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Abstract—Let Ģ = (V,E) be a finite, simple colored graph of
order n and size m. In this paper, we define δ-color complement
and δ′-color complement of graph as follows. For any two points
h and i of Ģ with d(h) = d(i), remove the edge between h and
i in Ģ and add the edges of Ģ joining the vertices h and i.
Resultant graph is called δ-color complement of Ģ. For any two
points h and i of Ģ with d(h) ̸= d(i), delete the edge between
h and i in Ģ and add corresponding edge of Ģ between h
and i. The graph thus obtained is called δ′-color complement
of Ģ. This paper presents different properties of δ-color and
δ′-color complements, examining their connectivity, self-color
complementary, and edge counts in specific graphs.

Index Terms—δ-color complement, δ′-color complement, self-
color complementary, degree sequence, proper coloring.

I. INTRODUCTION

ALL the graphs considered here are finite, undirected,
no loops and multiple edges. As usual n = |V | and

m = |E|, denote the number of vertices and edges in a graph
G, respectively. To describe adjacency relations, consider two
vertices h and i in G. If hi ∈ E, then h is adjacent to i,
denoted as h ∼ i. Otherwise, if h and i are not adjacent, we
write h ≁ i. The complement of a graph G, denoted by G,
has the same vertex set as G, and two vertices h and i are
adjacent in G if and only if they are non-adjacent in G. A
graph G is called self-complementary if it is isomorphic to
G. The degree of a vertex v in a graph, denoted by d(v),
represents the number of edges incident to v.

Graph Coloring is one of the most common optimization
problems in the field of computer science and mathematics.
There are various real life applications of graph coloring.
Proper coloring is to color vertices of a graph with minimum
color in such a way that no two vertices that share an edge are
assigned the same color. The Chromatic number of graph G
is the minimum number of colors required to properly color
a graph and is represented by χ(G). For notation and graph
theory terminology we generally follow [4] and [7].

Graph partitioning is a widely studied problem with ap-
plications in computing, engineering, and network science.
It is widely used in clustering, route optimization, biological
networks, and high-performance computing. A partition of G
consists of disjoint subsets of V (G). One notable type is the
equal-degree partition, where all vertices of the same degree
are grouped together. In 2022, Pai et. al. [6] introduced a
variant of graph complements in which the complement takes
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place only among the vertices of the same degree. They
called it as δ-complement graph Gδ of G.

II. DEFINITIONS AND PRELIMINARIES

In this article, we denote Ģ = (V,E) as a colored graph.
The complement of Ģ, denoted by Ģ, preserves the same
vertex coloring and satisfies the following properties,

• If h and i are non-adjacent in Ģ and have different
colors, then they become adjacent in Ģ.

• If h and i are non-adjacent in Ģ and share the same
color, they remain non-adjacent in Ģ.

• All adjacent pairs in Ģ become non-adjacent in Ģ.

Definition 1. Let Ģ be a (n,m) colored graph. For any two
points h and i in V (Ģ) such that d(h) = d(i), delete the
edge between h and i in Ģ and insert the corresponding
edge from the Ģ between them. The graph thus obtained is
called the delta-color complement or δ-color complement of
Ģ and is denoted by Ģδc

.
i. A graph Ģ is δ-self color complementary (δ-s.c.c) if

Ģ ∼= Ģδc
.

ii. A graph Ģ is δ-co-self color complementary (δ-co.s.c.c)
if Ģδc

∼= Ģ.

Definition 2. For any two vertices h and i of Ģ with
d(h) ̸= d(i), delete the edge between h and i in Ģ and
add corresponding edge of Ģ between h and i. The graph
thus obtained is called δ′-color complement of Ģ, is denoted
by Ģδ′c

.
i. A graph Ģ is δ′-self color complementary (δ′-s.c.c) if

Ģ ∼= Ģδ′c
.

ii. A graph Ģ is δ′-co-self color complementary (δ′-
co.s.c.c) if Ģδ′c

∼= Ģ.

Example:

(a) Ģ (b) Ģδc
(c) Ģδ′c

Fig. 1
Ģδc

and Ģδ′c
with respect to equal degree partition of

V (Ģ).

Definition 3. [7] The star graph Sn of order n, is a tree on
n vertices where one vertex has a degree of n − 1, and all
other vertices have degree 1.

Definition 4. [3] A unicyclic graph τ = Sn + e is formed
by adding an edge between two pendant vertices of the star
graph Sn of order n.
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Definition 5. [3] A bicyclic graph ⋎ = Sn +2e is obtained
by taking the unicyclic graph τ = Sn + e and adding one
more edge between a pendant vertex and a vertex of degree
two in τ .

Definition 6. [5] A double star S(p, q) is obtained by
connecting the central vertices of two star graphs Sp and
Sq with an additional edge.

Definition 7. [1] A wheel graph Wn is formed by joining a
single universal vertex to every vertex of a cycle, resulting
in a graph of order n.

Definition 8. [5] The friendship graph Fp is a planar graph
with 2p + 1 vertices and 3p edges, constructed by joining
p copies of the cycle C3 at a single common vertex, which
serves as the universal vertex.

Definition 9. [5] The p-book graph Bp, is defined as Bp =
Sp+1 × P2, where Sp+1 is a star graph with p+ 1 vertices
and P2 is a path with two vertices. The graph has 2p + 2
vertices.

Definition 10. [5] The Triangular book graph B(3, p),
consists of p triangles sharing a single common edge. It is
a planar graph with p+ 2 vertices and 2p+ 1 edges.

Definition 11. [5] A graph amalgamation is a relationship
between two graphs. Amalgamations can provide a way to
reduce a graph to a simpler graph while keeping certain
structure intact.

Let {G1, G2, . . . , Gl} be a finite collection of graphs and
each Gi has a fixed vertex v0i called as a terminal vertex.
The amalgamation Amal(v0i, Gi) is formed by taking all the
Gi’s and identifying their terminals.

Definition 12. [2] The tadpole graph, Tp,q consists of a cycle
with p vertices (p ≥ 3) joined by a bridge to a path with q
vertices.

III. MAIN RESULTS

The following results illustrates the isomorphism between
the δ-color complements of a graph.

Proposition 1. For any graph Ģ,
i. Ģδc

∼= (Ģ)δc .
ii. Ģδ′c

∼= (Ģ)δ′c .
Proof: Consider two vertices x and y in Ģ.

i. Let x ∼ y in Ģδc
⇐⇒ x ≁ y in Ģδc
⇐⇒ d(x) = d(y), and x ∼ y in Ģ if c(x) ̸= c(y), or
d(x) ̸= d(y), and x ≁ y in Ģ
⇐⇒ d(x) = d(y), and x ≁ y in Ģ, or d(x) ̸= d(y),
and x ∼ y in Ģ if c(x) ̸= c(y)
⇐⇒ x ∼ y in (Ģ)δc if c(x) ̸= c(y).

ii. Proof technique is same as (i).

As a consequence of Proposition 1, we have

Corollary 1. For any graph Ģ,
i. Ģδ′c

∼= Ģδc
.

ii. Ģδc
∼= Ģδ′c

.

Corollary 2. For any graph Ģ,

i. Ģδ′c
∼= Ģ ⇐⇒ Ģδ′c

∼= Ģ.
ii. Ģδc

∼= Ģ ⇐⇒ Ģδc
∼= Ģ.

Corollary 3. For any graph Ģ,
i. Ģδc

∼= Ģ ⇐⇒ Ģδ′c
∼= Ģ.

ii. Ģδ′c
∼= Ģ ⇐⇒ Ģδc

∼= Ģ.
Proof: Let Ģ be a graph.

i. Ģδc
∼= Ģ ⇐⇒ Ģδc

∼= Ģ ⇐⇒ Ģδ′c
∼= Ģ (from

Corollary 1).
ii. Ģδ′c

∼= Ģ ⇐⇒ Ģδ′c
∼= Ģ ⇐⇒ Ģδc

∼= Ģ (from
Colollary 1).

Proposition 2. For any graph Ģ,
i. (Ģ)δc

∼= Ģ ⇐⇒ (Ģ)δ′c
∼= Ģ.

ii. (Ģ)δ′c
∼= Ģ ⇐⇒ (Ģ)δc

∼= Ģ.
Proof:

i. Suppose (Ģ)δc
∼= Ģ, then (Ģ)δc

∼= (Ģ) ∼= Ģ.
Assume that Ḩ = Ģ. Then (Ḩ)δc

∼= Ģ.
From Corollary 1,
Ḩδ′c

∼= Ģ ⇒ (Ģ)δ′c
∼= Ģ.

Conversely, (Ģ)δ′c
∼= Ģ

(Ģ)δ′c
∼= Ģ ⇒ (Ḩ)δ′c

∼= Ģ
From Corollary 1,
Ḩδc

∼= Ģ ⇒ (Ģ)δc
∼= Ģ.

Similarly we can prove (ii).

Proposition 3. For any graph Ģ of order n and partition of
its vertex set into k parts, then

i. Ģδc
∼= Ģ and Ģδ′c

∼= Ģ, for k = n.
ii. Ģδc

∼= Ģ and Ģδ′c
∼= Ģ, for k = 1.

Proposition 4. Let Ģ be a complete multipartite graph
Kn1,n2,...,nk

, with a vertex partition {V1, V2, . . . , Vk}, where
|Vi| ̸= |Vj | for all i ̸= j. Then, Ģ is a δ-self color
complementary and δ′-co-self color complementary graph.

Proof: Let Ģ be a complete multipartite graph with a
vertex partition {V1, V2, . . . , Vk}. Note that all vertices in
each Vi share the same color, forming a distinct color class
for each partite. Since a vertex partition by color classes
leads to the δ-color complement of Ģ being isomorphic to
Ģ and δ′-color complement of Ģ being isomorphic to Ģ, it
follows that Ģ is a δ-self color complementary and δ′-co-self
color complementary graph.

Remark 1.
i. All regular graphs are δ′-s.c.c and δ-co-s.c.c.

ii. For a graph Ģ ∼= Kn, χ(Ģδ′c
) = n and χ(Ģδc

) = 1.

Theorem 1. Let Ģ be a connected graph of order n.
The graph Ģδc

is disconnected under any of the following
conditions:

i. Ģ ∼= Kn.
ii. Ģ is a (n− 2)-regular graph.

iii. Ģ contains a vertex v of degree l such that all of its
neighbors also have degree l.
Proof: Let Ģ be a connected graph.

i. If Ģ is a complete graph, every pair of vertices are
adjacent, then Ģδc

is completely disconnected by the
definition of δ-color complement graph.
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ii. Suppose Ģ is a connected (n− 2)-regular graph. Then
n must be even. Since the non-adjacent vertices shares
same color, Ģδc

is disconnected.
iii. Suppose a vertex v ∈ Ģ is only adjacent to l number of

vertices of degree l. Then v is non-adjacent to any of
the vertices in Ģδc

, resulting in a disconnected graph.

Theorem 2. Let Ģ be a graph with n vertices. Then, Ģδ′c
is

disconnected if
i. Let d1, d2, . . . , dm be all the distinct values of the

degrees of the vertices in Ģ. Partition V (Ģ) into non-
empty sets Vd1 , Vd2 , . . . , Vdm such that there exist at
least one Vdi

whose all the vertices are adjacent to
every vertex of V − Vdi

.
ii. Ģ is a disconnected regular graph.

iii. There exists a vertex v ∈ V (Ģ) such that all of its
neighbors have degrees different from that of v.
Proof:

i. Suppose every vertex with degree di is connected all
the vertices of degree other than di, then in Ģδ′c

, the
vertices of degree di will have no connections to those
of different degrees, resulting in a disconnected graph.

ii. Let Ģ be a disconnected regular graph. It is known that
for a regular graph Ģ, Ģ ∼= Ģδ′c

, and consequently, Ģδ′c
is disconnected.

iii. Let v be a vertex in V (Ģ) such that its neighborhood
consists of vertices u ∈ V (Ģ) with a different degree
than v, d(u) ̸= d(v). In this case, v becomes an isolated
vertex in Ģδ′c

, resulting a disconnected graph.

Proposition 5. Let Ģ be a Complete graph Kn. Then,
m(Ģδ′c

) = n(n−1)
2 and m(Ģδc

) = ϕ.

Proposition 6. Let Ģ be a Complete multipartite graph
Kn1,n2,...,nk

, where n1 ̸= n2 ̸= . . . ̸= nk. Then, m(Ģδ′c
) = ϕ

and m(Ģδc
) =

∑
1≤i<j≤k

ninj .

Theorem 3. Let Ģ be a Path Pn, n ≥ 2. Then,

m(Ģδ′c
) =

{
2n− 7, if n is even,
2n− 6, if n is odd

and

m(Ģδc
) =

{
n2−8n+28

4 , if n is even,
n2−8n+23

4 , if n is odd.

Proof: Let Ģ = Pn be the path on n vertices, where
n ≥ 2 and v1, v2, . . . , vn be the vertices of Pn. The vertices
v1 and vn are of degree 1, while all other vertices have
degree 2. Thus, there exists a partition of V into two disjoint
subsets V1 and V2, where V1 = {v1, vn} and V2 = V \ V1.
Case i. When n is even.
The subgraph induced by V2 forms a path Pn−2, which
contains n − 3 edges, as a path with n vertices has n − 1
edges. In (Ģ)δ′c , the two edges between V1 to V2, namely
(v1, v2) and (vn−1, vn), are removed. Additionally, n − 4
new edges are introduced. As a result, the total number of
edges in Ģδ′c

is given by (n− 3) + (n− 4) = 2n− 7.
In Ģδc

, the two edges connecting V1 to V2 remain unchanged.
Since the 2 vertices in ⟨V1⟩ have different colors, an edge
is introduced between them. Within ⟨V2⟩, taking the color
complement, we know for a path graph Pn of even order,

the number of edges is given by (n2 − 1)2. Since V2 contains
n − 2 vertices, applying the same formula to Pn−2 gives,
(n−2

2 − 1)2. Thus, the total number of edges in Ģδc
is

n2−8n+28
4 .

Case ii. When n is odd.
Similarly, in Ģδ′c

, the subgraph induced by V2 forms a path
Pn−2, which contains n − 3 edges. The two edges between
V1 and V2, namely (v1, v2) and (vn−1, vn) are removed, and
instead, n− 3 new edges are added. Thus, the total number
of edges in Ģδ′c

is (n− 3) + (n− 3) = 2n− 6.
In Ģδc

, the two edges connecting V1 and V2 remain un-
changed. Since all vertices in V1 share the same color, no
adjacency appears between them. Within ⟨V2⟩, taking the
color complement, for a path graph Pn of odd order, the
number of edges is n2−4n+3

4 . Since V2 contains n−2 vertices,
applying the same formula to Pn−2 modifies the expression
to, (n−2)2−4(n−2)+3

4 . Therefore, the total number of edges in
Ģδc

is n2−8n+23
4 .

Theorem 4. Let Ģ be a Cycle Cn with n ≥ 3 vertices. Then,
m(Ģδ′c

) = n and

m(Ģδc
) =

{
n(n−4)

4 , n is even,
n2−2n−3

4 , n is odd.

Proof: Let Ģ be a Cycle Cn consisting of n vertices.
Since every vertex has degree 2, by the Proposition 3, Ģ is
both δ′-self color complement and δ-co-self color comple-
ment. Thus, the δ′-color complement of Ģ contains n edges.

In the δ-color complement, when n is even, the vertices are
divided into two color classes, each containing n

2 vertices.
Each vertex then connects to n−4

2 vertices. Since color class
containing n

2 vertices, the number of edges in Ģδc
is n(n−4)

4 .
When n is odd, the chromatic number is 3, meaning one

vertex has a unique color, while the remaining n−1 vertices
are evenly split between two color classes, each containing
n−1
2 vertices. Uniquely colored vertex connects to n−3 other

vertices, while the remaining vertices form (n−3)2

4 edges.
Therefore, the total number of edges in Ģδc

is n2−2n−3
4 .

Theorem 5. Let Ģ be a Wheel graph Wn, n > 4 and m =
2(n− 1). Then, m(Ģδ′c

) = n− 1 and

m(Ģδc
) =

{
(n−1)(n+1)−3

4 , n is even,
(n−1)2

4 , n is odd.

Proof: Let Ģ be a Wheel graph Wn with n > 4. The
central vertex has a degree of n− 1, while all other vertices
have a degree 3. Let V1, V2 be 2 partite set, where V1

contains the central vertex, and V2 = V \ V1.
In Ģδ′c

, the edges connecting V1 and V2 are removed. As a
result, ⟨V1⟩ consists of an isolated vertex and ⟨V2⟩ forms a
cycle Cn−1. Therefore, the graph Ģδ′c

is the disjoint union of
K1 and Cn−1, meaning the total number of edges is n− 1.

In Ģδc
, edges between V1 and V2 remain intact, con-

tributing n − 1 edges. When n is even, ⟨V2⟩ forms a cycle
Cn−1, which has an odd number of vertices. From Theorem
4, for a cycle of odd order, the number of edges in Ģδc

is (n−1)2−2(n−1)−3
4 . Thus, the total number of edges in

the δ-color complement is (n − 1) + (n−1)2−2(n−1)−3
4 =

(n−1)(n+1)−3
4 .
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When n is odd, ⟨V2⟩ forms a cycle Cn−1, which has an even
number of vertices. From Theorem 4, for a cycle of even
order, the number of edges in Ģδc

is (n−1)(n−5)
4 . Therefore,

the total number of edges in the δ-color complement is
(n− 1) + (n−1)(n−5)

4 = (n−1)2

4 .

Theorem 6. Let Ģ be a Star graph Sn, n ≥ 2 and m = n−1.
Then, m(Ģδ′c

) = ϕ and m(Ģδc
) = n− 1.

Proof: Let Ģ be a Star graph Sn, n ≥ 2. The central
vertex has a degree of n−1, with the remaining n−1 vertices
being pendant. Thus, we get two partites V1 and V2, where V1

contains only the central vertex, and V2 = V \V1 consists of
the remaining vertices. ⟨V2⟩ is a totally disconnected graph,
as all its vertices belong to the same color class.
In Ģδ′c

, all n − 1 edges between V1 and V2 are removed.
Consequently, Ģδ′c

is a null graph with no edges. In Ģδc
, the

n− 1 edges between V1 to V2 are remain unchanged. Since
⟨V2⟩ is completely disconnected where all vertices share the
same color, no additional edges are introduced. Thus, Ģδc

∼=
Ģ, and the number of edges in Ģδc

remains n− 1.

Theorem 7. Let Ģ be a Double star graph S(p, q). Then,

m(Ģδ′c
) =

{
ϕ, if p ̸= q,

1, if p = q
and

m(Ģδc
) =

{
pq, if p ̸= q,

p2 − 1, if p = q.

Proof: Let Ģ be a double star graph S(p, q) with p+ q
vertices and p+ q − 1 edges.

When p = q, the two central vertices each have a degree
p, while the remaining vertices are pendant vertices. We get
2 partites, where V1 consists of the two central vertices and
V2 contains the p+q−2 pendant vertices. In Ģδ′c

, the 2(p−1)
edges connecting V1 and V2 are removed. ⟨V1⟩ forms K2,
while ⟨V2⟩ having no edges, forms a null graph. Thus, Ģδ′c

is
the disjoint union of K2 and a null graph of order 2(p− 1),
resulting in a total of one edge.
In Ģδc

, 2(p − 1) edges between V1 and V2 are remain
unaltered. Since the 2(p−1) pendant vertices are distributed
into two color classes, each containing p− 1 vertices, every
pendant vertex in one class becomes adjacent to all p − 1
pendant vertices in the other class. Consequently, the total
number of edges in Ģδc

is 2(p− 1) + (p− 1)2 = p2 − 1.
When p ̸= q, the two central vertices have different

degrees, resulting in 3 partites. The partites V1 and V2 each
contain one central vertex, while V3 consists of the remaining
p + q − 2 pendant vertices. The graph Ģδ′c

is a null graph
because the vertex in V1 and the q− 1 vertices connected to
V2 share the same color. Likewise, the vertex in V2 and the
p− 1 vertices connected to V1 share the same color.
In Ģδc

, all p+ q − 1 edges are remain unchanged. In ⟨V3⟩,
each of the p− 1 vertices is connected to the q− 1 vertices,
as they belong to different color classes. Therefore, the total
number of edges in Ģδc

is p+(q−1)+(p−1)(q−1) = pq.

Theorem 8. Let Ģ = Sn + e is a unicyclic graph of order
n. Then, m(Ģδ′c

) = n− 2 and m(Ģδc
) = n− 1.

Proof: Let Ģ = Sn + e is a unicyclic graph of order n
with χ = 3. Since an edge is added between two pendant
vertices, we get the partites V1, V2 and V3, where V1 contains

the central vertex of degree n−1, V2 consists of n−3 pendant
vertices, and V3 includes the two vertices of degree 2.
In Ģδ′c

, the n − 1 edges connecting V1 to V2 and V3 are
removed. Since ⟨V3⟩ forms K2 and one of the vertices in V3

has a unique color, the n−3 vertices in V2 are connected to
this uniquely colored vertex, forming Sn−1. As a result, Ģδ′c
is the disjoint union of K1 and Sn−1, yielding n− 2 edges.
In Ģδc

, since all vertices in V2 share the same color, no
additional edges are formed within ⟨V2⟩. The n − 1 edges
connecting V1 to V2 and V3 remain unaltered. Thus, Ģδc

∼=
Sn, that is, it has n− 1 edges.

Theorem 9. Let Ģ = Sn + 2e is a bicyclic graph of order
n. Then, m(Ģδ′c

) = n− 4 and m(Ģδc
) = n+ 1.

Proof: Let Ģ = Sn + 2e be a bicyclic graph of order
n obtained by adding an edge between pendant vertex and
a vertex of degree two in the graph Sn + e with chromatic
number χ = 3. Since the partition is with respect to equal
degree, adding two edges to Sn results in four distinct
vertex degrees, giving {V1, V2, V3, V4}, where V1 contains
the central vertex of degree n − 1, V2 consists of n − 4
pendant vertices, V3 includes the two vertices of degree 2,
and V4 contains a uniquely colored vertex with degree 3.
In Ģδ′c

, the n− 1 edges connecting V1 to V2, V3 and V4 are
removed, isolating V1 as K1. Since the vertices in V2 and
V3 share the same color, no edges are added between them.
However, the uniquely colored vertex in V4 connects to all
n − 4 vertices in V2, forming Sn−3. As a result, Ģδ′c

is the
disjoint union of 3K1 and Sn−3, containing n− 4 edges.
For Ģδc

, since all vertices in V2 and V3 share the same color,
no additional edges are introduced within ⟨V2⟩ and ⟨V3⟩.
The n − 1 edges connecting V1 to V2, V3, and V4 remain
unchanged. Thus, Ģδc

∼= Ģ, meaning it retains n+ 1 edges.

Theorem 10. Let Ģ be a Friendship graph Fp, p ≥ 2
has 2p + 1 vertices and 3p edges. Then, m(Ģδ′c

) = p and
m(Ģδc

) = p(p+ 1).
Proof: Let Ģ be a Friendship graph Fp with p ≥ 2,

where the central vertex has a degree of 2p while all other
vertices have a degree 2. We get 2 distinct vertex degrees,
yielding the partition {V1, V2}, where V1 contains only the
central vertex, and V2 = V \ V1, consists of all remaining
vertices.
In Ģδ′c

, all edges connecting V1 and V2 are removed. This
results in ⟨V1⟩ being an isolated vertex, while ⟨V2⟩ consists
of p disjoint edges, forming pK2. Thus, the graph Ģδ′c

is the
disjoint union of K1 and pK2, with a total of p edges.
In Ģδc

, the edges connecting V1 and V2 remain unchanged,
contributing 2p edges. Within ⟨V2⟩, the vertices are divided
into two color classes, each containing p vertices. Since each
vertex in one class connects to all (p−1) vertices in the other
class, an additional p(p − 1) edges are formed. Therefore,
the total number of edges in Ģδc

is 2p+p(p−1) = p(p+1).

Theorem 11. Let Ģ be the Book graph Bp = Sp+1×P2, of
order 2p+2. Then, m(Ģδ′c

) = p+1 and m(Ģδc
) = p(p+1).

Proof: Let Ģ be the Book graph Bp = Sp+1×P2 which
has an order of 2p + 2 and a chromatic number χ = 2.
The two central vertices each have a degree p+1, while all
remaining vertices have a degree 2. Thus, two distinct vertex
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degrees are partitioned into {V1, V2}, where V1 contains the
two central vertices ⟨V1⟩ = K2, and V2 = V \ V1, consists
of all remaining vertices, each of degree 2.
In Ģδ′c

, all edges connecting V1 to V2 are removed. As a
result, ⟨V1⟩ remains as K2, while ⟨V2⟩ consists of p disjoint
edges, forming pK2. Therefore, the graph Ģδ′c

is the disjoint
union of (p+ 1)K2, containing a total of p+ 1 edges.
In Ģδc

, the edges between V1 and V2 remain unchanged,
contributing 2p edges. Within ⟨V2⟩, the vertices are grouped
into two color classes, each consisting of p vertices. Each
vertex in one class is linked to all (p−1) vertices in the other
class, resulting in an additional p(p − 1) edges. Therefore,
the total number of edges in Ģδc

is 2p+p(p−1) = p(p+1).

Theorem 12. Let Ģ be a Triangular book graph B(3, p)
of order p + 2 and 2p + 1 edges. Then, m(Ģδ′c

) = 1 and
m(Ģδc

) = 2p.
Proof: Let Ģ be a Triangular book graph B(3, p) with

χ = 3. The graph consists of two vertices with a degree of
p + 1, while the remaining p vertices are of degree 2, such
that V1 contains the two vertices of degree p + 1, forming
⟨V1⟩ = K2, and V2 consists of the remaining p vertices of
degree 2.
In Ģδ′c

, all edges connecting V1 to V2 are removed. As a
result, ⟨V1⟩ remains as K2, while ⟨V2⟩ consists of p isolated
vertices, forming pK1. Therefore, the resulting graph Ģδ′c

is
the disjoint union of K2 and pK1, containing a single edge.
In Ģδc

, the 2p edges between V1 and V2 remain unchanged.
Since all vertices in ⟨V2⟩ share the same color, no additional
edges are introduced within V2. However, the edge within
⟨V1⟩ is removed. As a result, Ģδc

is isomorphic to the
complete bipartite graph, K(2,p), containing a total of 2p
edges.

Theorem 13. Let Ģ be the graph obtained by the amalga-
mation of l copies of Kp, Amal(l,Kp), for l ≥ 2 and of
order l(p− 1) + 1. Then, m(Ģδ′c

) = l
(
p−1
2

)
.

Proof: Let Ģ be the graph formed by the amalgamation
of l copies of Kp, denoted as Amal(l,Kp), for l ≥ 2. In this
graph, the central vertex has a degree of l(p− 1), while all
other vertices have a degree of p − 1. We define 2 partites
V1 and V2, where V1 contains only the central vertex, and
V2 = V \ V1, contains all the remaining vertices.
In Ģδ′c

, all edges between V1 to V2 are removed. As a result,
⟨V1⟩ becomes an isolated vertex, while ⟨V2⟩ consists of l
disjoint copies of Kp−1. Therefore, the graph Ģδ′c

is the
disjoint union of K1 and l(Kp−1), containing a total of
l
(
p−1
2

)
edges.

Theorem 14. Let Ģ be a Tadpole graph Tp,q , consisting of
p + q vertices and edges. The path Pq is attached to the
cycle Cp at vertex v. Let c(v) denotes the color of the vertex
v ∈ Cp. Then,
Case i. When the path Pq is attached to a vertex v with
c(v) = c1 or c(v) = c2,

m(Ģδ′c
) =


2(p+ q)− 7, if p is odd and q is even,
2(p+ q)− 8, if both p and q are

either even or odd,
2(p+ q)− 9, if p is even and q is odd.

Case ii. When the path Pq is attached to a vertex v with
c(v) = c3,

m(Ģδ′c
) =

{
5(p+q)−20

2 , if q is odd,
5(p+q)−19

2 , if q is even.

Proof: Let Ģ be a Tadpole graph Tp,q , where the path Pq

is attached to a single vertex of the cycle Cp. In this graph,
one vertex of Pq has degree 1, while the vertex in Cp that is
attached to a vertex of Pq has degree 3, and all other vertices
have degree 2. Thus, there exists 3 partites V1, V2, V3, where
V1 contains the vertex of degree 1, V2 contains the vertex of
degree 3, and V3 consists of the remaining p+q−2 vertices,
each having degree 2. The cycle Cp is colored with colors
c1, c2 and if Cp is of odd order, it is colored with c1, c2 and
c3. The path Pq is colored using colors c1 and c2.

Case i. When the path Pq is attached to a vertex with
c(v) = c1 or c(v) = c2, v ∈ Cp.
If p is odd and q is even, then χ = 3. Since the vertices
in V1 and V2 share the same color, no additional edges
are introduced between them. The subgraph induced by V3

contains p+ q − 4 edges, while p+ q − 3 edges connect V3

to V1 and V2. Therefore, the total number of edges in Ģδ′c
is

2(p+ q)− 7.
When both p and q are odd, the chromatic number remains 3.
In this case, the vertices in V1 and V2 are assigned different
colors, leading to the addition of an edge between them. We
have m(⟨V1⟩) = ϕ, m(⟨V2⟩) = ϕ and m(⟨V3⟩) = p+ q− 4.
Additionally, there are p+ q−5 edges connect V3 to V1 and
V2. Thus, the total edge count in Ģδ′c

has 2(p+ q)− 8.
When both p and q are even, the chromatic number reduces
to χ = 2. Since the vertices in V1 and V2 share the same
color, no edges are introduced between them. The subgraph
induced by V3 contains p+ q − 4 edges, with an additional
p + q − 4 edges connecting V3 to V1 and V2, leading to a
total edge count of 2(p+ q)− 8 in Ģδ′c

.
For the case, where p is even and q is odd, χ = 2.
The vertices in V1 and V2 are assigned different colors,
introducing an edge between them. The induced subgraph
⟨V3⟩ consists of p+ q − 4 edges, while p+ q − 6 edges are
added from V3 to V1 and V2. Consequently, the total number
of edges in Ģδ′c

is 2(p+ q)− 9.
Case ii. When the path Pq is attached to a vertex with

c(v) = c3, v ∈ Cp.
When p is odd, the value of q can be either odd or
even, leading to two possible cases. In both situations, the
chromatic number remains 3, and since the vertices in V1

and V2 have different colors, an edge is introduced between
them. In the graph Ģδ′c

, m(⟨V3⟩) = p+ q − 4. Additionally,
p−1
2 edges are formed between the vertices of Cp ∈ V3 and

V1. The number of edges connecting the vertices of Pq ∈ V3

to V1 depends on whether q is odd or even. If q is odd, there
are q−3

2 such edges, whereas if q is even, there are q−2
2 such

edges. Moreover, from V2, there are q − 2 edges linked to
the vertices of Pq ∈ V3, while p − 3 edges connecting it to
the vertices of Cp ∈ V3. Hence, the total number of edges in
Ģδ′c

is 5(p+q)−20
2 , when q is odd and 5(p+q)−19

2 , when q is
even.
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IV. CONCLUSION

In this paper, we introduced the concepts of δ-color com-
plement and δ′-color complement of a finite, simple colored
graph and explored their structural properties. We exam-
ined their connectivity, self-color complementary nature, and
edge modifications in specific graphs. These transformations
provide new insights into graph coloring and complement
operations, offering potential applications in network theory
and combinatorial optimization.
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