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Abstract—The row-action method, owing to its straight-
forward form, has been widely employed in diverse fields
such as computer graphics. In this paper, we first propose
a novel deterministic row-action approach for computing the
orthogonal decomposition of linear systems using a maximum
weighted residual selection strategy. Then, we extend it to
solve a given overdetermined and inconsistent linear system.
We prove that the proposed methods can linearly converge to
the least-squares solution with a minimum Euclidean norm.
Several numerical studies are presented to corroborate our
theoretical findings and demonstrate that our methods achieve
faster convergence than existing deterministic extended row-
action methods.

Index Terms—indicator selection, row-action, orthogonal de-
composition, extended method.

I. INTRODUCTION

LARGE-SCALE linear systems frequently arise in sci-
entific computing and engineering applications such as

computerized tomography [1], machine learning [2], and
signal processing [3]. This paper focuses on solving the linear
system Ax = b with A ∈ Rm×n and b ∈ Rm, by computing
the least-squares solution x∗ = argminx∈Rn

{
∥b−Ax∥2

}
.

The solution x∗ = A†b is unique and has minimum
Euclidean norm, with A† representing the Moore-Penrose
pseudoinverse [4].

The least-squares solution of Ax = b can be obtained by
solving the consistent system Ax = bR = AA†b, where bR
represents the orthogonal projection of b onto the range space
of A (R(A)) [5]. The row-action method, first introduced
by Censor [6], is characterized by its low per-iteration cost
and computational efficiency. For comprehensive reviews of
related row-action techniques, see [7], [8]. Among these
methods, the Kaczmarz iteration [9], [10] stands out due to
its simplicity and clear geometric interpretation. Popa’s Ex-
tended Kaczmarz (EK) approach addresses this least-squares
problem through an alternating projection scheme; see [11,
Algorithm (R)]. It first performs a Kaczmarz iteration for
the system Ax = b− z(k), then updates z(k) to approximate
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bN = b− bR. The iterative scheme proceeds as follows.
x(k+1) = x(k) +

bi−z
(k)
i −aT

i x(k)

∥ai∥2 ai

:= Pi(A, x
(k), b− z(k))

z(k+1) = z(k) − AT
j z(k)

∥Aj∥2 Aj

:= Tj(A, z(k), 0)

(1)

for k = 0, 1, 2, · · · , where ai and AT
j respectively denote the

ith and jth rows of A and AT , with indices i ∈ [m] and
j ∈ [n] selected cyclically. Here, the symbol [ℓ] denotes the
set of integers from 1 to ℓ.

Zouzias and Freris [12] enhanced the original framework
by introducing randomized row selection, thereby developing
the Randomized EK (REK) method with provable conver-
gence guarantees. Further improvements emerged through
various index selection strategies. Bai and Wu [13] proposed
a partially REK method in which the index jk employs
a cyclic ordering. Their analysis demonstrated that the
expected convergence rate upper bound could outperform
the original REK method under certain conditions. This
research direction has led to several REK variants based
on different index selection strategies, such as the greedy
REK method [14], the partially REK with residuals method
[15, Algorithm 3.1], and the Maximum-Distance Extended
Kaczmarz (MDEK) method [15, Algorithm 3.2]. Each of
these approaches offers distinct advantages through their
specialized selection mechanisms while maintaining the fun-
damental REK framework.

Since z(k+1) provides a better approximation to bN than
z(k), Du applied the RK iterate to the linear system Ax =
b − z(k+1) in the second-half step and proposed a slightly
modified REK method, termed REK-S; see [16, Algorithm
3]. The REK-S iteration consists of{

z(k+1) = Tj(A, z(k), 0),

x(k+1) = Pi(A, x
(k), b− z(k+1)),

(2)

where the indices i and j are chosen at random. This
framework has inspired several enhanced variants. Gao and
Chen introduced a hybrid approach, combining the determin-
istic cyclic selection for i with the residual-based random
sampling for j; see [17, Method 3.1]. This method can be
regarded as a modified form of the partially REK with resid-
uals method in [15]. In contrast, Mustafa and Saha adopted
a fully deterministic strategy, selecting ik and jk based on
maximal residual criteria; see [18, Algorithm 1], and called it
the Maximal Residual Extended Kaczmarz (MREK) method.
These developments demonstrate that various index selection
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strategies work effectively in the extended Kaczmarz frame-
work, while preserving its core projection-based approach.

This paper presents a novel deterministic projection ap-
proach for computing the orthogonal decomposition of the
right-hand side. The method employs a greedy selection
strategy based on the maximum weighted residual, which
we term the Maximum Weighted Residual Orthogonal Pro-
jection (MWROP) method. We provide rigorous convergence
guarantees for MWROP and subsequently extend it to handle
inconsistent linear systems, resulting in an enhanced variant
called the Maximum Weighted Residual Extended Kaczmarz
(MWREK) method. Through carefully analyzing the error
recursion in single row-action methods, we derive an opti-
mal index selection strategy for the MWREK method. Our
convergence result demonstrates that MWREK achieves a
faster convergence rate compared to the MREK method in
[18]. Numerical experiments further validate this theoretical
advantage, showing consistent performance improvements
across various test cases.

We organize the remaining part of this paper as follows.
The rest of this section introduces some notation. We present
the MWROP method in Section II. In Section III, we extend
the MWROP method to solve inconsistent linear systems, by
introducing the MWREK method along with its theoretical
analysis. In Section IV, we provide numerical experiments
that support our theoretical analysis and demonstrate that, in
comparison with some commonly used conventional least-
squares solvers, our method achieves faster convergence. We
end this work with some conclusions in Section V.

Throughout the paper, all vectors are assumed to be
column vectors. The identity matrix of size n is denoted
by In. For the coefficient matrix A, the smallest non-zero
singular value of A is denoted by σA,r. We define several
parameters in Table I.

TABLE I
PARAMETERS WITH A BEING THE COEFFICIENT MATRIX.

η1 mini∈[m]

{
∥ai∥2

}
η2 maxi∈[m]

{
∥ai∥2

}
η3 minj∈[n]

{
∥Aj∥2

}
η4 maxj∈[n]

{
∥Aj∥2

}
θ1 ∥A∥2F θ2 ∥A∥2F − η1
θ3 ∥A∥2F − η3 θ4 mη2
θ5 nη4 ρ1 1− σ2

A,r/θ1
ρ2 1− σ2

A,r/θ2 ρ3 1− σ2
A,r/θ3

ρ4 1− σ2
A,r/θ5 ρCOP 1− det(ATA)/

∏n
j=1 ∥Aj∥2

II. A DETERMINISTIC ORTHOGONAL PROJECTION
METHOD

When the system of linear equations Ax = b is consistent
(bN = 0), x∗ is one of the least-squares solutions and has the
minimum Euclidean norm [19]. Assume that ê(k) := x(k) −
x∗ for k = 0, 1, 2, · · · . By the Pythagorean theorem, a direct
calculation indicates that the squared error of (2) satisfies

∥ê(k+1)∥2 = ∥ê(k)∥2 −
|bik − aTikx

(k)|2

∥aik∥2

:= ∥ê(k)∥2 − φik(A, x
(k), b) (3)

for ik ∈ [m]. This implies that we may select the row index
such that the corresponding loss is as large as possible.

McCormick presented a deterministic greedy strategy to
select the row index

ik = arg max
i∈[m]

{
φi(A, x

(k), b)
}

in [20, Section 2.1]. Du and Gao called it the maximal
weighted residual Kaczmarz method and gave an easily
computable theoretical estimate for the convergence rate of
the MWRK method in [21]. This result is stated as follows.
From any initial guess x(0) ∈ R(AT ), the MWRK iteration
sequence

{
x(k)

}∞
k=0

converges to x∗ with the error estimate

∥ê(k+1)∥2 ≤ ρk2ρ1∥ê(0)∥2 (4)

for k = 0, 1, 2, · · · . For more details, we refer to Theorem
3.1 in [21].

When the system Ax = b is inconsistent (bN ̸= 0), it
follows from the convergence analysis of the MWRK method
that

ê(k+1) =

(
In −

aika
T
ik

∥aik∥2

)
ê(k) +

aTikbN

∥aik∥2
aTik

with Ax∗ = bR and b = bN+bR. By orthogonality, it follows
that

∥ê(k+1)∥2 = ∥ê(k)∥2 −
|aTik ê

(k)|2

∥aik∥2
+

|aTikbN |2

∥aik∥2
.

This indicates that the MWRK method may not converge to
the least-squares solution due to the existence of bN . To ad-
dress this problem, extended row-action methods convert the
inconsistent linear system into a consistent or approximately
consistent form. This transformation modifies b to match
or closely approximate bR. The adjusted system removes
the part that causes convergence issues, while maintaining
the system’s fundamental structure. The primary objective
reduces to computing the orthogonal decomposition of b.

Bai and Wu proposed a Cyclic Orthogonal Projection
(COP) to approximate bN by solving the homogeneous
linear system AT z = 0 in [13]. The iterative method is
initialized with z(0) = b, and at each iteration k, it selects
an index j ∈ [n] in a cyclic order. The update rule applies
an orthogonal projection according to formula (2). For any
k = 0, 1, 2, · · · , let ẽ(k) := z(k) − z∗ with z∗ = bN . After k
iterations, the expected convergence rate of the COP method
is

∥ẽ(k+n)∥2 ≤ ρkCOP∥ẽ(0)∥2. (5)

Mustafa and Saha later introduced the Maximal Residual
Orthogonal Projection (MROP) method, replacing cyclic
selection with a greedy rule

jk = argmax
j∈[n]

{
|AT

j z
(k)|
}
.

This variant achieves a deterministic convergence rate

∥ẽ(k)∥2 ≤ ρk4∥ẽ(0)∥2. (6)

For further analysis, see Lemma 2.3 in [18].
In the orthogonal projection process, we know that

∥ẽ(k+1)∥2 = ∥ẽ(k)∥2 −
|AT

jk
z(k)|2

∥Ajk∥2

= ∥ẽ(k)∥2 − ψjk(A, z
(k), 0). (7)
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This implies that we can select the column index jk such
that the corresponding loss is maximized, which motivates
us to propose the following MWROP method; see Algorithm
1.

Algorithm 1 The MWROP method.
Input: The coefficient matrix A ∈ Rm×n, an initial vector

z(0) ∈ b+R(A), and the maximum iteration number ℓ.
Output: z(ℓ).

1: for k = 0, 1, · · · , ℓ− 1 do
2: compute z(k+1) = Tjk(A, z(k), 0) with jk =

argmax
j∈[n]

{
ψj(A, z

(k), 0)
}

;

3: endfor

In the following, we will give a convergence analysis of
the MWROP method in Theorem 1.

Theorem 1: Let A ∈ Rm×n be a matrix whose columns
are all nonzero. The iteration sequence

{
z(k)

}∞
k=0

, generated
by the MWROP method starting from any initial guess z(0) ∈
b+R(A), converges to z∗, and satisfies the error bound

∥ẽ(k+1)∥2 ≤ ρk3ρ1∥ẽ(0)∥2, (8)

for k = 0, 1, 2, · · · .

Proof. From formula (7), we observe that the error ẽ(k) ∈
R(A) since z∗ and z(k) ∈ b+R(A). For the case of k = 0,
we have

∥AT z(0)∥2 =
∑
j∈[n]

ψj(A, z
(0), 0)∥Aj∥2

≤ max
j∈[n]

{
ψj(A, z

(0), 0)
}
∥A∥2F .

By Lemma 2.4 in [22], we have

∥AT z(0)∥2 = ∥AT ẽ(0)∥2 ≥ σ2
A,r∥ẽ(0)∥2.

After combining these two formulas together, we get

∥ẽ(1)∥2 ≤ ∥ẽ(0)∥2 −
σ2
A,r

∥A∥2F
∥ẽ(0)∥2 = ρ1∥ẽ(0)∥2.

For the case of k ≥ 1, since

AT
jk−1

z(k) = AT
jk−1

(
z(k) −

AT
j z

(k)

∥Ajk−1
∥2
Ajk−1

)
= 0,

it immediately yields that

∥AT z(k)∥2 =
∑
j∈[n]

ψj(A, z
(k), 0)∥Aj∥2

=
∑

j∈[n]/jk−1

ψj(A, z
(k), 0)∥Aj∥2

≤ max
j∈[n]

{
ψj(A, z

(k), 0)
} ∑

j∈[n]/jk−1

∥Aj∥2.

Moreover,

ψjk(A, z
(k), 0) = max

j∈[n]

{
ψj(A, z

(k), 0)
}

≥ 1∑
j∈[n]/jk−1

∥Aj∥2
∥AT z(k)∥2

≥ 1

∥A∥2F − η3
∥AT z(k)∥2.

Using Lemma 2.4 in [22] again, it follows that

∥AT z(k)∥2 = ∥AT ẽ(k)∥2 ≥ σ2
A,r∥ẽ(k)∥2,

which results in

∥ẽ(k+1)∥2 ≤ ∥ẽ(k)∥2 − 1

∥A∥2F − η3
σ2
A,r∥ẽ(k)∥2

= ρ3∥ẽ(k)∥2.

By recursion, we obtain the conclusion in Theorem 1. The
proof is complete. □

III. THE MAXIMUM WEIGHTED RESIDUAL EXTENDED
KACZMARZ METHOD

Mustafa and Saha proposed the MREK method in [18]
for iteratively computing the least-squares solution x∗ of the
large sparse inconsistent linear system. Here, we reformulate
it by specifying the initial guesses x(0) ∈ R(AT ) and z(0) ∈
b +R(A), in Algorithm 2. An upper bound for the MREK
solution error was given in [18, Theorem 2.4]. This result is
precisely restated as follows.

Algorithm 2 The MREK method.
Input: The coefficient matrix A ∈ Rm×n, the right-hand

side b ∈ Rm, two initial guesses x(0) ∈ R(AT ) and
z(0) ∈ b+R(A), and the maximum iteration number ℓ.

Output: x(ℓ).
1: for k = 0, 1, · · · , ℓ− 1 do
2: compute z(k+1) = Tjk(A, z(k), 0) with jk =

argmax
j∈[n]

{
|AT

j z
(k)|
}

;

3: compute x(k+1) = Pik(A, x
(k), b− z(k+1)) with ik =

arg max
i∈[m]

{
|bi − z

(k+1)
i − aTi x

(k)|
}

;

4: endfor

Theorem 2: ([18, Theorem 2.4]) Let A ∈ Rm×n be a
matrix without any zero rows and b ∈ Rm. Starting from
any initial guesses x(0) ∈ R(AT ) and z(0) ∈ b+R(A), the
iteration sequences

{
x(k)

}∞
k=0

and
{
z(k)

}∞
k=0

are generated
by the MREK method for solving the inconsistent linear
system Ax = b. Then, the error estimate satisfies

∥x(k+1) − x∗∥2 ≤ ρk+1
1,α ∥x(0) − x∗∥2 + c̃0

ρk+1
4 − ρk+1

1,α

ρ4 − ρ1,α

· ρ4∥z(0) − z∗∥2, (9)

where the constants ρ1,α = 1 − α2σ2
A,r/θ4 with α ∈ (0, 1)

and

c̃0 =
1

M

(
1 +

α

1− α
+

α2

m(1− α)

)
.

In the MREK iteration for computing x(k+1), we know
that

ê(k+1) = x(k+1) − x∗

= ê(k) +
(bR)ik − aTikx

(k)

∥aik∥2
aik +

(bN )ik − z
(k+1)
ik

∥aik∥2
aik

= ê(k) −
aika

T
ik

∥aik∥2
ê(k) +

(bN )ik − z
(k+1)
ik

∥aik∥2
aik

=

(
In −

aika
T
ik

∥aik∥2

)
ê(k) +

(bN )ik − z
(k+1)
ik

∥aik∥2
aik
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for k = 0, 1, 2, · · · . Taking the norm on both sides yields

∥ê(k+1)∥2 = ∥ê(k)∥2 −
|aTik ê

(k)|2

∥aik∥2
+

|(bN − z(k+1))ik |2

∥aik∥2
.

There exists a constant α ∈ (0, 1) such that

|aTik ê
(k)|2 = |aTikx

(k) − (bR)ik − (bN )ik + z
(k+1)
ik

+ (bN )ik − z
(k+1)
ik

|2

≥ α|aTikx
(k) − (bR)ik − (bN )ik + z

(k+1)
ik

|2

− α

1− α
|(bN )ik − z

(k+1)
ik

|2

= α|bik − z
(k+1)
ik

− aTikx
(k)|2

− α

1− α
|(bN )ik − z

(k+1)
ik

|2.

Thus,

∥ê(k+1)∥2 ≤ ∥ê(k)∥2 − αφik(A, x
(k), b− z(k+1))

+

(
1 +

α

1− α

) |(bN )ik − z
(k+1)
ik

|2

∥aik∥2

≤ ∥ê(k)∥2 − αφik(A, x
(k), b− z(k+1))

+
1

θ2(1− α)
∥z(k+1) − bN∥2

= ∥ê(k)∥2 − αφik(A, x
(k), b− z(k+1))

+
1

θ2(1− α)

(
∥ẽ(k)∥2 − ψjk(A, z

(k), 0)
)
.

(10)

This observation motivates the selection criterion for the in-
dex pair (ik, jk). That is, we prioritize indices corresponding
to the largest loss values φik and ψjk . This optimal selection
strategy forms the foundation of our proposed MWREK
method, as described in Algorithm 3.

Algorithm 3 The MWREK method.
Input: The coefficient matrix A ∈ Rm×n, the right-hand

side b ∈ Rm, two initial guesses x(0) ∈ R(AT ) and
z(0) ∈ b+R(A), and the maximum iteration number ℓ.

Output: x(ℓ).
1: for k = 0, 1, · · · , ℓ− 1 do
2: compute z(k+1) = Tjk(A, z(k), 0) with jk =

argmax
j∈[n]

{
ψj(A, z

(k), 0)
}

;

3: compute x(k+1) = Pik(A, x
(k), b− z(k+1)) with ik =

arg max
i∈[m]

{
φi(A, x

(k), b− z(k+1))
}

;

4: endfor

Having introduced the MWREK method, we proceed to
analyze its convergence properties. The following theorem
characterizes its convergence behavior.

Theorem 3: Let A ∈ Rm×n be a matrix without any
zero rows and b ∈ Rm. Starting from any initial values
x(0) ∈ R(AT ) and z(0) ∈ b+R(A), the iteration sequences{
x(k)

}∞
k=0

and
{
z(k)

}∞
k=0

are generated by the MWREK
method for solving the inconsistent linear system Ax = b.
Then, for k = 0, the following error estimate holds

∥x(1) − x∗∥2 ≤ ρ2,α∥x(0) − x∗∥2 + c̃1ρ1∥z(0) − z∗∥2 = c̄;
(11)

and for k ≥ 1

∥x(k+1) − x∗∥2 ≤ c̄ρk3,α∥x(0) − x∗∥2

+ c̃2ρ1

k∑
ℓ=0

ρℓ1,αρ
k+1−ℓ
2 ∥z(0) − z∗∥2,

(12)

where the constants ρ2,α = 1 − α2σ2
A,r/θ1 and ρ3,α = 1 −

α2σ2
A,r/θ2,

c̃1 =
α2

(1− α)∥A∥2F
+

1

θ2(1− α)
,

and

c̃2 =
α2

(1− α)(∥A∥2F − η1)
+

1

θ2(1− α)
.

Proof. When k = 0,

∥b− z(1) −Ax(0)∥2 =
∑
i∈[m]

φi(A, x
(0), b− z(1))∥ai∥2

≤ max
i∈[m]

{
φi(A, x

(0), b− z(1))
}
∥A∥2F .

Furthermore,

φi0(A, x
(0), b− z(1))

= max
i∈[m]

{
φi(A, x

(0), b− z(1))
}

≥ 1

∥A∥2F
∥b− z(1) −Ax(0)∥2

≥ 1

∥A∥2F

(
α∥bR −Ax(0)∥2 − α

1− α
∥bN − z(1)∥2

)
≥ α

σ2
A,r

∥A∥2F
∥ê(0)∥2 − α

1− α

1

∥A∥2F
∥ẽ(1)∥2,

where the third inequality holds because bR = Ax∗ and x∗,
x(0) ∈ R(AT ). From formula (10), we obtain

∥ê(1)∥2 ≤ ∥ê(0)∥2 − αφi0(A, x
(0), b− z(1))

+
1

η1(1− α)
∥ẽ(1)∥2

≤

(
1− α2

σ2
A,r

∥A∥2F

)
∥ê(0)∥2

+

(
α2

(1− α)∥A∥2F
+

1

θ2(1− α)

)
∥ẽ(1)∥2

≤ ρ2,α∥ê(0)∥2 + c̃1ρ1∥ẽ(0)∥2 = c̄.

When k ≥ 1,

∥b− z(k+1) −Ax(k)∥2

=
∑
i∈[m]

φi(A, x
(k), b− z(k+1))∥ai∥2

=
∑

i∈[m]/ik−1

φi(A, x
(k), b− z(k+1))∥ai∥2

≤ max
i∈[m]

{
φi(A, x

(k), b− z(k+1))
} ∑

i∈[m]/ik−1

∥ai∥2

≤ φik(A, x
(k), b− z(k+1))(∥A∥2F − η1).
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It follows that

φik(A, x
(k), b− z(k+1))

≥ 1

∥A∥2F − η1
∥b− z(k+1) −Ax(k)∥2

≥ 1

∥A∥2F − η1

(
α∥bR −Ax(k)∥2 − α

1− α
∥bN − z(k+1)∥2

)
≥ α

σ2
A,r

∥A∥2F − η1
∥ê(k)∥2 − α

1− α

1

∥A∥2F − η1
∥ẽ(k+1)∥2,

where the fourth inequality is from the facts that bR = Ax∗

and x∗, x(0) ∈ R(AT ). The following results are obtained
after rearrangement

∥ê(k+1)∥2

≤ ∥ê(k)∥2 − α2
σ2
A,r

∥A∥2F − η1
∥ê(k)∥2

+

(
α2

(1− α)(∥A∥2F − η1)
+

1

θ2(1− α)

)
∥ẽ(k+1)∥2

≤

(
1− α2

σ2
A,r

∥A∥2F − η1

)
∥ê(k)∥2

+

(
α2

(1− α)(∥A∥2F − η1)
+

1

θ2(1− α)

)
ρk2ρ1∥ẽ(0)∥2

= ρ3,α∥ê(k)∥2 + c̃2ρ
k
2ρ1∥ẽ(0)∥2.

After recursion with respect to k, we get the conclusion in
formula (12). The proof is complete. □

Remark 1: From the convergence analysis of the
MWREK method, we can see that it solves this problem by
making the inconsistent linear system consistent or nearly
consistent. This requires modifying the vector b, which
should equal or closely approximate bR, its projection
onto the range space of A. For approximate consistency
or keeping it within an acceptable distance of bR, the
MWREK method uses a deterministic orthogonal projection
iteration to remove bR, which is the null-space component
causing the convergence problems for the MWRK method.
Meanwhile, the structure of the linear system remains
unchanged. This guarantees solution existence and preserves
the problem’s key features.

IV. EXPERIMENTAL RESULTS

In this section, we will give several examples using real-
world data to demonstrate the convergence behavior of the
proposed methods. For comparison, we use the implementa-
tion of several deterministic and randomized extended row-
action methods including REK in [12], REK-S in [16], and
MREK in [18].

The test starts from two initial vectors x(0) = 0 and z(0) =
b. The performance is compared in terms of iteration number
(denoted by IT), relative solution error (denoted by RSE),
and computing time in seconds (denoted by CPU), where
RSE is defined by RSE = ∥x(k) − x∗∥2/∥x∗∥2 for k =
0, 1, 2, · · · and CPU is measured using the MATLAB built-
in function tic-toc. The algorithms are carried out on a
Founder desktop PC with Intel(R) Core(TM) i5-7500 CPU
3.40 GHz.

Example 1: Consider the original least-squares problems,
where the coefficient matrix

A =
[
AT

1 A1 AT
1 ; A1A

T
1 A1; A1 Λ

]
.

Here the sub-matrix A1 comes from the Suite Sparse
Matrix Collection [23], including ash219 and ash918,
Λ = diag(1 : m1) is a diagonal matrix with m1 be-
ing the row number of A1. We generate a solution x∗

by the MATLAB function ones. The inconsistent linear
system is realized by setting the noisy right-hand side as
b = Ax∗ + δ · b̂, where b̂ = b̃ − Ax̃ with nonzero vectors
b̃ = [(−1)0 (−1)1 · · · (−1)m−1]T and x̃ being in the
null space of AT generated by null, and the noise level
δ = 0.01.

Using data-sets from Example 1, comparative experiments
are conducted under varying extended row-action iteration
methods. We first display the sparsity pattern of matrix A
in Figure 1, then present the convergence curves in Figure
2. The results demonstrate that MWREK and MREK have
similar convergence behavior and successfully compute an
approximate solution for all cases. In all convergent cases,
the MWREK method exhibits significantly lower iteration
counts and computing times compared to MREK.

(a) A1 = ash219 (b) A1 = ash958

Fig. 1. Sparsity pattern of matrix A from Example 1.

Example 2: Consider the following least-squares problem,
characterized by the coefficient matrix

A =
[
AT

1 A1 AT
1 ; A1A

T
1 A1; A1 Λ

]
,

where the sub-matrix A1 is generated using the MATLAB
function randn with dimensions m1×n1, and Λ = diag(1 :
m1) represents a diagonal matrix. The solution x∗ is created
using the MATLAB function ones. An inconsistent linear
system is constructed by defining the noisy right-hand side
as b = Ax∗+δ · b̂, where b̂ = b̃−Ax̃ involves nonzero vector
b̃ = [(−1)0, (−1)1, . . . , (−1)m−1]T and x̃, which lies in the
null space of AT and is generated by the MATLAB function
null. The noise level is specified as δ = 0.01.

The numerical results for Example 2, obtained using the
REK, REK-S, MREK, and MWREK methods, are presented
in Table II. We consider four different data sizes: (m1, n1) =
(500, 50), (500, 150), (1000, 50), and (1000, 150). The re-
sults indicate that the MWREK method achieves comparable
accuracy while significantly reducing the computation time
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(a) IT vs RSE, A1 = ash219 (b) CPU vs RSE, A1 = ash219

(c) IT vs RSE, A1 = ash958 (d) CPU vs RSE, A1 = ash958

Fig. 2. The number of iteration steps and computing times of REK, REK-S, MREK, and MWREK for Example 1.

compared to the REK, REK-S, and MREK methods. This
advantage becomes increasingly pronounced as the data size
increases.

Example 3: We solve the image reconstruction problem
chosen from AIR Tools II toolbox [24]. We select 2-
dimension X-ray tomography as the test problem, which
is shown in Figure 3(a). It is represented by [A, b, x∗] =
paralleltomo(N, θ, p), which generates a coefficient matrix
A, an exact solution x∗, and an exact right-hand side
b = Ax∗ by adjusting the input parameters, such as the
size of the discrete domain (N ), the projection angles in
degrees (θ), and the number of rays (p). The inconsistent
linear system is realized by setting the noisy right-hand side
as b = Ax∗ + δ · b̂, where b̂ = b̃−Ax̃ with nonzero random
vector b̃ generated by randn and x̃ being in the null space
of AT generated by null, and the noise level δ = 0.01.

In this tomography test problem, we set the input pa-
rameters as N = 50, θ = 0 : 3 : 360, and p = 50,
resulting in a coefficient matrix of size 6050 × 2500. The
numerical results for the iteration number, relative solu-
tion error, and computing time, provided by REK, REK-
S, MREK, and MWREK, are depicted in Figure 4. It is
evident that MWREK exhibits significantly lower iteration
counts and computing times compared to REK, REK-S,
and MREK. Therefore, MWREK substantially outperforms
the other tested methods. In Figure 3(c), we present the
N×N images of the approximate tectonic phantom obtained
by MWREK. The image accurately converges to the exact
solution.

V. CONCLUSIONS

The row-action method, known for its simplicity, has
found widespread application in various domains, including
computer graphics. This paper introduces a novel deter-
ministic row-action approach for computing the orthogonal

decomposition of linear systems. The method employs a
maximum weighted residual selection strategy to enhance
efficiency. Furthermore, the approach is extended to address
overdetermined and inconsistent linear systems. Theoretical
analysis demonstrates that the proposed methods can linearly
converge to the least-squares solution with a minimum
Euclidean norm. To validate the effectiveness of the new
methods, several numerical studies are conducted. The results
show that the proposed methods achieve a faster convergence
rate compared to existing deterministic extended row-action
methods.
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