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Abstract—This paper proposes Wave-U-Net+CAFDDS, an
enhanced variant of Wave-U-Net that improves the performance
of Blind Source Separation. To mitigate aliasing and feature
loss in Wave-U-Net’s decimation layers, we introduce two
key enhancements. First, we replace all decimation layers
with dynamic downsampling (DDS) layers. DDS adaptively
selects sampling positions based on input features, thereby
enhancing the model’s ability to retain important features.
Second, we insert a content-aware filter (CAF) before each
downsampling stage. The CAF dynamically modulates its
parameters according to feature context, reducing aliasing
artifacts and boosting separation quality. We assess our model
on the MUSDB18HQ dataset. Experimental results demonstrate
that Wave-U-Net+CAFDDS, integrating both CAF and DDS,
significantly outperforms the original Wave-U-Net.

Index Terms—Blind Source Separation, decimation,
content-aware filter, dynamic downsampling.

I. INTRODUCTION

IN the field of signal processing, many techniques can
be employed to extract the target signal according to the

specific situation of the signal, such as noise suppression
[1], [2], spectral subtraction, and filtering methods. These
methods are typically focused on extracting a single source
signal. For separating multiple sound sources, Blind Source
Separation (BSS) techniques are commonly applied. BSS
recovers individual signals from a mixture without prior
information about their composition. It is widely applied
in image processing, audio analysis, and medical signal
processing.

Because source signals are often highly correlated
and mixtures usually include background noise and
interference [3], traditional BSS models often depend on
strict mathematical assumptions to separate the signals.
Independent Component Analysis (ICA) [4] assumes that
signals are non-Gaussian and mutually independent. It
separates sources by maximizing the non-Gaussianity of
estimated components. Independent Vector Analysis (IVA)
[5] extends ICA for multi-channel signals, but it still
struggles with complex nonlinear mixtures. Nonnegative

Manuscript received December 23, 2024; revised July 27, 2025.
Sainan Tang is a postgraduate student at the School of Big Data and

Computer Science, Guizhou Normal University, Guiyang 550025, China
(e-mail: 232200232058@gznu.edu.cn).

Fei Long is a professor at the College of Artificial Intelligence and
Electrical Engineering, Guizhou Institute of Technology, Guiyang 550003,
China (corresponding author to provide e-mail: feilong@git.edu.cn ).

Shengbo Hu is a professor at the School of Big Data and Computer
Science, Guizhou Normal University, Guiyang 550025, China (e-mail:
hsb@gznu.edu.cn).

Quan Liu is a postgraduate student at the School of Big Data and
Computer Science, Guizhou Normal University, Guiyang 550025, China
(e-mail: 242200232077@gznu.edu.cn).

Matrix Factorization (NMF) [6] requires input signals to
be nonnegative. It factorizes a nonnegative matrix into the
product of two or more nonnegative matrices. Maximum
Likelihood Estimation (MLE) [7] simplifies the BSS
problem by modeling the probability distribution of the
source signals. It estimates the parameters that maximize the
likelihood of the observed mixtures under this distribution,
allowing reconstruction of the source signals. The strict
signal requirements of traditional BSS methods limit their
applicability in practical applications.

Unlike traditional BSS methods that depend on numerous
mathematical assumptions, deep learning performs
source separation automatically by learning patterns in
mixed signals through neural networks. Applications
of deep learning in BSS are generally categorized into
frequency-domain and time-domain approaches. In [8]–[10],
mixed signals are split into amplitude and phase components,
and then separation is done using only the amplitude. This
approach often ignores phase information, which impacts
separation accuracy. To address these limitations, recent
studies have increasingly focused on time-domain separation
methods rather than frequency-domain approaches [11],
[12]. Wave-U-Net [12] is a typical end-to-end model known
for its strong separation performance. It processes raw
waveforms directly, avoiding the phase loss typically found
in frequency-domain methods.

To improve Wave-U-Net’s separation capability,
researchers have proposed various improvements.
MHE0 [13] incorporates minimum hyperspherical energy
regularization during training, which improves the source
separation performance. RA-Wave-U-Net [14] introduces
two architectural changes: replacing convolutional layers
with residual units in the encoder and decoder, and
integrating attention gating into the skip connections.
These modifications help bridge the semantic gap and
enhance the model’s separation performance. However,
Wave-U-Net still has limitations in separating mixed signals.
Traditional models reduce temporal resolution through
successive decimation, which can lead to the loss of
important signal details. According to the Nyquist–Shannon
sampling theorem, decimation can cause high-frequency
components to be misinterpreted as low-frequency ones,
resulting in time-domain aliasing. This aliasing results in
signal distortion and reduced model performance [15]. To
address these issues, this article proposes two enhanced
modules, dynamic downsampling (DDS) and content-aware
filtering (CAF), to improve separation performance in audio
source separation tasks.
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II. MODEL FRAMEWORK

A. Wave-U-Net

The traditional Wave-U-Net model employs the classic
U-Net architecture to perform end-to-end audio signal
separation directly in the time domain, without relying
on spectral representations. The primary objective of the
model is to separate a mixed time-domain waveform
W ∈ [−1, 1]

C×Lin into N independent source time-domain
waveforms Sn ∈ [−1, 1]

C×Tout where n ∈ {1, · · · , N}.
Here, C denotes the number of audio channels, while
Lin and Lout represent the input and output waveform
lengths, respectively [12]. As shown in Fig. 1, the traditional
Wave-U-Net architecture mainly consists of an encoder,
a decoder, and skip connections. The encoder contains
multiple multi-scale downsampling blocks and is responsible
for extracting high-level features from the input audio. At
each layer, the temporal resolution is reduced by a factor
of two relative to the preceding layer. In the decoder,
the model upsamples the extracted features step by step
using multi-scale upsampling blocks. This process gradually
restores the high-resolution signals. The output layer then
generates the separated source signals. Skip connections
combine features from the upsampled and downsampled
at the same scale and send them to the corresponding
upsampling block. This skip connection mechanism reduces
information loss during downsampling and improves the
accuracy of source separation.

B. Improved Model Architecture of Wave-U-Net

The traditional Wave-U-Net employs decimation in
its downsampling block to reduce feature resolution.
Although decimation is computationally efficient for
reducing resolution, it discards crucial audio information,
thereby degrading the quality of the separated signals. To

prevent decimation-induced information loss from impairing
source separation and reconstruction, we introduce a dynamic
sampling module. This module replaces the decimation
operation and utilizes learnable attention weights to retain
the key features of the audio signal adaptively. Continuous
downsampling may treat high-frequency components as
low-frequency ones, leading to time-domain aliasing and
distortion in the separated signals. To address this issue,
we insert a one-dimensional content-aware filter before
each downsampling step. This filter suppresses aliasing and
enhances the restoration of the original audio source.

The Wave-U-Net model takes a mixed time-domain
waveform as input and produces multiple source waveforms.
As shown in Fig. 2, the mixed time-domain audio is
processed by r consecutive downsampling blocks to extract
high-level features. Each downsampling operation halves the
temporal resolution of its input features. The decoder then
reconstructs the audio signal using r consecutive upsampling
blocks. Each upsampling operation doubles the temporal
resolution of the input features. Skip connections fuse
features from corresponding downsampling and upsampling
blocks at the same scale, providing detailed information
for reconstruction. Each downsampling block comprises
a 1D convolutional layer, a content-aware filter, and a
dynamic downsampling operation. The convolutional layer
includes a 1D convolution and a LeakyReLU activation.
The upsampling block comprises a linear-interpolation
upsampling layer followed by a convolution layer. The
Concat operation at the downsampling block r merges its
feature with decoder features at the same scale. The model’s
final layer produces the separated audio outputs. Decoder
outputs pass through a 1D convolution and Tanh activation to
predict the first N−1 sources. The N -th source is computed
by subtracting the sum of the first N − 1 predictions from
the mixture.
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Fig. 1: Wave-U-Net model structure
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Fig. 2: Improved Wave-U-Net model structure

Table I presents the complete model architecture.
Conv1D(C, k) denotes a 1D convolutional layer with C
input channels and a kernel size of k. Concat(X) means
concatenating the current high-level feature with the feature
X . The parameter g denotes the number of feature groups,
s is the downsampling factor, and r represents the number
of downsampling and upsampling layers.

TABLE I: Details of the improved Wave-U-Net model structure

Block Operation

Downsampling block r, r=1,. . . ,R
Conv1D(Cd,kd)

Content-aware filtering(g)
Dynamic downsampling(g,s)

Bridge layer Conv1D(Cb,kb)

Upsampling block r, r=R,. . . ,1
Upsampling

Concat(Dowsampling block r)
Conv1D(Cu,ku)

Output layer Concat(input)
Conv1D(Ci,ki)

III. METHODOLOGY

A. Dynamic Downsampling

Traditional downsampling uniformly discards data at
fixed intervals, potentially losing important information.
In contrast, dynamic downsampling adaptively chooses
sampling positions based on the input features. It focuses
on task-relevant content and keeps key information. Inspired
by the method in [16], this work applies dynamic
sampling—initially developed for image processing—to
one-dimensional time-domain audio waveforms.

Given an input feature X ∈ RC×L, we construct a
standard sampling grid G ∈ Rg×(L/s), where C is the
number of channels, L is the feature length, and s is the
downsampling factor. After downsampling, the feature length
becomes L/s. To reduce the computational cost of offset
estimation, we split X along the channel dimension into g
groups. We apply a 1D convolution to produce initial offsets
O ∈ Rg×(L/s). Next, we introduce a Squeeze-and-Excitation
(SE) [17] module. It uses time-domain global average
pooling to extract channel information. The pooled vector
passes through two fully connected layers (FC) and a
Sigmoid activation to produce attention weights u. The SE
module is defined as follows:

u = σ (F2 · δ (F1 ·GAP (X))) (1)

Where, F1 ∈ R(C/r)×C and F2 ∈ RC×(C/r) are the fully
connected layer weights, r is the channel compression ratio,
GAP (·) denotes global average pooling, δ is the ReLU
activation, and σ represents the Sigmoid function.

We apply the attention weights to the initial offsets. Each
offset is adjusted through element-wise multiplication and
scaled by 0.5 to limit large shifts. The refined offsets are
defined as follows:

offset = (conv1D (X)⊙ conv1D (u))× 0.5 (2)

Here, ⊙ denotes element-wise multiplication.
Then, add the offsets to a standard sampling grid G to

obtain the sampling grid P . Fig. 3 illustrates the dynamic
offset generation process. The generation process of the
sampling set can be expressed as:

P = offset (X) +G (3)

Finally, use a grid sampling function to downsample the input
feature X at the coordinates specified by the sampling grid
P , producing the downsampled output X1 ∈ RC×(L/s):

X1 = GridSample (X,P ) (4)
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The dynamic downsampling process is shown in Fig. 4.
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B. Content-Aware Filter

The conventional Wave-U-Net employs decimation to
continuously downsample input features. This process can
fold high-frequency components into lower frequencies,
causing time-domain aliasing. The aliasing effect not
only causes artifacts in the separated audio but also
distorts the audio. Applying an anti-aliasing filter before
downsampling can reduce this effect. In this work, we
insert an anti-aliasing filter before each downsampling
stage to prevent high-frequency folding, thereby reducing
artifacts and distortion in the output audio. However,
the energy distribution of audio signals varies greatly in
different periods. Using a unified filter may not be able to

capture the feature details of the input features throughout
the entire time domain. To address this limitation, we
design a one-dimensional content-aware filter based on
the anti-aliasing framework in [18]. This filter adjusts its
parameters according to local time segments of the audio. It
helps the model adapt to signal changes and learn important
features more effectively. The content-aware filter module is
illustrated in Fig. 5.

Given an input feature X ∈ RC×L, where C is the
number of channels and L is the sample length. To reduce
computational complexity, we split X along the channel
dimension into g groups. Each group then generates a filter
applied to adjacent time-domain regions. Features within
each group share a common filter. The filter weights fp

i,g ∈
RW for the i-th group at time t as follows:

fp
t,i = softmax (BN (conv1D (X))) (5)

Here, softmax (·) denotes the softmax function, BN (·)
denotes batch normalization, and W is the local window size
around position t. We apply the resulting filter weights to
the corresponding group features. The filtering operation is
defined as follows:

F i
t =

∑
p∈W fp

t,i ·Xi
t+p (6)

Here, F i
t denotes the output feature of the i-th group at time

t; W is the local window centered at t; fp
t,i is the p-th filter

weight at time t for group i; and Xi
t+p denotes the input

feature of group i at position t+ p
Since content-aware filters suppress high-frequency

signals, they may lose important details. To retain useful
information while minimizing aliasing, we employ a
learnable residual fusion. The feature fusion mechanism is
shown in Fig. 6. First, we modulate the filter’s output via
learnable parameters:

F̃ i
t = σ (λ)F i

t , σ (λ) ∈ (0, 1) (7)

Next, we fuse the filtered and original features proportionally
as follows:

X ′i
t = α

(
F̃ i
t

)
+ (1− α)Xi

t (8)

Here, σ (· ) denotes the sigmoid activation function, and λ
and α are learnable parameters.

IV. EXPERIMENTAL EVALUATION
A. Experimental Data and Environment Configuration

We employed the MUSDB18HQ dataset [19], which
comprises 150 stereo tracks sampled at 44100 Hz, totaling
approximately 10 hours of audio. Each track includes a
mixture of its isolated sources (vocals, drums, bass, and
accompaniment). This experiment focuses on the separation
of vocal and accompaniment. We split the original 100-track
training set into 75 tracks for training and 25 tracks
for validation. We augmented the training data with the
CCMixter dataset. CCMixter comprises 50 stereo tracks
sampled at 44100 Hz that include mixes, vocals, and
background sounds. We retained the original 50-track test
set for evaluation. For each track, we randomly extracted
100 segments, 147443 samples in length, and downsampled
them to 22050 Hz.

Table II lists the hardware and software configuration used
in this experiment.
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TABLE II: Details of experimental environment configuration

Configuration Details

Programming Language python 3.7

Framework PyTorch 1.11

Development Environment PyCharm

CUDA CUDA 11.3

GPU NVIDIA RTX A6000

CPU Intel(R) Xeon(R) Gold 6342
CPU @ 2.80 GHz

B. Experimental Settings

1) Model Training and Setting
We trained the model using the Adam optimizer [20] with

a learning rate of 0.0001 and a batch size of 16. The loss

function was the Mean Absolute Error (MAE):

LMAE (Tn, Pn) =
1

Lx

Lx∑
t=1

|Tn − Pn| (9)

Here, Tn denotes the ground-truth signal of the source,
Pn is the predicted signal, and L is the total number of
sampling points. Training stops if the validation loss does
not improve for 20 consecutive epochs. We then select the
model with the lowest validation loss as the final model.
In this experiment, the network comprises 12 layers. Table
III summarizes the input channels, output channels, and
parameter configurations for each layer.

2) Evaluation Metrics
In Blind Source Separation, three metrics—signal

distortion ratio (SDR), signal-to-interference ratio (SIR), and
signal-to-artifact ratio (SAR)—are commonly employed to
assess model performance from distinct perspectives [21].
SDR quantifies the model’s overall separation quality, SIR
measures residual interference from other sources in the
separated audio, and SAR assesses artifact levels introduced
during separation. Their calculation formulas are as follows:

SDR = 10 log10
||Starget||2

||einterf + eartif ||2
(10)

SIR = 10 log10
||Starget||2

||einterf ||2
(11)

SAR = 10 log10
||Starget + einterf ||2

||eartif ||2
(12)

In those formulas, Starget represents the target signal
component extracted from the mixture signal, einterf
represents the interference error resulting from incomplete
signal separation, and eartif represents the artifacts or
distortions introduced by the model.

In this experiment, we computed the mean and median
of three metrics—SDR, SAR, and SIR—on the test set to
evaluate model separation performance. The mean reflects
the model’s overall separation capability but is sensitive to
outliers produced during source separation; relying solely
on it may not represent typical performance. Therefore,
we use the median as a complementary measure, reflecting
performance in at least half of the separation segments and
providing a more comprehensive evaluation.
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TABLE III: The parameter setting of the improved Wave-U-Net model

Block Operation Input Channel Oupt Channel

Dowsampling block r, r=1,. . . ,12
Conv1D(kd = 15)

Content-aware filtering(g = 2)
Dynamic downsampling(g = 2, s = 2)

Cd=2,24,48,72,96,120,
144,168,192,216,240,264

Co=24,48,72,96,120,144,
168,192,216,240,264,288

Bridge layer Conv1D(kb = 15) Cb=288 Co=312

Upsampling block r, r=12,. . . ,1
Upsampling

Concat(Dowsampling block i)
Conv1D(ku = 5)

Cu=600,552,504,456,408,360,
312,264,216,168,120,72

Co=288,264,240,216,192,
168,144,120,96,72,48,24

Output layer Concat(input)
Conv1D(ki = 5) Ci=24 Co=2

C. Ablation Experiment

To assess how the added modules affect separation
performance in a Blind Source Separation task, we compared
the baseline Wave-U-Net model with three enhanced
variants. The first variant integrates a content-aware filter
(CAF), the second employs dynamic downsampling (DDS),
and the third combines both content-aware filtering and
dynamic downsampling (CAFDDS). The results of this
comparison are presented in Tables IV and V.

As shown in Fig. 7, the first quartile (Q1) marks the
best separation result among the lowest 25% of segments. A
higher Q1 means better performance in low-quality segments.
The third quartile (Q3) shows the worst separation result
among the top 25%. A higher Q3 indicates better quality in
high-performing segments. A shorter lower whisker indicates
stable performance among the lowest-performing segments.
A longer upper whisker indicates that the model can reach a
higher potential in the best-performing segments.

1) Analysis of Vocal Separation Performance

Table IV shows that for vocal separation, the baseline
Wave-U-Net has the lowest mean SDR (2.450 dB) and mean
SAR (4.015 dB). Its SAR median (4.486 dB) and lower
whisker (–3.984 dB) in Fig. 7(e) are also the lowest among
all models. These results suggest that the baseline model
performs poorly in overall vocal separation and causes
severe distortion in some segments. With the CAF module,
Wave-U-Net+CAF exhibits the smallest interquartile range
for SDR, SIR, and SAR, as seen in Fig. 7(a), (c), and (e).
Its SAR mean (4.239 dB) and median (4.879 dB) both
increase compared to the baseline, indicating fewer artifacts

and a more concentrated distribution. However, the SIR
median drops to 12.851 dB, suggesting weaker suppression
of accompaniment interference.

In contrast, the dynamic downsampling variant
(Wave-U-Net+DDS) improves the SIR, with a mean
of 8.653 dB and a median of 14.528 dB. The SAR also
increases slightly, reaching a mean of 4.241 dB and a median
of 4.684 dB. Fig. 7(a), (c), and (e) show that the medians of
SDR, SIR, and SAR, as well as Q3 and the upper whiskers,
increase significantly. Q1 and the lower whiskers also
decrease. These results show that, although DDS enhances
accompaniment suppression and reduces vocal distortion, it
also degrades performance on the lowest-quality segments,
leading to greater variability in overall separation.

The combined model (Wave-U-Net+CAFDDS) achieves
the highest mean and median SDR, increasing by 19.55%
and 11.75%, respectively. It shows that CAF and DDS
together keep better separation across most test audio. The
model also achieves the highest mean SIR (8.858 dB), mean
SAR (4.324 dB), and median SAR (5.230 dB), indicating
improved interference suppression and fewer artifacts. Fig.
7(a), (c), and (e) show that SDR and SIR achieve the highest
Q1 and Q3 values, while SAR exhibits the highest Q3 value.
All boxes shift upward, and the SDR upper whisker reaches
9.450 dB, and the SIR upper whisker reaches 25.276 dB.
These results show that the model achieves better separation
than the baseline for most segments. Compared with using
a single module, combining both modules reduces severe
distortions and maintains high separation quality.

TABLE IV: Vocal separation performance across different models

Model CAF DDS
Mean Median

SDR SIR SAR SDR SIR SAR

Wave-U-Net × × 2.450 7.851 4.015 4.187 13.816 4.486

Wave-U-Net+CAF ✓ × 2.363 6.688 4.239 4.591 12.851 4.879

Wave-U-Net+DDS × ✓ 2.841 8.653 4.241 4.489 14.528 4.684

Wave-U-Net+CAFDDS ✓ ✓ 2.929 8.858 4.324 4.679 14.477 5.230
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(a) Vocal separation SDR comparison (b) Accompaniment separation SDR comparison

(c) Vocal separation SIR comparison (d) Accompaniment separation SIR comparison

(e) Vocal separation SAR comparison (f) Accompaniment separation SAR comparison

Fig. 7: Box plot comparison of separation metrics
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TABLE V: Accompaniment separation performance across different models

Model CAF DDS
Mean Median

SDR SIR SAR SDR SIR SAR

Wave-U-Net × × 11.434 16.427 14.230 10.552 12.666 13.504

Wave-U-Net+CAF ✓ × 11.469 16.449 14.302 10.426 13.212 13.635

Wave-U-Net+DDS × ✓ 11.686 17.005 14.310 10.706 13.593 13.569

Wave-U-Net+CAFDDS ✓ ✓ 11.759 16.746 14.668 10.831 13.347 13.916

2) Analysis of Accompaniment Separation Performance

Table V shows that for accompaniment separation,
Wave-U-Net+CAF improves the mean SDR by only 0.31%,
while the median SDR drops by 1.19%. In Fig. 7(b), Q1
increases from 8.218 dB to 8.484 dB, but Q3 and the
upper whisker decrease by 2.55% and 14.47%. These results
suggest that CAF improves performance on low-quality
samples but reduces it for middle and high-quality ones
compared to the baseline. For SIR, Wave-U-Net+CAF shows
a slight mean increase of 0.13% and a median increase
of 4.31%. The lower whisker rises slightly, but Q1 and
Q3 fall by 0.85% and 1.92% (Fig. 7(d)). It indicates that
CAF improves the lowest interference cases but weakens
performance for better ones. For SAR, both the mean and
median increase slightly. Q1 rises by 3.42% and the lower
whisker by 39.40%, while Q3 and the upper whisker drop
by 2.48% and 8.60% (Fig. 7(f)). This result means that CAF
enhances artifact suppression in poor samples but reduces it
in high-quality ones.

The dynamic downsampling model (Wave-U-Net+DDS)
outperforms the baseline in both SDR and SIR. Its SDR mean
and median rise by 2.20% and 1.46%, respectively, with Q1,
Q3, and the upper whisker all shifting upward (Fig. 7(b)),
indicating improved separation for most samples. SIR mean
and median rise by 3.52% and 7.32%, and both Q1 and Q3
increase (Fig. 7(d)), indicating more potent suppression of
interference. SAR mean and median increase slightly, but
Q3 and the upper whisker decrease (Fig. 7(f)), suggesting
limited improvement in reducing artifacts.

The combined CAF and DDS variant
(Wave-U-Net+CAFDDS) increases the SDR mean and
median by 2.84% and 2.64%, respectively, compared to
the baseline. Its Q1 exceeds the baseline, with Q3 and the
upper whisker reaching maxima (11.853 dB and 16.425

dB), and only a slight drop in the lower whisker (Fig. 7(b)),
indicating superior overall separation quality. For SIR, the
mean and median rise by 1.94% and 5.38%, respectively; all
quartiles and whiskers shift upward (Fig. 7(d)), indicating
interference suppression comparable to DDS but with a
more balanced distribution. For SAR, the mean and median
rise by 3.08% and 3.05%; Q1 increases by 3.46% and the
lower whisker by 4.78% (Fig. 7(f)), indicating reduced
severe distortions in poor samples.

In summary, the CAF module enhances artifact
suppression, improves the performance of low-quality
segments, and increases model stability. The DDS
module raises the model’s upper performance limit
and strengthens interference suppression. Combining both,
Wave-U-Net+CAFDDS achieves the highest mean and
median SDR and improves results across all segment
qualities. It shows the best overall performance.

D. Performance Comparison of Blind Source Separation
Model Algorithm

Table VI shows that for vocal separation,
Wave-U-Net+CAFDDS achieves the highest mean SDR,
SIR, and SAR. Its SIR median reaches 14.477 dB.
However, its median SDR and SAR are slightly lower than
those of Demucs [22]. This result indicates that, in the
vocal separation task, Wave-U-Net+CAFDDS is effective
in suppressing accompaniment compared to Demucs,
improving vocal quality, but remains less effective in
reducing artifacts. Table VII shows that for accompaniment
separation, Wave-U-Net+CAFDDS obtains the highest
mean and median SDR and SAR. It suggests better artifact
reduction and clearer outputs. However, its SIR is lower
than that of Demucs, showing weaker suppression of
vocal interference. In summary, Wave-U-Net+CAFDDS

TABLE VI: Comparison of vocal separation performance across various blind source separation models

Model
Mean Median

SDR SIR SAR SDR SIR SAR

Wave-U-Net 2.450 7.851 4.015 4.187 13.816 4.486

Demucs 2.731 8.189 4.055 4.722 14.286 5.353

MHE0 2.636 7.714 4.137 4.480 13.436 5.009

AR-Wave-U-Net 2.467 7.402 3.910 4.666 13.563 5.383

Wave-U-Net+CAFDDS 2.929 8.858 4.324 4.679 14.477 5.230
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TABLE VII: Comparison of accompaniment separation performance across various blind source separation models

Model
Mean Median

SDR SIR SAR SDR SIR SAR

Wave-U-Net 11.434 16.427 14.230 10.552 12.666 13.504

Demucs 11.392 18.403 13.152 10.672 15.621 12.623

MHE0 11.625 16.738 14.267 10.647 13.267 13.466

AR-Wave-U-Net 11.250 17.907 13.178 10.592 14.930 12.597

Wave-U-Net+CAFDDS 11.759 16.746 14.668 10.831 13.347 13.916

achieves effective artifact suppression in both vocal and
accompaniment separation tasks, resulting in the highest
overall separation quality.

To quantify complexity, we compare each model’s
parameter count and the number of Multiplications and
Accumulations (MACs), as summarized in Table VIII.
Wave-U-Net+CAFDDS has a higher parameter count
and MACs than Wave-U-Net and MHE0 but remains
considerably leaner than Demucs and RA-Wave-U-Net.
The added complexity stems from integrating new
functional modules into Wave-U-Net. It trades increased
computation for enhanced separation quality. Therefore,
Wave-U-Net+CAFDDS is best suited for BBS tasks that
require a high-quality output audio signal and have sufficient
computational resources.

TABLE VIII: Comparison of computational complexity across
various blind source separation models

Model Params(M) MACs(G)

Wave-U-Net 10.26 11.41

Demucs 265.68 39.22

MHE0 10.27 13.86

AR-Wave-U-Net 24 24.75

Wave-U-Net+CAFDDS 11.30 18.05

E. Visualization of Model Separation Results

To visualize the separation results, we randomly selected
a mixture audio test segment and split it into vocal and
accompaniment tracks. Fig. 8 presents the spectrogram of the
mixture audio, and Fig. 9 presents the spectrograms of the
separated vocal and accompaniment. The visualized results
show that the proposed model improves noise suppression
and produces higher-quality separated audio.

For accompaniment separation, Wave-U-Net fails to
remove vocals above 2048 Hz entirely. Between 128
Hz and 512 Hz, the energy distribution is uneven,
and the spectrogram contains many artifacts (Fig. 9(c)).
In comparison, Wave-U-Net+CAFDDS removes abnormal
energy above 2048 Hz and reduces low-frequency artifacts,
resulting in cleaner output (Fig. 9(e)).

For vocal separation, Wave-U-Net shows low-frequency
detail loss and intense background noise in silent regions
(Fig. 9(d)). Wave-U-Net+CAFDDS+BN preserves more

detail in low frequencies and suppresses noise during silence
(Fig. 9(f)).

Fig. 8: Mixture audio spectrogram

V. CONCLUSION

In this paper, we introduce Wave-U-Net+CAFDDS, an
enhanced version of the traditional Wave-U-Net designed to
improve the quality of separated source signals. To reduce
aliasing caused by the decimation layer in the original
downsampling process, we add a content-aware filter before
downsampling. This filter adjusts adaptively to the input
features, helping to keep important information and reduce
the adverse effects of aliasing on performance. In the
downsampling stage, the decimation layer is replaced with
a dynamic downsampling layer, where dynamic sampling
is combined with an SE block to constrain the sampling
offset. The downsampling strategy varies according to the
input characteristics, enabling the model to capture essential
features better and retain more signal details. Experimental
results on the MUSDBHQ18 dataset demonstrate that the
proposed improvements enhance the model’s performance.
Compared to other blind source separation models,
Wave-U-Net+CAFDDS delivers significant quality gains. It
achieves the highest overall separation performance among
all evaluated models. Future research will focus on two key
directions: developing lightweight models and optimizing
reconstruction quality. It includes reducing the number of
downsampling layers and optimizing the upsampling layers.
These efforts aim to improve further both the model’s
training speed and the quality of signal reconstruction.
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(a) True spectrum of the accompaniment (b) True spectrum of the vocal

(c) Accompaniment spectrum separated by the traditional Wave-U-Net model (d) Vocal spectrum separated by the traditional Wave-U-Net model

(e) Accompaniment spectrum separated by Wave-U-Net+CAFDDS model (f) Vocal spectrum separated by Wave-U-Net+CAFDDS model

Fig. 9: Visualization of audio signal separation results
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