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 Abstract—The effectiveness of sidelobe suppression in 
complementary code radar signals is significantly compromised 
by phase distortions arising from Doppler shifts. This study 
proposes a novel bi-phase complementary code sidelobe 
suppression technique, termed Enhanced Broad Doppler 
Tolerance (EBDT), designed to improve resilience to Doppler 
effects. The method employs the Moving Target Detection (MTD) 
algorithm to estimate Doppler frequency and subsequently 
segments the complementary signal into two distinct data 
matrices. Through rigorous analytical derivation, a phase 
compensation factor is developed to counteract Doppler-induced 
phase distortions, thereby restoring the sidelobe cancellation 
properties of the autocorrelation function. Simulation results 
demonstrate that, compared to existing approaches, the EBDT 
method achieves superior Doppler tolerance, reduced mainlobe 
attenuation, and an enhanced signal-to-noise ratio. 
 
 
 
Index Terms—Biphase complementary code, Sidelobe 
suppression, Doppler compensation, Moving Target Detection 

 

I. INTRODUCTION 
Contemporary warfare demands radar systems capable of 

both detecting hostile targets and evading electronic 
reconnaissance to mitigate the threat of anti-radiation missile 
strikes, thereby enhancing battlefield survivability. Phase-
coded signals with large time-bandwidth products offer 
superior low probability of intercept (LPI) performance. 
However, these signals exhibit two significant limitations: (1) 
limited Doppler tolerance [1], [2], [3], leading to substantial 
signal energy loss during pulse compression for high-velocity 
targets; and (2) elevated range sidelobes following pulse 
compression [4], [5], [6], where the sidelobes of a larger target 
may mask the mainlobe of a smaller target, thereby impairing 
the radar’s ability to detect the latter. 
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Complementary code signals offer a theoretical solution to 
the sidelobe challenges inherent in phase-coded signals [7]. 
When implemented in radar pulse waveforms, complementary 
code pairs provide two primary benefits: (a) pulse 
compression to the duration of a single code element, and (b) 
complete suppression of sidelobes in the autocorrelation 
function (ACF) across the entire pulse duration [8]. However, 
despite their ability to eliminate sidelobes under ideal 
conditions, complementary codes demonstrate similarly 
limited Doppler tolerance [9], [10], compromising their 
performance in dynamic environments. 

Reference [11] introduced a method for optimizing 
transmission sequences using first-order Reed-Muller (RM) 
codes, which systematically generates complementary 
waveform sequences to significantly enhance waveform 
resilience in specific Doppler environments. Similarly, 
Calderbank and Pezeshki [12], [13] utilized Prouhet–Thue–
Morse (PTM) sequences to optimize the transmission order of 
Golay complementary waveforms, effectively suppressing 
range sidelobes in zero-Doppler narrowband conditions. The 
binomial design (BD) approach, developed by Dang [14], [15], 
extends the sidelobe suppression region by optimizing 
matched filter weights; however, it struggles to maintain 
adequate Doppler resilience for high-velocity targets. 
References [16] and [17] independently proposed the point-
wise minimization processor (PMP) and point-wise threshold 
processor (PTP) techniques, which effectively combine the 
strengths of RM and BD methods to enhance Doppler 
resolution and optimize sidelobe suppression, achieving robust 
narrowband Doppler tolerance. Additionally, Reference [18] 
presented an optimization approach based on high-order null 
constraints, constructing adaptable sidelobe suppression 
regions by solving suboptimization problems. This method 
maintains excellent sidelobe suppression performance even 
under significant Doppler shifts, although it requires prior 
knowledge of the target’s motion velocity. 

To address the identified challenges, this study introduces a 
novel methodology for sidelobe suppression within 
complementary signal ranges, characterized by its Enhanced 
Broad Doppler Tolerance (EBDT). The proposed approach 
begins with the segmentation of complementary signals into 
two distinct data matrices. The Moving Target Detection 
(MTD) algorithm is utilized to estimate Doppler frequencies, 
enabling the effective classification of targets with varying 
velocities into corresponding Doppler bins. By analyzing 
phase disparities induced by Doppler shifts across the 
elements of the data matrices, phase compensation factors are 
analytically derived. These factors are subsequently applied to 
the respective matrix elements to counteract the modulatory 
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effects of Doppler frequencies on the complementary signals, 
thereby restoring the robust sidelobe cancellation properties of 
their autocorrelation functions. Following this, pulse 
compression is executed along the range dimension for both 
data matrices, succeeded by coherent summation of the 
complementary sequences to eliminate sidelobes. The 
implementation of this methodology yields a low peak 
sidelobe ratio (PSLR), demonstrating substantial 
enhancements in sidelobe suppression and resilience to 
Doppler effects. 

II. COMPLEMENTARY SIGNAL PROCESSING METHOD  

A. Signal Model  
Let 0 1[ ,..., ]A PX a a −=  and 0 1[ ,..., ]B PX b b −=  represent 

binary sequences of length P, where , { 1,1}n na b ∈ − for 
0,..., 1n P= − . These sequences are designated as a 

complementary pair if their autocorrelation functions (ACF) 
satisfy the condition: 
 [ ] [ ] 2 [ ]A BR k R k P kδ+ =  (1) 
Where [ ]AR k  and [ ]BR k  respectively denotes the 
autocorrelation function of AX  and BX  at lag k, and [ ]kδ  
represents the Kronecker delta function. 

Consider the biphase-coded signals ( )Ax t  and ( )Bx t , 
which are modulated by the complementary sequence pair 

AX  and BX : 
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Where ( )c t  denotes a unit-energy baseband pulse signal with 
pulse width ct . 

In a coherent processing time (CPI) containing M pulse 
repetition intervals (PRI), the transmission order of the 
complementary signals ( )Ax t  and ( )Ax t  is governed by the 
sequence 0 1[ ,..., ]MS s s −= , where {0,1}ms ∈ , 1m ms s= − for

0,..., 1m M= − . The the corresponding baseband signals is: 
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Weight the transmitted signal ( )su t  with the weight vector 

0 1[ ,..., ]MW w w −= ，where 0mw > , 0,..., 1m W= − . 
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The impulse response function of the receiving filter is 
denoted as * ( )wu t− . The cross ambiguity function (CAF) of 
the signals ( )su t  and ( )wu t , which represents the time-

domain response of the filter to the input signal ( ) j t
su t e ω , is 

defined as follows: 

 *
, ( , ) ( ) ( ) j t

s w s wu t u t e dtωχ τ ω τ
+∞

−∞
= −∫  (6) 

The continuous-time delay is discretized with an interval ct , 
and assuming the intrapulse Doppler shift is negligible, the 
discrete-time cross-ambiguity function (CAF) can be 
expressed as: 
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Where Tθ ω= , ω  denotes the Doppler angular frequency. 
According to (1)， the first term in (7) vanishes at 0k ≠ , 
indicating that its contribution is confined to the mainlobe 
region [18]. In contrast, the formation of the sidelobes is 
governed by the second term, which dictates their amplitude 
and distribution. Let: 
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=
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The objective of sidelobe suppression is redefined as 
minimizing the function ( )f θ  to approach zero. According to 
reference [19], this is accomplished by introducing high-order 
nulls in ( )f θ  at a designated θ  through the strategic 
selection of parameters S and W. Nevertheless, this technique 
necessitates prior knowledge of the target’s velocity, and the 
choice of W critically affects the  output SNR of the receiving 
filter. This study employs a matched filter approach, setting 
W 1α= , to optimize the SNR. To satisfy the condition 

( ) 0f θ = , the following criteria are essential: 
1) Let S be an alternating sequence of 0 and 1; 
2) Achieve 0θ =  through phase compensation. 

B. Algorithm Development  
The model for signal transmission and reception within the 

radar system is depicted in Fig. 1. At the transmitter, 
complementary baseband signals are modulated and 
transmitted in an alternating manner. At the receiver, a 
quadrature receiver is employed to demodulate the incoming 
radio frequency signals. The resuling complex baseband 
signals are then stored in the data matrix E. 

 
Fig. 1 Complementary signal transmission and reception 
model 

The data matrix E is split into two submatrices, 1A  and 1B , 
based on odd and even rows. 
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Doppler compensation is achieved through the application 
of phase compensation factors, as detailed in [20]. The 
derivation of the phase compensation factor is presented as 
follows: 

The Doppler frequency introduces a phase difference of 
2 d sf fπ  between adjacent elements in the same row of 

matrices 1A  and 1B , and a phase difference of 4 d sf fπ  
between adjacent elements in the same column. The phase 
relationship between element 00e  and element kle  is as 
follows: 

 00
2exp[ 2 ( )]kl kl d

x s

k le s e j f
f f

π= +  (11) 

where kls  takes the value of -1 or 1, determined by a binary 
pseudorandom sequence representing the ratio of the symbol 
values (-1, +1) corresponding to 00e  and kle . Without 
considering range migration, the symbol of the elements in the 
same column of the data matrix are identical. Perform FFT on 
each column of matrix 1A  to obtain matrix A . The l-th 
column elements of matrix A  are denoted as ( )Al h , where

[0,1,..., 2 1]= −h M . 
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  (12) 
The compensation factor ,A hlp  for ( )Al h  is: 

 , exp( 2 ) exp( 2 )π π= −  = −  d x
A kl

s s

f l hlf
p j j

f Mf
 (13) 

Perform FFT on each column of matrix 1B  to obtain matrix 
B . Based on the above derivation process, it can be concluded 
that: 
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Since there is also a phase difference exp[ 2 ]d xj f fπ  
between 10e  and 00e  caused by Doppler frequency, the 

compensation factor ,B hlp  for ( )Bl h  is: 
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The progression of the algorithm is depicted in Fig. 2. 
Following phase compensation of the signals, pulse 
compression is performed on matrices A  and B  along the 
range dimension. This process yields the compressed matrices 

2A and 2B . Subsequently, the corresponding rows of matrices 
2A  and 2B  are summed to achieve the superposition of 

complementary code autocorrelation functions, thereby 
effectively reducing the range sidelobes. 

 
Fig. 2 Algorithm Processing Flow 

C. Performance Metrics 
Four common metrics in the field of sidelobe suppression 

are employd to evaluate algorithm performance. 
a. Normalized signal-to-noise ratio 

In the presence of additive white Gaussian noise with power 
0N  at the filter input, the noise power N  at the filter output is 

given by: 

 2 2
0 0 2( ) wwN N u t dt N M

∞

−∞
= =∫  (16) 

The SNR at the filter output is: 
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Where 
2

0

P
N
σσ =  is independent of the filter parameters. The 

normalized signal-to-noise ratio (NSNR) is defined as: 
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b. Peak sidelobe ratio 
The peak sidelobe ratio (PSLR) is defined as the ratio 

between the maximum range sidelobe and the mainlobe, 
expressed in decibels as. 
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c. Mainlobe Attenuation 
Mainlobe attenuation quantifies the degree of reduction in 

the mainlobe amplitude under Doppler frequency shift 
conditions relative to its maximum value, given by: 

 ,

,

(0, )
( ) 20lg , [0, ]

(0,0)
s w

s w

R
L

R

θ
θ θ π= ∈  (20) 

d. Doppler Tolerance 
Doppler tolerance is defined as the operational range within 

which a radar system maintains effective functionality despite 
the presence of Doppler frequency shifts. In the context of this 
study, it is specifically delineated as the region where the peak 
sidelobe ratio remains below -50 dB. 
 [ ]{ }0, ( ) 50dBθ π η θ∈ ≤ −  (21) 

III. EXPERIMENTAL RESULTS AND ANALYSIS 
Consider complementary code sequences with a code length 

of 512 and a code width of 0.2 us. The number of coherently 
integrated pulses (CIP) is 256, consisting of 128 pairs of 
complementary signals. The PRI is set at 300 µs, and the 
carrier frequency is 1 GHz. The baseband echo signal is 
obtained through digital down conversion. Subsequently, the 
baseband signal undergoes processing techniques, including 
MTD, phase compensation, and pulse compression, 
culminating in an assessment of the sidelobe suppression 
performance. 

A. Ablation Analysis 
When the target Doppler frequency aligns exactly with an 

FFT Doppler bin, the sidelobe cancellation without phase 
compensation achieves a PSLR of –29.83 dB, as shown in Fig. 
3(a). After applying phase compensation, the PSLR improves 
dramatically to approximately –160 dB, as depicted in Fig. 3(b) 
representing an enhancement of over 130 dB in sidelobe 
suppression. This demonstrates the substantial benefit of the 
proposed method in ideal alignment conditions. 

To assess performance under frequency misalignment, 
PSLR values were measured for targets located at fractional 
Doppler bin positions ranging from 0.1 to 0.9 bin offsets. 
Results indicate that straddle loss increases with fractional-bin 
displacement, peaking at the midpoint (0.5 bin offset) between 
two adjacent Doppler bins. At this worst-case offset (bin 
No.25.5), the PSLR without compensation is –29.64 dB, as 
shown in Fig. 4(a), while with phase compensation it improves 
to –64.10 dB, as illustrated in Fig. 4(b), representing a 
suppression gain of 34.46 dB.  

As shown in Fig. 5(a), when dealing with multi-target echo 
signals, a significant difference in radar cross-section (RCS) 
between targets (5:500:1) can hinder detection. Without phase 
compensation, smaller targets may be obscured by the range 
sidelobes of the larger target, rendering them undetectable. 

However, after the implementation of  phase compensation, 
the sidelobes of the three targets are significantly suppressed, 
as shown in Fig. 5(b). This enhancement facilitates the 
detection of smaller targets, thereby increasing the detection 
probability of the radar system. 

  
(a) (b) 

Fig. 3 Comparison of Single-target Sidelobe Cancellation 
Performance on Doppler bin No.25: (a) Without Phase 
Compensation (b) With Phase Compensation 
 

  
(a)  (b)  

Fig. 4 Comparison of Single -target Sidelobe Cancellation 
Performance on Doppler bin No.25.5: (a) Without Phase 
Compensation (b) With Phase Compensation 
 

  
(a) (b)  

Fig. 5 Comparison of Multi-target Sidelobe Cancellation 
Performance on Doppler bin No.25.5: (a) Without Phase 
Compensation (b) With Phase Compensation 

B. Algorithm Performance Evaluation 
Due to the inherent quantization error of FFT-based 

Doppler estimation, the maximum frequency deviation can 
reach 2± ∆ df , where df∆  denotes the Doppler bin width. 
This estimation uncertainty induces a residual phase error 
ˆ [ , ]M Mθ π π∈ −  after phase compensation, where M 

denotes the number of CIP. A scaling factor ˆ( )κ θ  is 
introduced to represent the ratio of sidelobe gain to mainlobe 
gain under the condition where ˆ 0θ ≠ . 

small targets 
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Since M is usually a power of 2, 

 
ˆˆ( ) tan
2
θκ θ =  (23) 
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Under varying conditions of code lengths and pulse 
integration numbers, the maximum values of  ˆ( )η θ  resulting 
from the application of the algorithm are presented in  TABLE 
1.  

TABLE 1 
MAXIMUM ˆ( )η θ  UNDER DIFFERENT CODE LENGTHS AND 

NUMBERS OF CIP 
Code 

length P 
Number of CIP 

32 64 128 256 512 
32 -37.20 -43.22 -49.24 -55.26 -61.28 
64 -41.48 -47.50 -53.52 -59.54 -65.56 

128 -41.88 -47.90 -53.92 -59.94 -65.97 
256 -44.52 -50.54 -55.56 -62.58 -68.60 
512 -45.25 -51.27 -57.29 -63.31 -69.33 

C. Performance Comparison 
Experimental conditions: The code length P is 256, the 

number of CIP is 128. The CAF for each method is shown in 
Fig. 6. The mainlobe loss and PSLR performance of methods 
under Doppler shift is shown in Fig. 7. The NSNR and 
Doppler tolerance of each method are shown in TABLE 2. 

As established in the preceding analysis, the PTM, BD, and 
NM-DRCW methods are all derived from (8), wherein 
sidelobe suppression is achieved by introducing higher-order 
nulls. Prior work [19] has explicitly quantified the relationship 
between null order and the number of CIPs for the PTM and 
BD methods. In contrast, the NM-DRCW method offers 
greater flexibility in selecting the null order. 

The PTM method creates a null of order 
2log 128 1 6Z = − = at 0θ = . Due to its low order, the 

Doppler tolerance is narrow. As Fig. 7(a) shows, the mainlobe 
peak decreases rapidly as the Doppler shift increases, with the 
peak loss reaching 40 dB at 0.8π . This method employs a 
matched filter, resulting in a NSNR of 0 dB. 

The BD method creats a null of order 128 2 126Z = − =  at 
0θ = , which significantly broadens Doppler tolerance 

compared to PTM. However, Fig. 7(b) shows that while the 
null depth is high, PSLR degradation is severe when Doppler 
exceeds 0.4π . Mainlobe loss increases at a faster rate than 
PTM, and NSNR is the lowest of all four methods due to 
binomial coefficient weighting. 

The NM-DRCW method sets a null of order 0 20Z =  at 

0 0θ =  and a null of order 0 10Z =  at 1 0.8θ π= . As Fig. 7(c) 
shows, the method can effectively suppress sidelobes at 
specified frequencies and its mainlobe attenuation is smoother 

compared to the PTM and BD methods. Due to the use of a 
mismatched filter, the NSNR is slightly lower than 0 dB. 

 

  
(a) (b) 

  
(c) (d) 

Fig. 6 Comparison of CAF for Different Methods:(a) PTM 
method, (b) BD method, (c) NM-DRCW method, (d) EBDT 
method 

  
(a) (b) 

  
(c) (d) 

Fig. 7 Mainlobe Attenuation and PSLR Performance of 
Methods Under Doppler Shift: (a) PTM method, (b) BD 
method, (c) NM-DRCW method, (d) EBDT method 

The EBDT method is suitable for scenarios where the 
target's velocity is unknown. As Fig. 7(d) shows, this method 
provides a lower sidelobe suppression level within a specific 
frequency range compared to the previous three methods; 
however, it demonstrates a substantially wider Doppler 
tolerance, enabling its application across a broader range of 
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target speeds. The proposed method induces a periodic 
variation in mainlobe loss as a function of Doppler shift, 
consistently maintaining values below 4 dB, and significantly 
surpasses the performance of the previous three methods. It 
accommodates greater Doppler mismatch, thereby preventing 
excessive degradation of the matched filter's output response 
and markedly enhancing radar detection performance [21]. 
Furthermore, by employing a matched filter, the method 
achieves a NSNR of 0 dB. 

TABLE 2 
THE NSNR AND DOPPLER TOLERANCE OF EACH METHOD 

Method NSNR 
(dB) Doppler tolerance (rad) 

PTM 0 0,0.05π    

BD -8.0631 0,0.41π    

NM-DRCW -0.2068 0,0.07 0.78 ,0.82π π π∪        

EBDT 0 0,π    

 

IV. CONCLUSION 
The proposed Enhanced Broad Doppler Tolerance (EBDT) 

method offers an effective solution for sidelobe suppression in 
complementary code radar signals. The EBDT approach 
compensates for Doppler-induced phase distortion without 
requiring prior knowledge of the target's velocity, thereby 
reinstating the inherent sidelobe cancellation properties of 
complementary codes. This leads to reduced sidelobe levels 
and minimized mainlobe attenuation. Compared to existing 
technologies, EBDT enhances the NSNR through matched 
filter design and improves computational efficiency. 
Furthermore, it substantially broadens Doppler tolerance 
without sacrificing Doppler resolution, facilitating robust 
tracking and detection of multiple targets across a range of 
velocities. 
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