This design aims to achieve a more effective balance
between global exploration and local exploitation.
Subsequently, HSSFOA will be comprehensively evaluated
on the high-dimensional benchmark suite CEC-BC-2017
[16], followed by comparative experiments on a 6-unit and a
20-unit economic load dispatch (ELD) system to assess its
practical performance [17]. The experiments will
systematically investigate the algorithm’s convergence
behavior, solution quality, and computational scalability, in
comparison with several state-of-the-art methods. The results
are expected to demonstrate that HSSFOA offers an efficient
and scalable optimization framework for real-time economic
dispatch in power systems.

II. SUPERB FAIRY-WREN OPTIMIZATION ALGORITHM

A Initialization

The proposed SFOA 1is a population-based technique that
simulates its search capability in the solution space by
varying the number of fitness evaluations, thereby effectively
addressing the optimization problems in real-world
environments. Each member of the SFOA represents a
candidate solution to the problem and determines the values
of decision variables based on the problem landscape within
the search space. Mathematically, each member is modeled
as a vector, where each element corresponds to a decision
variable. The collecion of all members constitutes the
population of the algorithm, as defined in Eq. (1)
Simultaneously, the initial positions of all members are
mnitialized at the beginning of the algorithm by using Eq. (2).

X, Xi1 Xig Xip
X = Xi = Xi,l Xi,d Xi,D (1)
Xulvio  1Xwa Xna Kyp D
X =(ub—Ib) xrand(0,1) + {b )

where, X denotes the global population matrix of the SFOA,
X, represents the i-th member (candidate solution), and X,
refers to the value of the d-th decision variable in the search
space. N 1s the total number of population members, r 1s a
uniformly distributed random number in the interval [0,1],
and ub and [b denote the upper and lower bounds of the d-th
decision variable, respectively.

B. Mauthematical Model of the SFOA

In each evaluation, the positions of the SFOA population
members are updated through three distinct phases: an inmtial
global exploration inspired by chick growth behavior,
followed by an exploitation phase based on foraging and
mating activities, and finally a further exploitation phase
driven by predator avoidance behavior.

1. Chick Growth Phase
The SFOA updates the position of each individual based
on Eg. (3), aiming to improve the objective function value.

Xnew;; = Xi; + (Ib + (ub — lb) x rand), r > 05  (3)
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where, Xnew;; denotes the updated position of the
population member, X}, represents the position of the i-th
member in the j-th dimension after ¢ iterations, and rand is a

random number in the interval [0,1].

2. Reproduction and Foraging Phase

In this stage, the positions of all agents are revised by
emulating the Splendid Fairy-wren’s breeding and
chick-rearing behaviors. When the risk threshold s, defined
in Eq. (4), falls below a preset limit, the algorithm enters the
breeding phase and enacts a specialized incubation barrier to
prevent intrusion by foreign individuals.

s=r *20+ 71, %20 (4

where, vy and r; are random numbers drawn from a normal
distribution. Due to the cooperative breeding behavior of the
SFOA, multiple members incubate eggs vyear-round,
promoting recognition and learming. During each cycle (m),
SFOA members alternate between foraging and teaching,
leading to small positional adjustments that enhance the
efficiency of local search exploitation. A maturity factor is
introduced, which increases as the teaching cycle progresses.
As members approach the matunity phase, their activity range
expands. Based on the modeling of positional changes during
teaching and egg incubation, each member's new position is
computed by using Eq. (5). If this new position results in an
improved objective function value, the corresponding
member 1s updated.
Xnew;; =X+ (X, —X[)Xp,r<05ands <20 (5
Xe=X,xC (6)

where, X;, denotes the current best position, and C is a
constant with a value of 0.8.

p = sin{{ub — b)) x 2 + (ub — 1b) x m) (7
m= () X 2 (8)

where, FEs denotes the current number of iterations, and
MaxFEs represents the maximum number of iterations.

3. Predator Avoidance Phase

In the predator avoidance phase of the SFOA, the positions
of the population members are updated based on the defense
mechanisms employed by the Splendid Fairy-wren against
predators. Its movement pattern 1s described by the
mathematical formula in Eq. (9).

Xnew,; =X, +X;; X{xk,r<05ands>20 (9)

where, [ represents the Levy flight random step size, which
controls the algorithm's ability to escape from local optima. k
is the adaptive flight balance factor, as described in Eq. (10),
and works in conjunction withlto adjust the flight distance of
the birds. Additionally, X, 1s incorporated to control the
movement direction of the birds.

In this formulation, W denotes the call frequency, which
plays a critical role in facilitating predator avoidance by
acting as an early alert signal during flight.

k=02x sin(%— w) (10)
T FEs
W_ExMaxFEs (11)

ITII. HYBRID SPIRAL SUPERB FAIRY-WREN OPTIMIZATION
ALGORITHM

A. Hybrid Superb Fairv-wren Optimization Algorithm

To address the issues of local optima and slow
convergence speed in the Splendid Fairy-wren Optimization
Algorithm (SFOA), we propose a Hybrid Spiral SFOA.
Given that the Harris Hawks Optimization (HHO) [14]
algorithm has strong global search capabilities, and the spiral
search mechamsm 1n the Whale Optimization Algorithm
(WOA) [15] enables both broad global exploration and fine
local development, we integrate these two algorithms into the
SFOA to enhance its search ability and help it escape local
optima. Specifically, the original position update Eq. (5) is
replaced with position updates derived from both algorithms.
To balance the contributions of the two algorithms, we
introduce the escape energy formula from HHO shown in Eq.
{12) to determine which update strategy to apply.

When the escape energy |E0| >= 1, the random leap
update from HHO is used (Eq. (13)); when |EQ| <1, the
spiral search update from WOA 1s employed (Hqg. {14)).
Through this adaptive switching mechanism based on escape
energy, the algorithm efficiently explores the global search
space and refines solutions locally near the optimal solution,
significantly enhancing its ability to escape from local optima
and accelerating its overall convergence speed.

_ _ __FEs
E=(2xrand—1)x2x(1--—2) (12)

Xnew;; = X;; — rand X |(2 xrand — 1) X X, —Xl-J-l (13)

Xnew;; = |X, — Xy| x Z + X, (14)
Z = "7 x cos(2mr) (15)
FEs
r={(-2--——)xrand+1 (16)
where, Z represents spiral in WOA, and b is setto 1.
B. Hyvbrid Spiral Superb Fairy-wren Optimization

Algorithm

To further enrich the diversity and adaptability of the
search trajectories, this paper introduces five spiral shapes
with distinct geometric characteristics, based on the original
spiral update formula of the Whale Optimization Algorithm
{(WOA). These spirals are designed to guide the algorithm's
jumping path during different iterative stages. They include:
sine spiral, phase-modulated logarithmic spiral, hyperbolic
sine spiral, hyperbolic cosine spiral, and damping spiral. The
original WOA spiral is shown in Fig. 1(a), while the other
five spirals are depicted in Fig. 1{b)-(f). Their mathematical
expressions are provided in Table I By randomly or
strategically switching among these spiral shapes during each
spiral update, the algorithm can obtain more diverse search
paths during the local exploitation phase, thus enhancing its
ability to escape local optima and accelerating overall
convergence. Furthermore, this dynamic shape switching
mechanism can effectively balance the exploration and
development capabilities of the algorithm. When the
algorithm detects search stagnation, it enhances global
exploration by switching to a high-curvature helix. In the
stable convergence stage, progressive helical enhancement
for local refinement is adopted to further optimize the
coverage efficiency of the search space.
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TABLE 1. THE FORMULA OF FIVE KINDS OF SPIRALS

Serial number Screw name Formula Parameter setting
1 Sine spiral e?t" X (1+ a X sin(c x 2mr)) a=0.3; b=1; ¢=5
2 Phase modulation Log spiral e’ X (1+ a x sin(c X 2nr + h)) X cos(2mr) a=0.3; b=1; ¢=6; h=m/4
3 Sinh spiral sinh(a X 2rr) X cos(2nr) a=0.5
4 Cosh spiral cosh(a x 2xr) X cos(2nr) a=0.5
5 Damping spiral e~ X 2mr X cos(2mr) a=0.2
' Logarithrpic Spiral . |SiNh ‘SPifa|‘

05

(a) Original spiral

(d) Sinh spiral
Cosh Spiral

Sine Spiral

(b) Sine spiral

Phase-Modulated Log Spiral

(e) Cosh spiral

15

05

Damping spiral

N
05

0

1
05 1

(c) Phase modulation Log spiral

Fig. 1 Images of the spirals.

(f) Damping spiral
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C. Pseudo-code and Flowchart of the HSSFOA

Pseudo code of HSSFOA:

Initialize the parameters and population

Calculate the fitness of the initialized population and find the best individual (FEs=FEs+1)

WHILE(FEs<=MaxFEs)
FORi=1to N
IF »>T (Young birds make up a large proportion of population)

Entering the growth stage of young birds, the position update was carried out according

to Eq. (3). (Young birds growth stage)
ELSE

Calculate the danger factor s of the current position according to Eq. (4).

IF s<R (The current environment is safe)

IF |EOQ|>=1 The position is updated by Eq. (13). (Random jump of HHO)
ELSE The position is updated by Eq. (14). (Spiral search of WOA)

END IF

ELSE (The current environment is dangerous)

The natural enemies were avoided by Eq. (9). (Avoiding natural enemies stage)

END IF
END IF
END FOR
END WHILE

Calculate the fitness of the updated population and find the best individual (FEs=FEs+1)

END

Initialize the population Compute the fitness value
Start andparameters through and find the best
Eq. (2) individual FEs =FEs +1

Y oung birds need

The position is updated

experience to grow

according to Eq. (3)

Calculate the hazard
coefficient s according to
Eq. (4)

The position is updated
according to Eq. (13)

The position is updated
according to Eq. (14)

When the risk factor is
high, the bird needs to
avoid natural enemies

The position is updated
according to Eq. (9)

The position is updated
according to Eq. (3)

k and w are calculated
—>  through Eq.(10) and
Eq.(11)

Fig. 2 The flow chart of HSSFOA.

IV. SIMULATION EXPERIMENT AND ANALYSIS

To  comprehensively evaluate the optimization
performance and practical applicability of the proposed
Hybrid Spiral Super-Flock Optimization Algorithm
(HSSFOA), three representative groups of experiments were
designed and conducted, targeting both standard benchmark
functions and real-world engineering problems. The
experiments aim to systematically analyze the performance
of HSSFOA in solving complex optimization tasks

characterized by high dimensionality, multimodality and
nonlinearity, while examining its global search capability,
local exploitation ability, and overall robustness.
Furthermore, the impact of different spiral-guided strategies
on the algorithm’s search behavior and optimization
outcomes is also investigated.

The first set of experiments employed the 30 benchmark
functions from the CEC-BC-2017 test suite, which include
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unimodal, multimodal, separable, non-separable and rotated
functions, thereby covering a wide range of optimization
characteristics. This evaluation comprehensively assesses
the adaptability and stability of HSSFOA in standard
optimization environments. Comparative experiments were
conducted against various classical and recently developed
intelligent optimization algorithms. Performance metrics
such as best value, mean value, standard deviation, and
convergence curves were used to verify the proposed
algorithm’s superiority in terms of solution accuracy,
convergence speed, and stability.

The second set of experiments focuses on real-world
engineering optimization scenarios, where the proposed
HSSFOA 1is applied to economic load dispatch (ELD)
problems in power systems. Two case studies with different
scales are conducted to thoroughly evaluate the algorithm’s
practical applicability.

In the first case, a classical 6-unit power system is
considered, where the objective is to meet a total load
demand of 1263 MW while minimizing the total fuel cost.
This problem includes generation limits and transmission
losses, posing a moderately complex yet widely recognized
benchmark for testing algorithmic performance. HSSFOA’s
performance on this system is evaluated in terms of cost
minimization, convergence behavior, and constraint
handling capabilities, and compared with several well-
known optimization algorithms.

In the second case, a large-scale 20-unit system is used,
where the goal is to schedule generation to satisfy a total
demand of 2500 MW. This problem 1s characterized by high
nonlinearity, a vast solution space, and complex operational
constraints, making it a more challenging tested for
scalability and robustness. In this scenario, HSSFOA aims to
minimize the total operational cost while strictly satisfying
all system constraints. The performance 1s assessed using
metrics such as total generation cost, convergence speed,
and solution stability, and benchmarked against both
classical and modern meta-heuristic algorithms.

These two complementary case studies provide a
comprehensive evaluation of HSSFOA’s effectiveness
across small- and large-scale constrained engineering
optimization problems.

A. HSSFOA Solves CEC-BC-2017 Benchmark Functions

To thoroughly evaluate the effectiveness and optimization
performance of the proposed Hybrid Spiral Superb
Fairy-wren Optimization Algorithm (HSSFOA), this study
conducted a systematic experimental assessment based on
the CEC-BC-2017 benchmark suite. This suite includes 30

representative, complex, high-dimensional benchmark
functions, encompassing single-modal, multi-modal,
composite functions, and high-dimensional coupling

problems, which effectively test the adaptability of
optimization algorithms across different problem structures.
All test functions were set to a dimension of 30, with
variable ranges defined as [-100,100], a maximum iteration
count of 1000, and a population size of 30, ensuring a fair
evaluation of the algorithm in a standardized environment.
To guarantee the reliability and statistical significance of the
experimental results, each experimental set was
independently run 30 times, and performance analysis was

conducted based on three metrics: Mean, Best, and Standard
Deviation (Std).

To compare the specific impacts of different strategies on
the algorithm's performance, the improved SFOA algorithm
was named [ISFOA, and five variants were constructed based
on five different types of spiral trajectory update strategies:
SISFOA with sine spiral mechanism, LISFOA incorporating
phase-modulated logarithmic spiral, SHISFOA with
hyperbolic sine spiral, CHISFOA with hyperbolic cosine
spiral, and DISFOA with damping spiral strategy. These
improvements aimed to enhance the population's jumping
diversity and local development capability, thereby
improving overall optimization efficiency. The convergence
curve of the experimental results is shown in Fig. 3, and the
statistical table of the experimental results 1s shown in Table
IO In addition, according to the average value of the
experimental results in Table II, we draw an inward circular
histogram, as shown in Fig. 4, the closer to the center of the
circle, the better the effect of the algorithm.

According to the convergence curves and histograms of
Fig. 3 and Fig. 4, HSSFOA and its variants show faster
convergence speed and higher stability on multiple functions.
Notably, they demonstrate strong global exploration
capability in the early search phase, with the convergence
stabilizing in the later stages, thus avoiding premature
convergence to local optima. As shown in the detailed
statistical results in Table I, compared to the original SFOA
algorithim, the improved algorithms achieved significant
improvements on most test functions. The experimental
results reveal the performance of each algorithm variant
across different test functions. In the case of the 1 function,
ISFOA achieved the best results, attaining near-optimal
mean and standard deviation values, significantly
outperforming the original SFOA. SISFOA also performed
well, ranking second, showcasing its strong global search
capability. For the F2 function, DISFOA demonstrated
superior performance, with its damping mechanism
stabilizing the late-stage search and preventing premature
convergence. SISFOA also showed good results, leveraging
its jump search mechanism to avoid premature trapping in
local optima. In the F3 function, DISFOA achieved the best
optimization results, particularly in terms of convergence
speed and stability, while ISFOA and SISFOA also
demonstrated robustness i tackling the function’s
complexity. For F4, LISFOA performed notably well,
benefiting from its phase-modulation strategy, which proved
effective for handling complex function structures. SISFOA
followed closely behind, demonstrating its ability to balance
global exploration with local refinement. On F5, ISFOA
obtained the optimal optimization results, improving both
the accuracy and standard deviation. SISFOA again showed
its global search strengths, ranking second. In the F6
function, LISFOA took the lead, owing to its
phase-modulation strategy, which proved advantageous in
complex function structures, while SISFOA and DISFOA
also performed well, maintaining stability during the search.
For the F7 function, ISFOA exhibited superior performance,
avoiding early convergence and demonstrating strong global
exploration capabilities. SISFOA also achieved near-
optimal results, ranking second. On F8, DISFOA stood out,
as its damping mechanism effectively stabilized the
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late-stage search, outperforming other algorithms. In the
case of the F9 function, SISFOA led the performance, owing
to its spiral search mechanism, which excelled in
high-dimensional jump searches. ISFOA ranked second,
highlighting its robustness in global search scenarios. In the
F10 function, ISFOA outperformed the other algorithms,
reaching the best optimization results and minimizing the
standard deviation. SISFOA and LISFOA also demonstrated
robust performance, confirming their effective search
strategies. For F11, LISFOA excelled, showcasing its
phase-modulation strategy's advantages in complex high-
dimensional functions, with SISFOA and ISFOA
performing consistently well. On F12, SISFOA achieved the
best optimization result, significantly improving both the
accuracy and standard deviation. LISFOA followed closely
behind, confirming the robustness of phase modulation in
handling complex structures. For the F13 function,
CHISFOA and SHISFOA led the results, demonstrating the
advantages of hyperbolic functions in controlling
convergence within local search regions. ISFOA and
SISFOA also performed well, confirming their capability in
multi-modal optimization tasks. In F14, CHISFOA and
SHISFOA again showcased their strengths, with hyperbolic
functions effectively guiding the algorithm to better
convergence. For FI15, LISFOA performed the best,
benefiting from its phase-modulation strategy in addressing
complex function structures, while SISFOA and ISFOA
followed with stable results. In F16, LISFOA achieved the
best results, reflecting its adaptability in complex,
high-dimensional optimization spaces. SISFOA and ISFOA
continued to display strong performance. On F17, LISFOA
once again demonstrated the best performance, confirming
its ability to handle complex functions effectively. SISFOA
and ISFOA ranked well, showing consistent global search
capability. For F18, ISFOA and SISFOA showed the best
results, highlighting their superior global exploration
capabilities. In the F19 function, ISFOA led the performance,
showcasing its robustness in handling multi-peak functions,
with SISFOA ranking second, further validating the efficacy
of the spiral search mechanism. For F20, CHISFOA and
SHISFOA exhibited the strongest performance, with
hyperbolic functions ensuring effective convergence control
in local regions. In F21, CHISFOA and SHISFOA again led,
emphasizing the importance of hyperbolic functions for
local search control, with ISFOA and SISFOA performing
reliably. In F22, ISFOA achieved the best optimization
results, particularly in terms of minimizing standard
deviation. SISFOA and LISFOA demonstrated similar
effectiveness, ensuring strong performance. For F23,
CHISFOA and SHISFOA performed best, once again
confirming the advantages of hyperbolic functions in local
convergence. On F24, DISFOA emerged as the top
performer, with its damping mechanism proving effective in
stabilizing late-stage searches. For F25, CHISFOA and
SHISFOA again led, showcasing their local convergence
advantages, while SISFOA performed consistently well. In
F26, ISFOA and SISFOA displayed the best results,
highlighting their strong global search abilities. In F27,
DISFOA took the lead, with its damping mechanism
stabilizing the search and improving late-stage optimization.
For F28, SISFOA achieved the best results, demonstrating

superior performance in terms of both accuracy and standard
deviation. In F29, LISFOA emerged as the best performer,
benefiting from its phase-modulation strategy to handle
complex function structures effectively. Finally, for F30,
LISFOA again showed superior performance, demonstrating
the advantages of its phase-modulation strategy in handling
high-dimensional optimization problems. In conclusion,
SISFOA, ISFOA, LISFOA, and other variants consistently
demonstrated improved performance across the majority of
the test functions. Overall, SISFOA and ISFOA exhibited
the best overall optimization results, validating the
effectiveness of the spiral mechanisms and multi-strategy
collaborative updates in enhancing both global search
capability and local refinement accuracy.
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Fig. 3 The convergence curves of HSSFOA to solve the CEC-2017

functions.
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TabLE II. HSSFOA o opTiMIZE THE CEC-BC-2017 FUNCTIONS
Function SFOA ISFOA LISFOA CHISFOA SISFOA SHISFOA DISFOA
Ave 1.1320E+10 2.0364E+09 2.0901E+09 3.1408E+09 2.2318E+09 2.5715E+09 2.9037E+09
Std 5.5729E+09 1.4692E+09 1.6514E+09 2.3423E+09 1.2804E+09 1.9288E+09 2.2260E+09
# Best 3.5754E+09 2.2951E+08 3.0269E+08 2.8838E+08 3.9512E+08 1.2019E+08 7.4045E+08
Rank 7 1 2 6 3 4 5
Ave 1.0958E+13 3.7667E+10 1.6866E+10 1.8347E+11 1.6521E+10 2.5598E+10 2.2188E+10
Std 2.5253E+13 1.4469E+11 3.6474E+10 8.3091E+11 4.1213E+10 6.0282E+10 3.3696E+10
% Best 4.8211E+09 2.4098E+06 3.3245E+06 3.8277E+06 2.5089E+05 4.3395E+07 1.0973E+07
Rank 7 5 2 6 1 4 3
Ave 6.4375E+04 3.1264E+04 33713E+04 4.4965E+04 3.6887E+04 3.8190E+04 4.0861E+04
Std 3.1280E+04 1.2853E+04 1.5367E+04 2.0738E+04 1.3426E+04 1.7571E+04 1.5414E+04
5 Best 1.4852E+04 1.0769E+04 1.2710E+04 1.3873E+04 9.4447E+03 9.9844E+03 9.1027E+03
Rank 7 1 2 6 3 4 5
Ave 2.0953E+03 5.5923E+02 5.5118E+02 6.8416E+02 S5.4593E+02 6.1137E+02 5.9858E+02
Std 1.3192E+03 1.0423E+02 8.7981E+01 1.9881E+02 9.7194E+01 1.2203E+02 1.3572E+02
& Best 6.1054E+02 4.4756E+02 4.4228E+02 4.6615E+02 43017E+02 4.4212E+02 4.1357E+02
Rank 7 3 2 6 1 5 4
Ave 6.1730E+02 5.7037E+02 5.6893E+02 5.7205E+02 5.6853E+02 5.6689E+02 5.6951E+02
Std 2.6457E+01 2.3658E+01 1.8919E+01 1.9727E+01 1.9047E+01 1.3439E+01 1.7049E+01
5 Best 5.6024E+02 S.1987E+02 5.3778E+02 5.4331E+02 5.3338E+02 5.4765E+02 5.4219E+02
Rank 7 5 3 6 2 1 4
Ave 6.7714E+02 6.4724E+02 6.4625E+02 6.4591E+02 6.4466E+02 6.4994E+02 6.4936E+02
Std 2.1889E+01 1.6427E+01 1.4609E+01 1.7418E+01 1.8144E+01 1.5923E+01 1.4425E+01
e Best 6.3055E+02 6.2341E+02 6.1338E+02 6.2035E+02 6.1464E+02 6.1950E+02 6.2688E+02
Rank 7 4 3 2 1 6 5
Ave 1.0644E+03 8.5809E+02 8.7279E+02 8.8366E+02 8.5724F+02 8.6507E+02 8.8234E+02
Std 1.4443E+02 4.4999F+01 5.8525E+01 6.3248E+01 49121E+01 5.8268E+01 6.1988E+01
# Best 8.3260E+02 7.7539E+02 7.9872E+02 7.8404E+02 7.7102E+02 7.7617E+02 7.9473E+02
Rank 7 2 4 6 1 3 5
Ave 9.1465E+02 8.6852E+02 8.6887E+02 8.7256E+02 8.7151E+02 8.6929E+02 8.6648E+02
Std 2.9096E+01 1.9874E+01 2.1774E+01 1.9157E+01 1.6824E+01 2.1134E+01 1.6103E+01
5 Best 8.6317E+02 8.4280E+02 8.3831E+02 8.3294E+02 8.4116E+02 8.2993E+02 8.3578E+02
Rank 7 2 3 6 5 4 1
Ave 4.4972E+03 2.4785E+03 2.5108E+03 2.3895E+03 2.3389E+03 2.8259E+03 2.6431E+03
fo Std 1.4497E+03 6.9721E+02 1.0464E+03 7.0209E+02 6.5554E+02 1.4320E+03 9.1201E+02
Best 2.2238E+03 1.3851E+03 1.0921E+03 1.1464E+03 1.3088E+03 1.0728E+03 1.3340E+03
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4
9.8471E+03
8.2608E+03
1.5900E+03

4
5.2001E+04
6.5569E+04
2.7852E+03

5
2.0216E+03
1.6186E+02
1.7538E+03

3
1.8890E+03
9.1628E+01
1.7330E+03

2
4.7324E+05
9.2143E+05
9.8495E+03

5
2.6435E+05
6.0714E+05
2.2469E+03

6
2.2329E+03
1.0508E+02
2.0479E+03

2
2.3547E+03
4 4785E+01
2.2407E+03

4
2.6872E+03
4 6951E+02
2.3161E+03

5
2.7345E+03
3.5876E+02
2.1983E+03

6
2.2022E+03
1.3011E+03
1.2498E+03

4
4.8686E+07
8.7459E+07
1.2305E+06

5
5.3140E+05
1.8527E+06
4.6828E+03

6
1.0469E+04
9.7261E+03
1.6349E+03

6
4.0911E+04
4.3704E+04
3.2252E+03

2
2.0576E+03
1.9429E+02
1.7025E+03

5
1.9261E+03
9.9131E+01
1.7694E+03

6
3.4314E+05
6.9500E+05
1.4085E+04

3
1.3503E+05
2.5494E+05
3.6059E+03

4
2.2668E+03
1.0015E+02
2.0586E+03

6
2.3549E+03
4.4972E+01
2.2214E+03

5
2.7058E+03
4.5760E+02
2.3971E+03
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Rank 7 2 § 4 1 3 5
Ave 2.7115E+03 2 .6654E+03 2.6627E+03 2.6709E+03 2.6629E+03 2.6637E+03 2.6661E+03
Std 2.6397E+01 1.8255E+01 1.5787E+01 13996 E+01 1.8177E+01 1.9640E+01 1.5664E+01
o Best 2.6600E+03 2.6266E+03 2.627AE03 2.6488E+03 2.6370E+03 2 6268E+03 2.6368E+03
Rank 7 4 1 6 2 3 5
Ave 2.8526E+03 2.7919E+03 2.7917E+03 2.7928E+03 2.7841E+03 2.7972E+03 2.7883E+03
Std 3.9366E+01 1.9027E+01 2.2807E+01 3.7523E+01 4.2896E+01 1.7824E+01 5.2217E+01
P B 2.7780E+03 2.7545E+03 2.6961E+03 2.6768E+03 2.6142E+03 2 7652E+03 2.6051E+03
Rank 7 4 3 5 1 6 2
Ave 3.6924E+03 3.0043E+03 3.1057E+03 3.1683E+03 3.0839E+03 3.1557E+03 3.1584E+03
Std 5.2753E+02 1.5471E+02 1.4369E+02 L3T07E+02 1.4031E+02 1.7855E+02 2.0545E+02
S Best 3.0269E+03 2.9535E+03 2.9422E103 2.9711E+03 2.9604E+03 2.9717E+03 2.9468E+03
Rank 7 2 3 6 1 4 5
Ave 4.0366E+03 3.6143E+03 3.6728E103 3.7117E+03 3.4206E+03 3.6311E+03 3.6159E+03
Std 6.0893E+02 527515102 5.7499E+02 54367E+02 3.3267E+02 53344102 4.8124E+02
P Best 3.1752E+03 2.9953E+03 3.0247E103 3.0910E+03 3.0416E+03 3.0639E+03 3.1286E+03
Rank 7 2 5 6 1 4 3
Ave 3.1636E+03 3.1263E+03 31231503 3.1218E+03 3.1271E+03 3.1326E+03 3.1245E+03
std 3.9485E+01 2. 8888E+01 2.8006E+01 2.7017E+01 3.2869E+01 3.7793E+01 2.5699E+01
F Best 3.1091E+03 3.1027E+03 3.0984E103 3.1024E+03 3.1012E+03 3.0969E+03 3.1011E+03
Rank 7 4 2 1 5 6 3
Ave 3.6971E+03 3.4549E+03 34704E103 3.5177E+03 3.4503E+03 3.5034E+03 3.4556E+03
Std 1.60805+02 13913E+02 1.3243E+02 1.64395+02 1.49026+02 L1609E+02 1.4779E+02
P B 3.4116E+03 3.2698E+03 3.2419E+03 3.2234E+03 3.2298E+03 3.2847E+03 3.2240E+03
Rank 7 2 4 6 1 5 3
Ave 3.6246E+03 3.3976E+03 3.3582E+03 3.4442E+03 33681E+03 3 A104E+03 3.4027E+03
Std 1.7003E+02 1.2995E+02 §.8909E+01 1.4038E+02 9.6805E+01 1.2120E+02 1.1673E+02
Jo Best 3.3635E+03 3.1931E+03 3.1776E+03 3.2166E+03 3.2101E+03 3.2090E+03 3.2058E+03
Rank 7 3 1 6 2 5 4
Ave 6.5849E+06 4.7172E+06 3.5766E+06 6.0177E+06 4.3510E+06 5. 4049E+06 4.6667E+06
Std 9.7970E+06 5.0039E+06 3.1980E+06 6.3849E+06 8.2775E+06 5.3262E+06 3.0312E+06
Fo b 8.8586E+05 5.9917E+05 5.1145E+04 3.0707E+05 2.0599E+05 3.0977E+03 1.0367E+05
Rank 7 4 1 6 2 5 3
Friedman 7 28 2.87 4.9 2 417 4.27
Rank 7 2 3 6 1 4 5

B. HSSFOA solves the ELD problem of Case 1

In this section and the next, the effectiveness and
robustness of the proposed HSSFOA algorithm are
thoroughly evaluated through comparative experiments on
two real-world economic load dispatch (ELD) problems
with different system scales. Across both experiments, the
SISFOA  algorithm-which  demonstrated competitive
performance in earlier tests-is adopted as a baseline
reference. Additionally, several  well-established
metaheuristic algorithms are included for the benchmarking
purposes, namely the original Superb Fairy-wren
Optimization Algorithm (SFOA), Arithmetic Optimization
Algorithm {AOA) [18], Whale Optimization Algorithm
(WOA) [15], Bermuda Triangle Optimizer (BTO) [19] and
Divine Religions Algorithm (DRA) [20]. These algorithms
are selected due to their strong track records in solving
complex, nonlinear, and constrained optimization problems,
making them suitable candidates for a fair and rigorous
comparison.

To enhance the realism and difficulty of the problem,
valve-point loading effects are incorporated into the system
model. This inclusion introduces ripples in the fuel cost
functions, making the optimization landscape more intricate
and challenging. Such a configuration serves to thoroughly
test the adaptability and convergence capabilities of each
algorithm under more practical and nonlinear conditions.
The specific parameter settings for all compared algorithms
are summarized in Table I

Since the valve-point effects are considered in this study,
the mathematical formulation of the economic load dispatch
(ELD) problem is represented by Eq. (17).

MinF; = T, (a; + BiP + v:PF + |e; x sin(f(PT™* — P)AT

where, F; denotes the total fuel cost, and P; represents the
power output of the i-th generator. The variable n denotes
the total number of generating units. The constants a;, f;,
and y; are the fuel cost coefficients specific to the i-th
generator. The parameters e¢; and f; are coefficients
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associated with the valve-point effect of the i-th generator,
while P represents the minimum allowable power output
of the i-th unit.

To demonstrate the practical applicability of the proposed
HSSFOA, a classical 6-unit economic load dispatch (ELD)
problem is considered as the first real-world benchmark. The
objective of this problem is to allocate power generation
among six thermal units to meet a total load demand of 1263
MW while minimizing the total generation cost. The
problem incorporates realistic operational constraints,
including generator capacity limits and transmission line
losses, making it a suitable test case for validating both
feasibility and optimization performance. Each algorithm is
executed independently over multiple runs and the results
are evaluated based on minimum cost and convergence
behavior.

This 6-unit ELD case serves as a foundational scenario to
verify the consistency and reliability of HSSFOA in
handling constrained, nonlinear optimization tasks in power
systems. In the 6-unit ELD experiment, all algorithms are
employed to solve the economic load dispatch problem of
thermal power units. The basic experimental settings are as
follows. The maximum number of iterations is set to 1000,
the population size is 20 and the problem dimension is 6.
Each algorithm is independently executed 20 times to
calculate the average performance. The fuel cost coefficients
and generation limits of the units are listed in Table IV. The
convergence curves of the algorithms are illustrated in Fig. 5,
and the corresponding numerical results are summarized in
Table V. A comparison of the total fuel costs obtained by
different algorithms is provided in Table VI. Fig. 6 shows
the histogram of the total fuel cost of 6 units.

TaBLE III. PARAMETER SETTINGS OF EACH ALGORITHM

TABLE IV. THE FUEL COST COEFFICIENTS AND POWER GENERATION LIMITS
OF THE 6 GENERATING UNITS

Unit o Bi Vi Pl Punin
1 240 7.0 0.0070 500 100
2 200 10.0 0.0095 200 50
3 220 8.5 0.0090 300 80
4 200 11.0 0.0090 150 50
5 220 10.5 0.0080 200 50
6 190 12.0 0.0075 120 50

TABLE V. EXPERIMENTAL RESULTS CONTRASTING

Unit SFOA  SISFOA AOA[18] WOA[15] BTO[19] DRA[20]
P, 500 500 48134 44613 500 382.15
P, 16892 200 175.57 19267 16535  174.52
P, 29248 25246 26767  217.11 300 300
P, 13824 10106 150 144.70 150 150
Py 7768 15239 140 160.89 50 174.52
P, 9216 63.89 5529  107.55 120 96.96
P, 640 6.55 6.17 6.05 6.77 630
P, 126949 126979 1269.86  1269.05 128535  1278.15

Algorithm Main parameters setting
SFOA C=0.8; 7=0.5;
SISFOA C=0.8; 7=0.5;
AOA[18] MOAmax=1; MOAmax=0.2; Alpha=5; Mu=0.499
WOA[135] b=1;
BTO[19] POFmax =log(1.5 10900); POEmln =log(500000);
2=6.67¢e-11;
DRAJ[20] BPSP=0.5; MP=0.5; PP=0.9; RP=0.2;
107 , . ‘ ‘ ‘
—6— SFOA
—— SISFOA
—*— AOA
—*— WOA
—+—BTO
& —pP—DRA
10° ¢ E
10° A DRA 1
/ BTO SEOA WOA  SISFOA
Ai)A \

10% ‘
0 100 200 300 400 500 600 700 800 900 1000

Fig. 5 Convergence diagram of comparative experiment.

TABLE VI. COMPARISON OF EXPERIMENTAL RESULTS

Method Generation cost ($)
SFOA 15430.85
SISFOA 15395.39
AOAJ18] 15396.08
WOAJ15] 15407.42
BTO[19] 15684.19
DRA[20] 15521.46

Il SFOA [l SISFOA ll AOA [ WOA [ BTO [@ DRA

15000 -

14000

13000 - . . . : :
AOA WOA BTO

SFOA SISFOA
Algorithm

Generation Cost ($)

DRA

Fig. 6 The histogram of the total fuel cost of 6 units.

According to the data presented in Tables V-VI, the
SISFOA algorithm achieves the lowest total fuel cost of
$15,395.39, representing an improvement of approximately
0.22% over the original SFOA. This demonstrates the
effectiveness of the improved hybrid strategy in enhancing
the solution quality. SISFOA demonstrates a favorable
trade-off between cost minimization and power loss
management, confirming its robustness and effectiveness in
solving constrained economic load dispatch problems.
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C. HSSFOA solves the ELD problem of Case 2

To further evaluate the scalability and effectiveness of the
proposed HSSFOA in solving large-scale and highly
constrained optimization problems, a more complex 20-unit
economic load dispatch (ELD) case is investigated. All
algorithms are applied to the economic load dispatch (ELD)
problem involving 20 thermal generating units with a total
power demand of 2500 MW. The basic experimental
settings for the 20-unit ELD case are as follows. The
maximum number of iterations is set to 1000, the population
size 1s fixed at 20 and the problem dimension is 20. Each
algorithm is independently executed 20 times to evaluate
average performance and statistical reliability. Table VII
presents the fuel cost coefficients and power generation
limits of the generating units. The experimental convergence
curves are shown in Fig. 7, and the corresponding numerical
results and the total fuel cost are summarized in Table VIII.
The comparison of total fuel costs is presented in Table IX.
Fig. 8 shows the histogram of the total fuel cost of 20 units.
Based on the results shown in Tables VIII, it 1s evident that
the SISFOA achieves the lowest total fuel cost, amounting to
$62,039.19. Compared to the original algorithm, this
represents a cost reduction of approximately 0.08%.
Although the percentage improvement may appear modest,
such reductions are significant in large-scale power systems,
where even marginal improvements can result in substantial
economic savings over extended periods of operation. This
demonstrates the superior performance and enhanced
optimization capability of SISFOA in addressing complex
economic load dispatch problems with valve-point effects.

TABLE VII. THE FUEL COST COEFFICIENTS AND POWER GENERATION LIMITS
OF THE 20 GENERATING UNITS

TABLE VIIL. EXPERIMENTAL RESULTS CONTRASTING

Unit o Bi i Prin Prisc
1 1000 18.19 0.00068 150 600
2 970 19.26 0.00071 50 200
3 600 19.80 0.00650 50 200
4 700 19.10 0.00500 50 200
5 420 18.10 0.00738 50 160
6 360 19.26 0.00612 20 100
7 490 17.14 0.00790 25 125
8 660 18.92 0.00813 50 150
9 765 18.27 0.00522 50 200
10 770 18.92 0.00573 30 150
11 800 16.69 0.00480 100 300
12 970 16.76 0.00310 150 500
13 900 17.36 0.00850 40 160
14 700 18.70 0.00511 20 130
15 450 18.70 0.00398 25 185
16 370 14.26 0.07120 20 80
17 480 19.14 0.00890 30 85
18 680 18.92 0.00713 30 120
19 700 18.47 0.00622 40 120
20 850 19.79 0.00773 30 100

Unit  SFOA SISFOA AOA[18] WOA[15] BTO[19] DRA[20]
P, 23556 29278 600 24958 54837 38191
P, 16011  157.67 9562 13921 14895 12730
Py 10326 9291 9562 7376 13296 12730
P, 18468 17632 5544 9281 6044 12730
Ps 5239 14742 160 5091 12854  127.30
Pe 9493 8236 20 9741 7012 50.92
P, 68.03 9873 2845 3405 5795  63.65
Py 7497 97.28 50 12369 131.88 12730
Py 200 99.56 50 189.85 14628 12730
Py 11567 12038 5163 8887 12400 7638
Py 27528 11558 12917 19156  199.64  254.60
Pi 32768 39021 500 40886 24648 38191
Py 10894  56.90 160 14134 4788  101.84
Ply 9426 11282 130 10164 7489  50.92
Pys 87.94 185 7427 16363 14564  63.65
Pig 5285 70.00 20 6980 2478  50.92
Py, 6322 48.18 30 6865 3527 7638
P 8320  36.06 120 9856 11006 7638
P 10296 89.54 120 8775 8719  101.84
Pao 8206  94.19 100 9491 6622 7638
P, 6793 6389 7763 6683 6395  68.20
P, 256798 256389 2590.19 2566.83 2587.54 257151

Gg(‘)‘za(tﬂi;‘)’n 62093.20 62039.19 62326.45 62104.71 6238635 62092.04
6_3%104 . ' ’ ‘ . ‘

6.29 .

6.28

6.27

6.26

6.25

6.24

6.23

6.22

6.21

SISFOA

800 900

Fig. 7 Convergence diagram of comparative experiment.
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Fig. 8 The histogram of the total fuel cost of 20 units
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V. CONCLURSION

The Hybrid Spiral Superb Fairy-wren Optimization
Algorithm (HSSFOA) proposed in this study effectively
enhances the collaborative capability between global
exploration and local development by integrating the
random jump mechanism of the Harris Hawks Optimization
(HHO) algorithm with the spiral search strategy of the
Whale Optimization Algorithm (WOA) into the three-phase
behavior model of the Superb Fairy-wren Optimization
Algorithm (SFOA). This hybnid framework not only
preserves the structural diversity and dynamic adjustment
capabilities of the original SFOA but also introduces a
search mechanism with more pronounced jumping and
non-linear characteristics. This significantly improves the
algorithm's ability to escape local optima in complex
high-dimensional search spaces and accelerates the overall
convergence speed.

Furthermore, to explore the potential of the spiral search
strategy in influencing the diversity of search paths and local
convergence ability, this study designs and introduces five
novel spiral wupdate mechanisms: Sine  Spiral,
Phase-modulated Log Spiral, Hyperbolic Sine Spiral,
Hyperbolic Cosine Spiral, and Damped Spiral. These spirals
adjust the nonlinear amplitude and frequency of direction
changes in individual search trajectories, allowing the
algorithm to dynamically adapt to the local characteristics
and multi-modal structures of complex objective functions
at different stages, thereby enhancing its jumping diversity
and development stability.

In order to verify the effectiveness of the improved
algorithm, we use the CEC-2017 test function to test and
verify it. The experimental results show that the improved
HSSFOA and its variants are superior to the original SFOA
on most test functions, and are more excellent in
convergence speed and accuracy of the solutions. Among all
the proposed variants, the SISFOA exhibited the most
outstanding performance. Therefore, SISFOA was selected
for further empirical validation in practical engineering
applications through two case studies of the ELD problems
with different scales and complexity. In a 6-unit generator
set with a total demand of 1263 MW, we conducted a test.
The improved SISFOA performs well in minimizing the
total fuel cost while satisfying all operational constraints,
and 1s superior to other algorithms in terms of convergence
stability and solution quality.

The SISFOA achieves the lowest total fuel cost in all test
algorithms again under a total demand of 2500 MW for 20
units. The two results prove that the improved algorithm
performs well in different scale and complexity problems. It
not only continues to outperform baseline and comparison
algorithms in terms of cost optimization, but also shows
stable convergence characteristics and strong adaptability to
actual constraints. The algorithm can still maintain a high
level of solution quality and computational stability under
strict problem setting, which further highlights its robustness,
scalability and practicability in power system operation and
other fields that require complex optimization strategies.
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