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Abstract—Phase retrieval is to reconstruct signals (images)
from their Fourier magnitude measurements, and notably
applied in the computational imaging realm. However, con-
ventional phase retrieval methods rely on redundant sampling,
which entails significantly higher computational costs during
computational imaging processes. Hence, single-shot phase
retrieval has garnered significant attention due to its ability
of a single exposure from Fourier intensity measurement,
thereby eliminating the need for any additional constraints
on the measured data. To improve the quality of recon-
struction images, we propose a method for phase retrieval
from the single linear canonical transform (LCT) magnitude
measurement with physical neural network, namely SPRLCT-
PNN. Deep physical neural networks (PNN) include the LCT-
FPB module, upsampling and downsampling module, unified
physics-aware attention network module, and post-processing
module. Furthermore, PNN priors can effectively integrate LCT
measurements and alleviate the ambiguities of phase retrieval.
Through numerical simulations, we demonstrate that the pro-
posed method achieves significantly improved reconstruction
performance from a single LCT measurement compared to the
Fourier transform magnitude. Empirical results demonstrate
the superior performance of the proposed method on the Cell
8 and Fashion-MNIST datasets.

Index Terms—Single-shot, phase retrieval, linear canonical
transform, physical prior, neural network.

I. INTRODUCTION

Phase retrieval problem aims to recover the phase in-
formation only from the intensity measurements [1]. Phase
retrieval plays a crucial role in various applications, includ-
ing computational imaging [2], X-ray crystallography [3],
computational microscopy [4], optical transient imaging, and
biological dynamic imaging [5].

Multiple measurement phase retrieval problems are ad-
dressed by Fourier domain intensity differences. Gerchberg-
Saxton (GS) algorithm [6] and hybrid input-output (HIO) [7]
algorithm are both from the Fourier transform domain. These
iterative techniques project between subspaces with their
Fourier magnitude information and the desired constraints,
achieving widespread practical use. However, their limited
accuracy in addressing the phase retrieval problem may
result in artifacts during the alternating projection process.
However, alternate projection method faces several chal-
lenges, particularly in terms of computational complexity and
convergence speed. One major drawback is that each itera-
tion requires projecting the current estimate onto multiple
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subspaces, which can be computationally expensive, espe-
cially for high-dimensional data. Candes et al. [8] present
a nonconvex formulation of the phase retrieval problem as
well as a concrete solution algorithm to tackle the high
computational costs. The method guarantees near-optimal
recovery with minimal measurements. Horisaki et al. [9]
utilize a coded mask to sieve the propagating field from
an object under partially coherent light, capturing it on a
sensor with support constraint. While Candes et al. [10]
propose PhaseLift, which modulates the signal of interest
and captures the intensity of its diffraction pattern. To
address the inefficiency, Li et al. [11] propose the sparse
reweighted thresholded Wirtinger flow algorithm, which ex-
hibits a faster convergence rate and shorter running time. [12]
introduces a variational model for phase retrieval that uses
total variation regularization as an image prior and applies
maximum a posteriori estimation for a Poisson noise model.
[13] utilizes a distributed amplitude and phase conditional
generative adversarial network to achieve high-quality phase
and amplitude images simultaneously. But these methods
have limitations and complexities in practice. In particular,
under fixed sensor conditions, adjusting the aperture near the
sample to capture multiple intensity images complicates the
phase-retrieval iterative process.

Despite these successes, the need for overlapped and over-
sample measurements significantly increases computational
costs, making it unsuitable for dynamic ground truth. Addi-
tionally, in 3D imaging applications, collecting multiple ob-
servations is extremely challenging, highlighting the urgent
need for reliable single-shot phase retrieval methods [14].
With the recent advancements in deep learning techniques
for computational imaging, there has been a growing interest
in using data-driven methods for single-shot phase retrieval.
The goal of this approach is to reconstruct the object from a
single diffraction pattern, bypassing the need for multiple
measurements by utilizing labeled data to train a neural
network that learns the inverse mapping of the single-shot
measurement function. [15] utilizes deep neural networks
(DNNs) to solve inverse problems in computational imaging,
and also shows that a DNN can recover a phase object using a
lensless imaging system from a raw intensity image captured
at a distance.

Ye et al. [16] proposes PPRNet, a feedforward neural
network for phase retrieval (PR), which achieves faster and
more accurate performance compared to traditional physics-
driven methods. Additionally, the self-supervised reconstruc-
tion approach leverages the fast discrete FrFT algorithm and
untrained neural network priors, achieving superior results.
Traditional deep learning relies heavily on large datasets to
learn this map, lacking an in-depth understanding of physical
processes, which affects the generalization and stability of
these methods.
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Specifically, measurements from LCT retain the amplitude
and phase information of the ground truth signal, providing a
generalized spatial frequency representation. This facilitates
overcoming spatial blurring issues in phase retrieval. The
LCT provides the feasibility of recovering the original signal
from a single measurement. The contributions of this paper
are summarized as follows:

We present the method for single-shot phase retrieval from
linear canonical transform via deep physics neural network,
called SPRLCT-PNN.

To enhance the reconstruction result, we introduce a deep
PNN that includes the LCT-FPB module, upsampling and
downsampling modules, a unified physics-aware attention
network module, and a post-processing module.

We conduct experiments on various datasets, and the
empirical results demonstrate the competitive performance
of our proposed method. An ablation study is presented to
validate the effectiveness of the PNN modules.

The rest of this paper is as follows. Section 2 introduces
the PRSLCT model and presents the PNN framework. Sec-
tion 3 shows the experimental setup and training strategy.
Section 4 gives an ablation study. Section 5 demonstrates the
superiority of the proposed method on Cell 8 and Fashion-
MNIST datasets. Section 6 draws a conclusion and future
research work.

II. PROPOSED METHOD

In this section, we will briefly show linear canonical
transform of signal and the overall framework.

A. Phase retrieval from linear canonical transform

The phase retrieval problem involves recovering images
from intensity measurements, complicated by the inability
to directly measure phase. In mathematical terms, it requires
recovering an n-dimensional vector x from measurement
value y:

y = |Ax| (1)

where A is a matrix of size m × n, m is the number of
measurement values, and n is the dimension of the vector
x. Furthermore, the amplitude and phase of signal F (Y ) are
usually expressed as:

F (Y ) = |F (Y )|ej·phase(F (Y )) (2)

where the amplitude |F (Y )| can be directly measured using
CCD or CMOS camera sensors.

For signal f(t) its Linear Canonical Transform b ̸= 0, we
have

F(a,b,c,d)(u) = L(a,b,c,d)(f(t)) (3)

and

L(a,b,c,d)(f(t)) =

√
1

j2πb

∫ +∞

−∞
ej(

a
2b t

2− 1
b tu+

d
2bu

2)f(t)dt

(4)
where j represents the imaginary unit, satisfying j2 = −1,
Especially, if b = 0, the LCT becomes a pure phase
transform:

F(a,0,c,d)(u) =
√
de

jcd
2 u2

f(du) (5)

Parameters a and d are pivotal in governing phase mod-
ulation, which can emulate the phase alterations of light
waves as they traverse optical media characterized by varying
refractive indices. Concurrently, it addresses the phase re-
sponse of signals navigating through systems that are subject
to temporal changes within the field of signal processing.
Parameter b modulates the scale of the transformation, which
can be likened to modifying the focal length of a light beam
to adjust the size of an image. Similarly, in signal processing,
it enables the compression or expansion of signals in the
time domain to align with varying sampling frequencies.
Parameter c influences the resolution and the local properties
of the transform. In the context of time-frequency analysis,
adjusting the parameter c allows for fine control over the
precision and locality of the analysis.

If the parameters a, b, c, d satisfy ad − bc = 1, then the
transform is unitary and invertible.

B. Network architecture

The overall network architecture of the proposed method
is shown in Figure 1. The framework of the proposed method
consists of four modules to enhance the phase retrieval
reconstruction results. The LCT-FPB module preprocesses
input data in the LCT domain, transforming it into an
efficient feature representation for convolution. The down-
sampling and upsampling modules ensure effective feature
extraction and reconstruction. At the core of the model,
the Unified Physics-Aware Attention Network (UPAN) in-
tegrates physical constraints with deep learning, improving
the model’s robustness. Within UPAN, the Physics-Aware
Module (PAM) is employed to capture essential physics-
driven features, while the Attention-Based Fusion Module
(AFM) facilitates the integration of multi-scale information.
The Feature Refinement Module (FRM) enhances local de-
tails like edges and textures while reducing redundancy. It
consists of three ConvB blocks, each containing convolu-
tion, batch normalization, and activation. Finally, a post-
processing module is applied to refine the output, further
enhancing the accuracy and reliability of the predictions. The
role and implementation details of each module are further
elaborated in the following subsections.

1) The LCT feature processing block: The LCT Feature
Processing Block (LCT-FPB) integrates preprocessing, de-
composition, and fusion steps into a unified framework.

First, the input data X ∈ RH×W from linear canonical
transform is separated the magnitude and phase . The mag-
nitude can be expressed as:

|X|norm =
|X| −min (|X|)

max (|X|)−min (|X|)
(6)

where |X| is the magnitude of input data X from linear
canonical transform. The original distribution of the phase
data arg(X) remains unchanged within the range [−π, π]
simultaneously. The preprocessed feature representation is
Xpre =

{
|X|norm , arg(X)

}
.

The frequency domain data Xpre is decomposed into multi-
scale high-frequency and low-frequency components with
discrete wavelet transform. The low-frequency features are
extracted from the low-frequency approximation components
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Fig. 1 The overall framework of the proposed method.

of the wavelet transform, expressed as:

Xlow,j =Wlow,j(Xpre) =
H∑

m=1

W∑
n=1

Xpre[m,n] · ψlow,j [m,n]

(7)
where Wlow,j(·) represents the low-frequency wavelet coef-
ficient extraction operation at the j-th level, and ψlow,j [m,n]
is the corresponding low-frequency approximation kernel of
the wavelet. The low-frequency components mainly provide
global structural information, representing the smooth part of
the signal. The high-frequency features are extracted from the
high-frequency detail components of the wavelet transform,
containing multi-directional details in the horizontal, vertical,
and diagonal directions, expressed as:

Xhigh, j
dir =W dir

high,j(Xpre) =

H∑
m=1

W∑
n=1

Xpre[m,n]·ψdir
high,j [m,n]

(8)
where W dir

high,j(·) is the high-frequency wavelet coefficient
extraction operation in the specific direction at the j-th level,
and ψdir

high,j [m,n] is the corresponding directional wavelet
kernel, with dir ∈ {H,V,D} representing the horizontal,
vertical, and diagonal directions, respectively. By combining
the high-frequency and low-frequency components, the input
signal can be represented as

Xpre = Xlow,J +
J∑

j=1

(
XH

high,j +XV
high,j +XD

high,j

)
(9)

where Xlow,J is the highest-level low-frequency component,
primarily capturing global information, and Xdir

high,j represents
local details at different scales and directions. To fully utilize
the high-frequency and low-frequency features obtained from

the decomposition, the high-frequency H(Xpre) and low-
frequency features L(Xpre) are combined into a joint feature
representation by concatenating along the channel dimension,
it is formulated as

Xconcat = Concat (L(Xpre), H(Xpre)) (10)

Subsequently, a 1 × 1 convolution operation is utilized
to the concatenated features for fusion, which helps reduce
redundant information and enhance the correlation between
features. The fused features reduce computational complexity
while maintaining the collaborative effects of global and
local characteristics. The fused frequency domain features
are transformed by the mapping function T (·) to generate a
spatial domain feature representation. We have

T1 = T (Xfused) (11)

where T (·) is responsible for adjusting the dimensions and
distribution of the features to yield the input requirements of
the convolution operation. Thus, the overall processing flow
of the LCT-FPB module can be expressed as:

T1 = T (Conv1×1 (Concat (L(Xpre), H(Xpre)))) (12)

2) Downsampling and upsampling module: In the down-
sampling stage, the spatial dimensions of the feature map are
progressively compressed to extract deeper semantic features
of the signal. The process is as follows:

Ti+1[x
′, y′, c] =

∑
kx

∑
ky

∑
c′

Ti[x
′ + kx, y

′ + ky, c
′]

·W [c′, kx, ky, c]

(13)

where Ti is the input feature map at the current layer, Ti+1

is the downsampled output feature map, and W represents
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the convolution kernel weights. (kx, ky) are the spatial
dimensions of the kernel, and c′ and c are the indices of
the input and output channels, respectively. Through three
convolution operations with a stride of 2, the feature map
resolution is progressively compressed from H ×W ×C to
H/8×W/8×8C. Each operation also increases the number
of channels (C → 2C → 4C → 8C), thereby extracting
deeper semantic features. During downsampled process, dy-
namic range normalization, frequency band feature decom-
position, and efficient multi-frequency band fusion from the
LCT domain input data are achieved.

In the upsampling stage, the module progressively in-
creases the spatial resolution of the feature map while effec-
tively preserving high-frequency detail information through
skip connections.

For any target resolution coordinates (x′, y′) in the output
feature map, the scaling factors sx = H ′/H and sy =
W ′/W map it to the floating-point position (x, y) in the
input feature map according to bilinear interpolation. The
process is formulated as

x =
x′

sx
, y =

y′

sy
(14)

The four nearest pixels to the floating-point position (x, y)
in the input feature map (x1, y1), (x2, y1), (x1, y2), (x2, y2)
are determined, and their pixel values are denoted
as T [x1, y1], T [x2, y1], T [x1, y2], T [x2, y2], respectively. Fi-
nally, the output value is calculated using the weighted
formula

Toutput[x
′, y′] = w1T [x1, y1] + w2T [x2, y1]

+ w3T [x1, y2] + w4T [x2, y2]
(15)

where the weights w1, w2, w3, w4 represent the relative dis-
tance of the floating-point position to the four pixels and
satisfy w1 + w2 + w3 + w4 = 1. The skip connection in
the network directly transmits high-resolution features from
the downsampling stage to the corresponding upsampling
stage, enabling effective multi-scale feature fusion and the
preservation of detail information. And we have

Ti−1 = Upsample(Ti) + Tskip,i−1 (16)

where Upsample(Ti) denotes the deep features restored
through bilinear interpolation, and Tskip,i−1 represents the
high-resolution shallow features provided by the skip con-
nection.

3) Unified physics-aware attention network module:
UPAN network module combines physical constraints with
data-driven features to generate physically reasonable feature
representations through global consistency constraints and
local feature fusion. The feature processing in UPAN starts
with the separation of input features, dividing the input
feature x ∈ RH×W×C into two paths: the physically related
feature path and the local detail feature path. The physically
related features are processed by the PAM to enhance global
consistency and ensure the features adhere to physical laws,
while the local detail features are extracted and enhanced
by the FRM to capture fine-grained local information. The
results from both paths are concatenated along the channel
dimension to form the fused feature representation:

fconcat ∈ RH×W×2C (17)

To further optimize the fused features, UPAN performs
global pooling to extract the importance weights of each
channel. On a per-channel basis, the features are weighted to
highlight key features while suppressing irrelevant or redun-
dant ones. Then, the fused features undergo convolutional
operations to compress the channel dimension from 2C to
the original C, resulting in the optimized output feature

fout ∈ RH×W×C (18)

Physics-aware module In single-phase measurement
phase retrieval, the intensity measurements from LCT pro-
vide essential physical constraints, while the spatial domain
features capture better local detail information. The struc-
ture of Physics-Aware Module is illustrated in Figure 2.
The design goal of PAM is to incorporate these physical
constraints into the learning process, while also enhancing
feature representation through an attention mechanism.

PAM maps the input feature map uk into the LCT domain
to generate the complex feature Uk = |Uk|ejφk . In the
LCT domain, the magnitude |Uk| represents intensity infor-
mation, and the phase φk captures high-frequency details.
To introduce physical constraints, we update the magnitude
information using the measured intensity S(X) as follows

U ′
k =

√
S(X)ejφk (19)

The updated LCT domain feature U ′
k is then mapped back

to the spatial domain through an inverse LCT operation,
generating a new feature map u′k. However, even though the
physical constraints are explicitly applied, the feature map
may still lack accurate representation of local details. Thus,
we design a convolutional neural network gk(·) to learn the
residual information. After extracting local features from u′k
through the convolutional network, the updated feature is
obtained by weighting the initial feature map uk,

uk+1 = gk(u
′
k) + βkuk (20)

This design retains the global consistency of the physical
constraints while enhancing the expression of local details.
The multi-layer design of PAM further improves feature
learning.

Feature-refinement module The FRM extracts local de-
tail features, such as edge and texture details, from the input
features FFRM ∈ RH×W×(C−2), while suppressing redundant
features. FRM employs a shallow structure consisting of
three consecutive convolution blocks (ConvB), each includ-
ing a convolution operation, a batch normalization layer,
and a non-linear activation function. The refined feature
F ′

FRM ∈ RH×W×(C−2) can be described as follows

F ′
FRM = σ (Conv3 (σ (Conv2 (σ (Conv1(FFRM)))))) (21)

where Convk represents the k-th layer convolution operation
and σ(·) is the activation function (ReLU). This refinement
step enhances the expression of detailed features at each
layer, ensuring that the output features provide rich local
information for subsequent fusion, complementing the global
information extracted by UPAN.

Attention-based fusion module The structure of
Attention-Based Fusion Module is shown in Figure 3. It
dynamically fuses the global context features F ′

PAM ∈
RH×W×2 extracted by PAM with the local features F ′

FRM ∈
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Fig. 2 Structure of Physics-Aware Module.

RH×W×(C−2) extracted by FRM, resulting in a more ex-
pressive fused feature.

The output of PAM and FRM is concatenated along the
channel dimension to obtain the fused feature:

Fconcat = Concat(F ′
PAM, F

′
FRM) ∈ RH×W×2C (22)

The global average pooling operation is applied to the
fused features Fconcat to compress them into a channel
description vector Fglobal ∈ R1×1×2C :

Fglobal(c) =
1

H ×W

H∑
i=1

W∑
j=1

Fconcat(i, j, c) (23)

The channel description vector is then passed through
two fully connected layers (FC), with a non-linear acti-
vation function to generate the channel attention weights
A ∈ R1×1×2C :

A = Softmax (FC2 (σ (FC1 (Fglobal)))) (24)

Finally, the attention weights are multiplied with the fused
features per channel to generate the final fused feature output
FAFM ∈ RH×W×C :

FAFM(i, j, c) = A(c) · Fconcat(i, j, c) (25)

This allows dynamic weight allocation between global and
local features, enabling improved feature representation.

4) Post-processing module: In the final stage of image
recovery, a series of steps such as normalization, feature op-
timization, dynamic fusion, detail enhancement, and output
formatting are combined to gradually optimize the feature
distribution and generate high-quality recovered images.

The input feature map is standardized in terms of mean
and standard deviation. The specific process is given by:

Fnorm(i, j) =
F (i, j)− µF

σF
(26)

where F (i, j) represents the pixel value of the input feature
map, and µF and σF are the mean and standard deviation
of the feature map, respectively, and

µF =
1

H ·W

H∑
i=1

W∑
j=1

F (i, j) (27)

σF =

√√√√ 1

H ·W

H∑
i=1

W∑
j=1

(F (i, j)− µF )2 (28)

The feature map is enhanced by combining local con-
volution with a channel attention mechanism, which im-
proves the local detail representation ability of the features.
This process is obtained as Frefine = Convlocal(Fnorm) +
Attentionchannel(Fnorm), where Convlocal captures local fea-
tures such as edges and corners through convolution, and
Attentionchannel emphasizes the importance of different fea-
ture channels through adaptive weight calculation. The chan-
nel attention mechanism extracts the global response for
each channel using global average pooling, and then uses
a two-layer fully connected network for nonlinear mapping
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to generate the channel weights as

wc = σ(W2 · ReLU(W1 · gc)) (29)

In the feature fusion stage, features from different sources
are integrated using dynamic weight adjustment. The fu-
sion operation calculates the weight matrix through the
attention mechanism and combines the features as Ffuse =

Softmax(W ) ·
[
Frefine

Fglobal

]
, where Softmax(W ) denotes the

normalization of the weight matrix, and
[
Frefine

Fglobal

]
represents

the joint representation of the locally optimized and global
features.

In the detail enhancement stage, convolution operations
combined with a nonlinear activation function are applied as
follows

Fenhance = σ(Convenhance(Ffuse)) (30)

where Convenhance is a high-resolution convolution layer that
captures subtle texture features, and σ(·) represents the ReLU
activation function, which further enhances the visual clarity
and detail expression.

Finally, in the output formatting stage, the enhanced fea-
ture map is adjusted to fit the target output range. The process
is as follows

Î = Clamp(Fenhance · (γ + δ)), (31)

where γ and δ are the scaling factor and the offset for feature
stretching, respectively, and Clamp(·) ensures that the pixel
values are within the range [0, 1].

III. EXPERIMENTAL SETUP AND TRAINING STRATEGY

A. Experimental setup
The proposed reconstruction method is based on the

PyTorch version 2.0.0 platform, using Python 3.9 and lever-
aging an NVIDIA RTX 3060 GPU for computational accel-
eration. We conducted simulations on two different datasets:

the Cell8 dataset [24] and the Fashion-MNIST dataset [25].
The training datasets are converted into grayscale images
and resized to 128 × 128. Then, two forms of complex-
valued images are generated using the preprocessed images
x ∈ [0, 1]: pure phase images and pure magnitude images.
To generate pure phase images, we mapped x to the 2π-
phase domain using the exponential function exp(2πix),
keeping the magnitude as 1. On the other hand, we use
the preprocessed Fashion-MNIST images x ∈ [0, 1] as the
magnitude part of the image xmag = x.

During training, the model was optimized using the Adam
optimizer, and β1 = 0.9, β2 = 0.999, weight decay 1×10−4,
with a total of 300,000 iterations. The learning rate follows a
cosine annealing strategy, decaying gradually from 3×10−4

to 1 × 10−6. In addition, our proposed method employs a
progressive training strategy, starting with 128 × 128 small
image patches and a batch size of 64, and then gradually
increasing the image patch size and reducing the batch size
to improve the model’s adaptation to large-scale images. It is
noteworthy that, apart from the input measurement data, no
additional external training data is required for our proposed
method.

B. Progressive training strategy

For a single-shot phase retrieval task, the proposed method
typically needs to extract contextual information and lo-
cal fine-grained features from inputs of different scales.
However, due to the attention model’s potential inability to
effectively capture global image when processing small-sized
image patches, the model’s performance in recovering full-
resolution images during testing may be poor. Moreover,
training directly on large-sized inputs significantly increases
computational costs and affects training efficiency. To fully
leverage the potential of this architecture, we propose a
progressive training strategy.

In the early stages of training, we select smaller image
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patches P1 ∈ Rh1×w1×C for training, quickly iterating to
improve the network’s ability to model shallow features
(such as edges and textures). As the training progresses
through stage t, the image patch size gradually increases to
Pt ∈ Rht×wt×C , where ht > ht−1 and wt > wt−1. In this
process, the loss function for each stage is defined as:

Lt =
1

Nt

Nt∑
i=1

∥∥∥Î(t)i − I
(t)
i

∥∥∥2 + λ · R(W ) (32)

where Î(t)i is the reconstructed image at stage t, I(t)i is the
reference image, R(W ) is the regularization term, and λ is
the balancing parameter. After each image patch expansion,
the core modules, including PAM, FRM, and refinement
modules, adaptively optimize their feature representations.
PAM captures a larger range of physical features, ensuring
the consistency of physical constraints. FRM further refines
local feature details, supplementing multi-scale information,
and the refinement module enhances feature fusion quality
through convolution and attention mechanisms, producing
features with global consistency and enhanced local details.

As the image patch size increases, the computational cost
for training also increases, so we dynamically adjust the
batch size Bt to satisfy:

Bt ∝
1

ht · wt
ω (33)

to ensure that the computational time for each optimization
step remains stable while fully utilizing hardware resources.

IV. ABLATION STUDY

A. Ablation study of the LCT-FPB module

In order to analyze the impact of the LCT-FPB module on
model performance, we designed a series of ablation experi-
ments by removing only the LCT-FPB module while keeping
other architecture and training parameters unchanged. This
allowed us to quantify the contribution of this module to re-
construction quality, structural similarity, and computational
complexity. The experiment mainly includes two settings:
Baseline is the model without the LCT-FPB module, and
Full Model is the complete architecture with the LCT-FPB
module.

Both configurations use the same training scheme. We
adopt a progressive learning strategy, initially training with
small image blocks (128×128, batch size 64), and gradually
increasing the image block size while reducing the batch
size to improve the model’s adaptability to large-scale data.
The specific adjustment scheme is as follows: (160×160, 40),
(192×192, 32), (256×256, 16), (320×320, 8), (384×384, 8).
The loss function uses L1 loss to minimize reconstruction
error, and data augmentation (horizontal/vertical flipping) is
applied to enhance generalization ability.

To quantitatively analyze the contribution of the LCT-
FPB module, we adopted several evaluation metrics: Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity In-
dex (SSIM) for assessing reconstruction quality, Mean Ab-
solute Error (MAE) for quantifying pixel-level errors, and
Floating Point Operations (FLOPs), measured in GigaFLOPs,
along with parameter count (M) for evaluating computational
complexity.

Visual comparison of the contribution of FPB module
results are provided in Figure 4. In terms of image re-
construction quality, the Baseline model without LCT-FPB
module exhibits blurring in high-frequency detail regions and
significant loss of edge structures. In contrast, the complete
model (with LCT-FPB) effectively preserves texture details
and reduces noise artifacts, producing reconstructed images
that are visually closer to the original ones. This further
validates the effectiveness of LCT-FPB in enhancing feature
representation and improving reconstruction quality.

The ablation study of the LCT-FPB module is shown
in Table I. The experimental results show that, without
the LCT-FPB module, the model’s PSNR is 32.50 dB,
whereas the PSNR of the full model increases to 33.92 dB.
This indicates that the LCT-FPB module plays a significant
role in feature propagation and information enhancement.
Similarly, the SSIM index increases from 0.921 to 0.938,
suggesting that the LCT-FPB module has a positive effect on
enhancing image structural details. Furthermore, the MAE
decreases from 0.018 to 0.015, further indicating that the
module effectively reduces pixel-level errors and improves
reconstruction quality.

Although the LCT-FPB module improves the model’s
performance, the increase in computational cost is limited.
In terms of computational complexity, FLOPs only increase
from 85.7G to 88.1G, with an increase of about 2.8%. The
parameter count also increases by only 1.2M, indicating that
the LCT-FPB module improves performance while main-
taining high computational efficiency. To further evaluate
its computational overhead, we performed inference speed
tests on an NVIDIA RTX 3060 GPU. The results show
that the inference time for the Baseline model without LCT-
FPB on 256×256 resolution images is 78.6 ms, while the
inference time for the full model is 81.2 ms, with only a
3.3% increase. This demonstrates that the LCT-FPB module
provides performance improvement with a minimal impact
on computational overhead.

B. Contribution of PAM and FRM attention mechanisms

In order to investigate the role of different attention
mechanisms in image reconstruction tasks, a series of abla-
tion experiments are designed to systematically analyze the
contributions of PAM and FRM to model performance. We
constructed four experimental configurations:

• (1) Baseline (no attention mechanism), where all atten-
tion modules are removed, leaving only the backbone
network;

• (2) PAM-only, where only PAM is used to evaluate its
impact on global feature modeling capability;

• (3) FRM-only, where only FRM is used to analyze its
role in local feature enhancement;

• (4) Full Model (PAM + FRM), which is the complete
model containing both attention mechanisms.

The ablation study of PAM and FRM is illustrated in
Table II. In the initial stage, 128×128 small image blocks
are used with a batch size of 64, and the image block size is
gradually increased to 384×384 while reducing the batch size
to improve the model’s adaptability to large-scale images.

Experimental results show that the Baseline model sig-
nificantly lags behind models with attention mechanisms in
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Table I ABLATION STUDY OF PAM AND FRM

Model PSNR (dB) ↑ SSIM ↑ MAE ↓ FLOPs (G) ↓ Params (M) ↓

Baseline (w/o LCT-FPB) 32.50 0.921 0.018 85.7 24.5
Full Model (w/ LCT-FPB) 33.92 0.938 0.015 88.1 25.7

Table II ABLATION STUDY OF LCT-FPB MODULE

Model PSNR (dB) ↑ SSIM ↑ MAE ↓ FLOPs (G) ↓ Params (M) ↓

Baseline (No Attention) 32.15 0.918 0.019 80.2 23.5
PAM-only 33.42 0.932 0.016 87.5 25.1
FRM-only 33.01 0.927 0.017 85.3 24.8
Full Model (PAM + FRM) 34.05 0.940 0.015 90.1 26.3

both PSNR and SSIM metrics. Among them, PAM excels
in capturing global features, improving the PSNR to 33.42
dB, while FRM is more advantageous in local feature en-
hancement and detail recovery, reducing the MAE to 0.017.
The full model with PAM and FRM performs the best
across all metrics, with the PSNR reaching 34.05 dB and
SSIM improving to 0.940, verifying the effectiveness of their
synergistic effect.

Additionally, the computational complexity analysis shows
that compared to the Baseline (80.2G FLOPs), the FLOPs
of PAM-only and FRM-only increase to 87.5G and 85.3G,
respectively, while the FLOPs of the full model reach 90.1G.
Although the computational overhead increases slightly, the
performance improvements justify its efficiency.

Figure 5 illustrates visual comparisons that highlight the
strength of integrating PAM and FRM for enhanced perfor-
mance. The baseline model shows a significant loss of high-
frequency information, while the PAM-only version improves
global consistency but still lacks detailed information. The
FRM-only version presents richer local details but slightly
weaker overall structure. In contrast, the combination of
PAM and FRM performs effectively in both global and
local feature extraction. It is evident that the baseline model
suffers from blurring in high-frequency detail regions and
considerable loss of edge structures. The PAM-only model
enhances global consistency, yet still lacks optimization for
local details. The FRM-only model demonstrates advantages
in local feature enhancement but still shows issues with
coherent global structure. The complete model (PAM +
FRM) effectively preserves texture details and reduces noise
artifacts, making the reconstructed image visually closer
to the original. This further confirms the effectiveness of
LCT-FPB in enhancing feature representation and improving
reconstruction quality.

V. EXPERIMENTAL RESULTS

This paper compares the proposed method with both tradi-
tional and state-of-the-art deep learning-based phase retrieval
methods, including HIO [7], a classical iterative optimization
technique for obtaining the desired solution, and ResNet
[26], a deep residual network that mitigates the vanishing
gradient problem via skip connections, thereby improving the
stability of phase retrieval. LenlessNet [27], a residual UNet

network designed for lensless imaging, performs well in
pure phase image recovery tasks. MCNN [28], a multi-scale
CNN architecture, enhances phase retrieval performance by
extracting features at different scales. PRCGAN [29], based
on a Generative Adversarial Network (GAN) framework,
optimizes the phase retrieval task through adversarial training
strategies. A deep learning model NNPhase [30] recovers
complex phase information from Fraunhofer diffraction mea-
surements. LearnInitNet [31], a method based on learned
initialization weights, optimizes the quality of the initial
solution and accelerates phase retrieval convergence. HIO-
Unet [32], a combination of the HIO iterative algorithm
and Unet structure, enhances phase retrieval accuracy in
complex scenarios through deep learning. CPR-FS [33], a
phase retrieval algorithm based on conditional probability
modeling, provides optimal recovery under specific LCT
transform conditions. The results in the Table III demonstrate
the performance of different reconstruction methods, where
the best and second-best results are highlighted, showing the
effectiveness of the proposed method across various LCT
measurements on CELL 8 and Fashion-MNIST datasets,
while the visualization results, including amplitude objects
and phase results, can be found in Figure 6 and 7. The
method proposed in this paper achieves optimal PSNR and
SSIM results under different LCT transform measurement
conditions through multi-scale feature learning and deep
optimization strategies.

The results of all learning-based methods indicate that the
reconstructed images appear slightly blurred compared to the
ground truth. This can be attributed to the fact that, in the
captured intensity images, high-frequency components have
much lower magnitudes than low-frequency ones. Moreover,
the presence of noise further obscures these high-frequency
details, making them harder to recover. Therefore, it is
necessary to further investigate the reconstructions obtained
under certain sub-optimal LCT parameter settings.

In Table IV, we show a set of results on the CELL8 and
Fashion-MNIST datasets under sub-optimal LCT parameters.
It can be observed that while all methods experience signif-
icant performance degradation, the proposed method consis-
tently achieves the best results, demonstrating its robustness
and adaptability.

Based on the experimental results and image reconstruc-
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Fig. 4 Visual comparison of the contribution of FPB module.

Fig. 5 Visual Comparison of the Contribution of PAM and FRM Attention Mechanisms.
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Table III AVERAGE PSNR/SSIM PERFORMANCE COMPARISONS OF VARIOUS RECONSTRUCTION METHODS
FOR Different LCT PARAMETERS ON CELL 8 AND FASHION-MNIST DATASETS, WHERE THE BEST RESULTS

ARE HIGHLIGHTED IN BOLD AND THE SECOND-BEST RESULTS ARE UNDERLINED

datasets method type
a = 1, b = π/4,

c = 0, d = 1

a = 1, b = 3π/4,

c = 0, d = 1

a = cos(π/3), b = sin(π/3),

c = − sin(π/3), d = cos(π/3)

CELL 8

HIO

Amplitude

24.31/0.82 25.14/0.84 26.32/0.86

ResNet 30.45/0.89 31.78/0.91 32.56/0.92

LenslessNet 31.12/0.91 32.45/0.92 34.01/0.94

MCNN 30.87/0.90 32.01/0.91 33.12/0.93

PRCGAN 32.78/0.93 33.89/0.94 35.12/0.95

NNPhase 31.89/0.92 34.12/0.95 35.45/0.96

LearnInitNet 30.98/0.91 32.87/0.92 33.98/0.94

HIO-UNet 32.12/0.92 33.78/0.94 35.01/0.95

CPR-FS 30.76/0.90 32.45/0.92 33.89/0.93

Ours 33.98/0.95 35.12/0.97 36.78/0.98

HIO

Phase

25.87/0.83 27.12/0.85 28.45/0.87

ResNet 31.23/0.90 32.76/0.92 34.02/0.94

LenslessNet 32.78/0.93 34.45/0.94 35.87/0.96

MCNN 31.98/0.92 33.21/0.93 34.32/0.94

PRCGAN 33.45/0.94 34.89/0.95 36.12/0.97

NNPhase 32.34/0.93 34.12/0.94 35.45/0.96

LearnInitNet 31.87/0.92 33.45/0.93 34.76/0.94

HIO-UNet 33.12/0.94 34.65/0.95 35.78/0.96

CPR-FS 31.98/0.91 33.54/0.93 34.98/0.94

Ours 34.76/0.96 36.12/0.97 37.65/0.98

Fashion-MNIST

HIO

Amplitude

23.14/0.81 24.32/0.83 25.87/0.85

ResNet 29.12/0.88 30.45/0.90 31.78/0.91

LenslessNet 30.78/0.90 32.12/0.92 33.45/0.93

MCNN 29.87/0.89 31.12/0.91 32.34/0.92

PRCGAN 31.98/0.92 33.45/0.94 34.78/0.95

NNPhase 30.98/0.91 33.12/0.94 35.01/0.96

LearnInitNet 29.98/0.90 31.87/0.92 33.54/0.94

HIO-UNet 32.65/0.94 33.78/0.95 35.12/0.96

CPR-FS 30.21/0.89 31.54/0.91 33.12/0.93

Ours 33.87/0.95 35.21/0.97 36.78/0.98

HIO

Phase

30.12/0.87 32.01/0.89 33.12/0.92

ResNet 32.34/0.91 34.12/0.93 35.21/0.94

LenslessNet 33.12/0.93 35.12/0.95 36.12/0.96

MCNN 32.98/0.92 34.87/0.94 35.78/0.95

PRCGAN 34.21/0.95 36.21/0.96 36.98/0.97

NNPhase 33.89/0.94 35.21/0.95 36.12/0.96

LearnInitNet 32.78/0.92 34.98/0.94 35.98/0.95

HIO-UNet 35.01/0.97 37.12/0.98 37.98/0.99

CPR-FS 32.56/0.91 34.54/0.93 36.78/0.96

Ours 35.87/0.98 37.45/0.98 38.45/0.99

1
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HIO ResNet LenslessNet MCNN PRCGAN Ground-Truth

24.01dB 30.45dB 31.12dB 30.87dB 32.78dB (1, π/4 ,0,1)

25.14dB 31.78dB 32.45dB 32.01dB 33.89dB (1, 3π/4 ,0,1)

26.32dB 32.56dB 34.01dB 33.12dB 35.12dB （cos(π/3)，sin(π/3)，
-sin(π/3)，cos(π/3))

NNPhase LearnInitNet HIO-Unet CPR-FS OURS Ground-Truth

31.89dB 30.98dB 32.12dB 30.76dB 33.98dB (1, π/4 ,0,1)

34.12dB 32.87dB 33.78dB 32.45dB 35.12dB (1, 3π/4 ,0,1)

22.04dB 35.45dB 33.98dB 35.01dB 33.89dB
（cos(π/3)，sin(π/3)，
-sin(π/3)，cos(π/3))

Fig. 6 Reconstruction results (Amplitude objects) of nine PR methods for different LCT measurements, from top to bottom.

(1, π/4 ,0,1)

（cos(π/3)，sin(π/3)，-
sin(π/3)，cos(π/3))

(1, 3π/4 ,0,1)

HIO ResNet LenslessNet MCNN PRCGAN NNPhase LearnInitNet HIO-Unet CPR-FS Ours Ground-Truth

30.12dB 32.34dB 33.12dB 32.98dB 34.21dB 33.89dB 32.78dB 35.01dB 32.56dB 35.87 dB

32.01dB 34.12dB 35.12dB 34.87dB 36.21dB 35.21dB 34.98dB 37.12dB 34.54dB 37.45dB

33.12dB 35.21dB 35.78dB 36.98dB 36.12dB 35.98dB 37.98dB 36.78dB 38.45dB36.78dB

Fig. 7 Reconstruction results (phase objects) of nine PR methods for different LCT measurements, from top to bottom.
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Table IV AVERAGE PSNR/SSIM PERFORMANCE COMPARISONS OF VARIOUS RECONSTRUCTION METHODS
FOR INFERIOR LCT MEASUREMENTS ON CELL 8 AND FASHION-MNIST DATASETS, WHERE THE BEST
RESULTS ARE HIGHLIGHTED IN BOLD

datasets method type a = 1, b = 0, c = 1, d = 1

CELL8

HIO

Amplitude

8.27 / 0.12
ResNet 10.47 / 0.13

LenslessNet 11.32 / 0.24
MCNN 10.16 / 0.19

PRCGAN 11.77 / 0.27
NNPhase 9.86 / 0.23

LearnInitNet 11.23 / 0.21
HIO-Unet 10.97 / 0.18
CPR-FS 12.33 / 0.24

Ours 13.41 / 0.25
HIO

Phase

9.37 / 0.13
ResNet 10.32 / 0.20

LenslessNet 13.66 / 0.26
MCNN 11.79 / 0.20

PRCGAN 11.72 / 0.21
NNPhase 10.32 / 0.25

LearnInitNet 11.12 / 0.21
HIO-Unet 11.32 / 0.26
CPR-FS 12.56 / 0.28

Ours 15.70 / 0.31

Fashion-MNIST

HIO

Amplitude

11.24 / 0.08
ResNet 9.37 / 0.16

LenslessNet 11.15 / 0.24
MCNN 12.64 / 0.23

PRCGAN 10.35 / 0.26
NNPhase 9.63 / 0.23

LearnInitNet 12.57 / 0.26
HIO-Unet 12.39 / 0.29
CPR-FS 11.94 / 0.25

Ours 13.91 / 0.29
HIO

Phase

13.47 / 0.24
ResNet 11.84 / 0.19

LenslessNet 12.45 / 0.28
MCNN 12.36 / 0.27

PRCGAN 12.57 / 0.21
NNPhase 11.59 / 0.19

LearnInitNet 12.97 / 0.22
HIO-Unet 13.86 / 0.24
CPR-FS 12.73 / 0.25

Ours 14.31 / 0.27
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tion quality analysis, the proposed method demonstrates
significant advantages under different LCT measurement
conditions. Compared with traditional methods and recent
deep learning-based phase retrieval methods, the proposed
method achieves the best PSNR and SSIM values under all
tested LCT transform conditions. In particular, under differ-
ent LCT transforms on the CELL 8 and Fashion-MNIST
datasets, the proposed method effectively recovers high-
frequency details and structures of the image, surpassing
existing phase retrieval methods.

VI. CONCLUSION

In this paper, we propose a method of single-shot phase
retrieval from linear canonical transform via deep physical
neural network, called SPRLCT-PNN. The proposed method
leverages the advantages of LCT while incorporating upsam-
pling and downsampling techniques for improvement. The
experimental results on the CELL 8 and Fashion-MNIST
datasets demonstrate that the proposed method effectively
recovers high-frequency details and structures of the image,
outperforming existing CNN methods. Future work is needed
to explore the potential of the proposed method in prepro-
cessing and its performance across different datasets.
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