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Abstract—Stock price prediction is crucial in the financial
field. To address the challenge of accurately predicting new
energy stock prices, this paper takes the stock price of new
energy leading enterprise Contemporary Amperex Technology
Co., Limited (CATL) as the research object, and proposes a
new energy stock price prediction method based on the error
compensation hybrid model. Firstly, to tackle the issues of
insufficient information and interference in new energy stock
prices, a multi-source dataset is constructed by integrating
various indicators, and 22 key features are screened out by
dimensionality reduction of Pearson’s correlation coefficient
method, while the Variational Mode Decomposition (VMD)
method is used to decompose the highly complex and non-
stationary stock price series. Secondly, after combining the
Convolutional Neural Network-Attention Mechanism (CNN-
ATT) module to extract the feature information, the predic-
tion is performed by the Long Short-Term Memory (LSTM)
model, and Support Vector Machine (SVM) is introduced for
error compensation to improve the prediction accuracy of the
model. Furthermore, the proposed ELG-BKA—a Black-winged
Kite Algorithm variant, tested on CEC2022 functions, can
autommatically optimize parameters of the VMD and LSTM.
Finally, the validity of each module in this model is verified by
orthogonal experiments on the CATL stock price dataset and
the accuracy and generalization ability of the model is verified
by comparing with various representative models such as LSTM
from different evaluation metrics (MAE, MAPE, RMSE, R2) on
7 new energy stock datasets. Experimental results demonstrate
that the proposed method achieves high prediction accuracy
and stability in forecasting new energy stock prices.

Index Terms—stock price prediction, multi-source data, error
compensation, BKA

I. INTRODUCTION

IN recent years, stock price forecasting has been a hot
academic research topic. Stock markets are significant

for economic growth, corporate finance and investor asset
allocation[1]. In the context of global climate change, carbon
neutrality and energy transition, China vigorously support the
new energy automobile industry, policy and funding under
the dual drive, the industry in the technology and market
level are leading the new energy sector[2]. China Associa-
tion of Automobile Manufacturers data show that in 2024,
China’s new energy vehicle production and sales reached
12.888 million vehicles, 12.866 million vehicles, up 34.4%,
35.5%, presenting the supply and demand situation.Ouyang
Minggao, academician of the Chinese Academy of Sciences,
predicted that in 2025 the sales of new energy vehicles are
expected to exceed 16 million.
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Under the background of the rise of the new energy
industry, CATL, as the leading power battery, is the wind
vane of industry development. In 2024, the global installed
capacity of power battery is 894.4 GWh, and CATL leads
the market share with 37.9%; in January 2025, the domes-
tic market share reached 47.1%, up 1.6 percentage points
sequentially, and it has been the champion of the global
installed capacity for 8 consecutive years, with a solid market
position and a continuously increasing share. The study
of CATL stock price is valuable for grasping new energy
industry trends, guiding investment decisions and analyzing
economic operations.

This paper proposes a new energy stock closing price
prediction method based on error compensation:

First, the ELG-BKA, an improved Black-winged Kite
Algorithm incorporating elite driven, lens reversal, and gold
sine strategies, is proposed to automatically tune VMD and
LSTM parameters, addressing accuracy limitations inherent
in conventional manual parameter selection methods.

Second, fusing trading and technical indicators to construct
a multidimensional stock dataset.

Third, correlation analysis is used to reduce the dimension-
ality and VMD is utilized to decompose the non-stationary
stock price series to improve the data quality.

Fourth, integrating the advantages of CNN, ATT, and
LSTM to predict the stock price, and introducing the SVM
error compensation mechanism to correct the model bias,
which significantly improves the prediction accuracy.

The subsequent chapters of this paper are organized
as follows: section 2 reviews state-of-the-art research on
stock price forecasting; section 3 introduces the ELG-
BKA—improved Black-winged Kite Algorithm; section 4
describes the construction of the hybrid model; section 5
illustrates the experimental data and design methodology;
section 6 demonstrates and analyzes the experimental results;
and section 7 concludes the full paper and proposes future
research directions.

II. RELATED RESEARCH

In stock market research, the common forecasting tech-
niques include time series analysis and machine learning
methods. Traditional approaches primarily employ time se-
ries models such as ARIMA[3] and GARCH[4]. While
these methods demonstrate some predictive capability, they
rely fundamentally on linearity assumptions. However, stock
price data exhibit inherent nonlinear characteristics with
multifactor interactions, leading to suboptimal performance
of conventional techniques in price forecasting.

Advances in artificial intelligence and computing have
facilitated widespread adoption of machine learning for stock
price prediction. Support Vector Machines (SVM), capable of
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processing nonlinear data patterns, are particularly prevalent.
Pavan et al. developed an integrated model combining Ran-
dom Forest and SVM to create price predictor to formulate
trading strategies[5]. Kang et al. further optimized SVM
parameters using a Binary Gravitational Search Algorithm,
achieving superior predictive performance compared to con-
ventional methods[6].

The evolution of deep learning has established neural
networks as a dominant approach for stock price forecasting,
leveraging their superior capability to model complex non-
linear relationships. Among these architectures, Recurrent
Neural Networks (RNNs) and their variants demonstrate
exceptional performance. Long Short-Term Memory net-
works (LSTMs), particularly adept at capturing temporal
dependencies in sequential data, have been extensively im-
plemented in stock prediction models[7]. Yan et al. developed
an LSTM framework for financial time-series forecasting
that significantly outperformed both Backpropagation Neural
Networks (BPNNs) and conventional RNNs in predictive
accuracy[8]. Lu et al. pioneered a hybrid CNN-LSTM archi-
tecture where convolutional layers extract discriminative fea-
tures subsequently processed by LSTM for price prediction,
substantially enhancing forecasting precision[9]. Chen et al.
integrated LSTM and ATT, transformed the feature space
through multilayer perceptron, extracted temporal features
through bidirectional long and short-term memory network
(BiLSTM), and utilized the attention mechanism to highlight
the key information, which significantly improved the predic-
tion accuracy of the model, confirming the important value
of the ATT in stock price prediction[10].

Although the above methods have significantly contributed
to stock price prediction research, the complexity, nonlin-
earity, and high-noise characteristics of stock data continue
to pose substantial challenges for accurate forecasting. Cur-
rently, many researchers are actively exploring innovative
approaches across multiple dimensions to construct more
efficient and reliable prediction models.

In the field of parameter optimization for stock price
prediction, the integration of intelligent optimization algo-
rithms into machine learning models has brought new ideas
to the field. Das et al. used Particle Swarm Optimization
and Crow Optimization Algorithm to optimize parameters
of Extreme Learning Machines[11]. Gülmez et al. employed
Artificial Rabbit Algorithm to optimize hyperparameters of
LSTM networks[12]. Mustaffa et al. applied Barnacle Mating
Algorithm to automatically optimize network parameters of
Artificial Neural Networks (ANNs)[13], which significantly
enhanced the accuracy of the stock price prediction model.

At the level of data selection for stock price forecasting,
multivariate data fusion has become an important trend.
Agustin demonstrates through comparative experiments that
combining technical indicators with fundamental indicators
significantly enhances stock price forecasting accuracy[14].
Muthukumar et al. further advanced this approach by inte-
grating textual stock data with numerical data and incorporat-
ing sentiment analysis results into model inputs, significantly
improving prediction accuracy[15]. These findings indicate
that accurate stock price prediction remains challenging
when relying solely on basic trading data, while fusing
multiple data types (including trading data, technical indica-
tors, sentiment indicators, etc.) provides distinct advantages.

Therefore, this paper refines the model input data dimensions
through a multi-data fusion strategy.

In the data processing stage of stock price forecasting, data
decomposition techniques have emerged as critical method-
ologies for enhancing prediction accuracy. Researchers have
demonstrated that preprocessing raw stock price series with
decomposition algorithms significantly optimizes model per-
formance. Ni et al. applied Variational Mode Decomposition
(VMD) to process data[16], Liu et al. employed Empirical
Wavelet Transform (EWT) for data preprocessing[17], and
Lin et al. utilized Complete Ensemble Empirical Mode
Decomposition with Adaptive Noise (CEEMDAN) to de-
compose original stock index series[18]. All subsequently
implemented LSTM models for prediction, effectively en-
hancing forecast accuracy. Building upon the demonstrated
efficacy of data decomposition for stock price prediction, this
paper selects VMD to decompose stock price sequences and
optimizes its key parameters using the proposed ELG-BKA
algorithm to further extract discriminative data features.

In the domain of model construction for stock price
forecasting, hybrid models have emerged as the predominant
research direction. Researchers have significantly enhanced
model performance through methodological integration. Bu-
rak et al. constructed the GA-Attention-Fuzzy-Stock-Net
model, integrating genetic algorithms, attention mechanisms,
and neuro-fuzzy systems—where the former optimizes hy-
perparameters while the latter enhances feature selection
capabilities, validating its efficacy[19]. Li et al. proposed a
GAN-LSTM-Attention framework that synergistically com-
bines long short-term memory networks, attention mecha-
nisms, convolutional neural networks, and generative adver-
sarial networks, demonstrating robust predictive performance
on U.S. stock samples[20]. Zhu designed an EEMD-SESHO-
RF-BiLSTM architecture fusing data processing techniques,
optimization algorithms, and multiple network structures, ex-
hibiting high accuracy and strong generalization capabilities
in global index data testing[21]. Collectively, these hybrid
approaches substantiate the superior predictive advantage
of integrated models through algorithmic optimization and
structural fusion. Building on this foundation, this paper
constructs a combined model via module fusion strategy to
enhance stock price forecasting accuracy.

Above comprehensive review of existing stock price fore-
casting research reveals that model construction needs to
address core challenges including data selection, sequence
decomposition, feature extraction and hyper-parameter op-
timization. To tackle these challenges, this study integrates
cutting-edge technologies and incorporates feedback mecha-
nisms to innovatively propose an error compensation-based
hybrid forecasting model, which aims to achieve multi-stage
collaborative optimization, overcome inherent limitations of
conventional models, and enhance prediction accuracy while
ensuring reliability.

III. IMPROVED ALGORITHM FOR BLACK-WINGED KITE

A. Black-winged Kite Algorithm

Proposed in 2024, the Black-winged Kite Algorithm
(BKA) simulates migration and predation behaviors of black-
winged kites to achieve population optimization. Demon-
strating competitive performance on benchmark functions
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and engineering design problems, BKA shows considerable
potential for solving complex optimization challenges[22].
The algorithm comprises three core phases: initialization,
predation, and migration. The corresponding specific math-
ematical models for each phase are as follows:

Xi = lb+ rand(ub− lb) (1)

Eq.(1) defines the position at initialization, i is an integer
between 1 and N , N is the number of black-winged kite
populations, rand is a random value between 0 and 1, ub and
lb are the upper and lower boundaries of the search range,
respectively, and Xi is the position of the ith black-winged
kite at the initialization.

Xt+1
i,j =

{
Xt

i,j + n (1 + sin (r))×Xt
i,j p < r

Xt
i,j + n×

(
2r − 1

)
×Xt

i,j else
(2)

n = 0.05× e−2×( t
T )

2

(3)

Eq.(2) describes the position update rule of the jth di-
mension of the ith black-winged kite in the t+ 1th and tth
iteration of the predation stage, where r is a random number
between 0 and 1, p is a constant with the value of 0.9, t is the
current iteration number, T is the maximum iteration number,
and the value of n is determined by Eq.(3). When p < r, the
black-winged kite hovering and swooping hunting behaviors
are simulated; conversely, its hovering and attacking postures
are simulated.

Xt+1
i,j =

{
Xt

i,j + C (0, 1)×
(
Xt

i,j − Lt
j

)
Fi < Fri

Xt
i,j + C (0, 1)×

(
Lt
j −m×Xt

i,j

)
else

(4)

m = 2× sin (r + π/2) (5)

Eq.(4) defines the position of the ith black-winged kite in
the t + 1th and tth iteration of the migration phase in the
jth dimension. Where Lt

j is the leading position in the jth
dimension of the tth iteration, Fi is the fitness of the current
individual, Fri is the fitness of the randomized position,
and C (0, 1) denotes the standard Cauchy distribution whose
probability density is given by Eq.(6).

f (z) =
1

π
× 1

(z2 + 1)
,−∞ < z < +∞ (6)

B. Improvement strategies of Black-winged Kite Algorithm

1) Elite driven strategy: The elite driven strategy im-
proves the probability of finding an optimal swarm in-
telligence optimization algorithm by including the inverse
solution of the current solution in the search scope and
retaining elite individuals, effectively enhancing the diversity
and quality of the population and circumventing the local
optimum[23]. The mathematical model is as follows: on the
interval [a, b], the inverse point of the number x is defined as
x′, extended to the D-dimensional space, the inverse point p′

of the point p, where x′
i = ai+bi−xi and i = 1, 2, 3, · · ·, D.

An elite driven strategy is introduced into the population
initialization of the black-winged kite optimization algorithm
in the following steps:

1) Generate N black-winged kite individual positions
randomly in the search space to form the initial population
X;

2) Generate the reverse population X ′ of each individual
in X according to the definition of reverse point, as shown in
Eq.(7), where Xi

′ is the elite reverse position of the current
individual Xi (generated by Eq.(1)).

Xi
′ = lb+ ub−Xi (7)

3) Merge X and X ′, sort them by fitness value, and take
the first N individuals to form the final initialized population
Xinit, Fmin(·) represents the selection of the N individuals
with the smallest fitness values.

Xinit = Fmin(Xi, Xi
′) (8)

2) Lens reversal strategy: The lens reversal strategy is
based on the principle of convex lens imaging to generate the
reverse position centered on the current position, which can
break through the local optimum, expand the search scope,
and effectively improve the global search coverage capability
and population diversity[24], and its mathematical model is
as follows:

As shown in Fig.1, the lens reversal strategy takes the
convex lens imaging as the principle: let y-axis be the convex
lens, F is the focal length of the lens, [m,n] be the search
space, the projection height h of object i, the mapping point
in x-axis is Xi, and it is imaged as i′ by the convex lens,
which corresponds to the mapping point Xi

′ in x-axis and
the projection height h′. Based on the imaging principle can
be obtained:

(m+ n) /2−Xi

Xi
′ − (m+ n) /2

=
h

h′ (9)

Let h/h′ = f be the scaling factor, and generalize the
above principle to D-dimensional space transformations:

Xi
′ =

mi + ni

2
+

mi + ni

2f
− Xi

f
(10)

By dynamically adjusting the f value, the diversity of the
black-winged kite population can be enhanced to help search
for better individuals. f is closely related to the generation
of individual inverse solutions, and its updating formula is
as shown below:

f =

(
1 +

(
2t

T

)0.5
)4

(11)

The BKA incorporates a lens imaging reverse learning
strategy in the predation phase, and the specific mathematical
model is shown in Eq.(12), where Xt

i,j is the lens reversal
position of the current individual (generated by Eq.(2))
during the predation process, (Xt+1

i,j )′ is the individual from
its lens reversal solution.

(
Xt+1

i,j

)′
=

lb+ ub

2
+

lb+ ub

2f
−

Xt
i,j

f
(12)
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Fig. 1: Schematic of lens reversal strategy.

3) Gold sine strategy: The gold sine strategy replaces
the original algorithm constant parameter with the sine
function, searches in depth in the neighborhood of the local
optimal solution, and improves the exploration capability of
the algorithm; at the same time, relying on the association
between the sine function and the unit circle, it expands the
search range on the unit circle, and enhances the dynamic
search performance and traversal[25], whose mathematical
model is as follows:


Xt+1

i = Xt
i × |sinR1| −R2 × sinR1×∣∣ε1 ×Xt

best − ε2 ×Xt
i

∣∣
ε1 = α× τ + β × (1− τ)

ε2 = α× (1− τ) + β × τ

(13)

In Eq.(13), R1, R2 are random values, and R1 ∈ [0, 2π],
R2 ∈ [0, π], Xt

best is the global optimal position in the tth
iteration, ε1, ε1 are the golden section coefficients, α gener-
ally takes the value of −π, β generally takes the value of π,
and τ is the number of golden sections, τ =

(√
5− 1

)
/2.

The gold sine strategy is introduced in the migration phase
of the BKA, whose mathematical model is shown in Eq.(14),
where Xt

i,j is the current individual in the migration process
(generated by Eq.(4)), (Xt+1

i,j )G is the individual from its
gold sine strategy solution.

(
Xt+1

i,j

)
G
= Xt

i,j × |sinR1| −R2 × sinR1×∣∣ε1 ×Xt
best − ε2 Xt

i,j

∣∣ (14)

C. Algorithm Workflow of ELG-BKA

The structure of the ELG-BKA algorithm, which incorpo-
rates the elite driven, lens reversal and gold sine strategies,
is shown in Fig.2, and its process is detailed in Table I. First,
the parameters of the algorithm are initialized. Based on the
existing population, an initial elite population is obtained
using the elite driven strategy. Then, during the predation
phase and the migration phase, the lens reversal strategy and
the gold sine strategy are introduced respectively to enhance
the search range and accuracy in order to obtain the final
optimal solution.

D. Performance Testing of ELG-BKA

The CEC2022 benchmark provides standardized test func-
tions for evaluating single-objective constrained optimization
algorithms. Comprising unimodal, multimodal, hybrid, and

Fig. 2: Structure of ELG-BKA.

compositional functions, it establishes a unified performance
assessment framework. Among these, F1 is a unimodal
function, F2–F5 are multimodal functions, F6–F8 are hybrid
functions, and F9–F12 are compositional functions. Foun-
dational functions include classical optimization problems
such as Zakharov, Rosenbrock, and Schaffer, which test
fundamental algorithmic capabilities. Unimodal functions
(e.g., Zakharov, Rosenbrock) primarily evaluate convergence
behavior. Hybrid functions increase complexity by parti-
tioning variables into subcomponents with distinct function
properties. Compositional functions combine multiple base
functions to simulate challenging environments featuring
non-separability and asymmetry, testing algorithm adaptabil-
ity. Multimodal functions (e.g., Rastrigin, Levy) assess global
exploration capabilities. This diverse function set compre-
hensively evaluates algorithm performance under standard-
ized conditions: search range [-100, 100] and dimension
dim=10. Fig.3 visualizes representative CEC2022 function
landscapes.

In complex optimization problems, convergence perfor-
mance critically determines algorithmic efficacy. Figures 4-
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TABLE I: ELG-BKA algorithm workflow

Input: N , T , lb, wb, Dim, fobj;
Output: Xbest, Fbest, Curve;

/*Initialization phase*/
1. Initialization of the population using the elite driven strategy and parameters;
/*Elite driven strategy*/
2. for i← 1 to N do
3. Calculate the positions of the population {Xi, X

′
i | i = 1, 2, · · · , N} according to Eqs.(1) and (7);

4. Calculate the fitness values {f(Xi), f(X
′
i) | i = 1, 2, · · · , N} and select the top N individuals with

superior fitness values to form the elite population;
5. end
6. Calculate the initial fitness;

7. while t < T do
8. Select the current optimal solution Xcurrent and its fitness value Fcurrent;
/*Attacking behavior*/
9. for i← 1 to N do
10. Calculate the positions of the population during the predation process according to Ep.(2);
11. Retain the better solution Xbest and Fbest;
12. end
/*Lens reversal strategy*/
13. for i← 1 to N do
14. Calculate the lens reversal positions during the predation process of the population according to Ep.(11);
15. Retain the better solution Xbest and Fbest;
16. end
/*Migration behavior*/
17. for i← 1 to N do
18. Calculate the positions of the population during the migration process according to Ep.(4);
19. Retain the better solution Xbest and Fbest;
20. end
/*Gold sine strategy*/
21. for i← 1 to N do
22. Calculate the golden sine positions of the population during the migration process according to Ep.(13);
23. Retain the better solution Xbest and Fbest;
24. end
25. Compare the Xbest and Fbest with the Xcurrent and Fcurrent;
26. Record the convergence curve;
27. end while
28. Return Xbest, Fbest, Curve.

6 compare ELG-BKA’s convergence behavior against seven
benchmark algorithms (including BKA and SO) on CEC2022
test functions F3, F6, and F9. Key observations reveal:
(1) While all algorithms exhibit high initial fitness values,
ELG-BKA rapidly reduces fitness through its novel mech-
anisms, demonstrating superior convergence velocity and
precision; (2) Comparative algorithms frequently stagnate
in local optima during mid-late iterations, whereas ELG-
BKA maintains solution refinement via balanced global-local
search, consistently approaching near-optimal solutions; (3)
Convergence curves confirm ELG-BKA’s outperformance in
both efficiency and accuracy across tested CEC2022 prob-
lems, establishing state-of-the-art optimization capability.

Figures 7-9 present comparative boxplot analyses of mul-
tiple algorithms on CEC2022 functions F3, F6, and F9.
Key findings demonstrate ELG-BKA’s superior performance:
F3: ELG-BKA exhibits the lowest median fitness, minimal
outlier dispersion, and efficient complex function handling;
F6: Significantly lower quartiles than competitors with fa-
vorable outlier distribution, effectively evading local optima;
F9: Outperforms GWO and WOA in solution quality while
maintaining robust global exploration. Collectively, ELG-
BKA achieves exceptional stability in fitness values and
optimal solution discovery across test functions. Compared to
benchmark algorithms, it consistently converges to superior
solutions through balanced global-local search, demonstrat-
ing both evasion of local optima and precise exploitation
capability.

Table II quantifies eight algorithms’ performance on
CEC2022 benchmarks using mean fitness (Mean), stan-
dard deviation (Std), best value (Best), and ranking met-
rics (Rank). Results demonstrate ELG-BKA’s superiority: it
achieves lower mean values and reduced Std across most
functions (excluding F2, F9, F12), indicating exceptional
solution quality and stability. ELG-BKA significantly outper-
forms comparative algorithms, securing the highest overall
ranking. Compared to BKA, it excels in critical optimization
metrics, validating the enhancement strategy’s efficacy for
complex optimization problems.

IV. LSTM HYBRID MODEL CONSTRUCTION BASED ON
ERROR COMPENSATION

Variational Mode Decomposition (VMD) is a modal de-
composition method with adaptive and non-recursive prop-
erties, which can decompose complex signals into multiple
single-component signals, and is suitable for dealing with
nonlinear and nonsmooth signals[26]. The method obtains
the IMF components by solving the constrained variational
problem, but the number of modal decomposition K and the
quadratic penalty factor α need to be set manually, and their
values have a direct impact on the decomposition accuracy-
too large a value of K will easily generate redundant
information, while too small will lead to omission of modes;
too large a value of α will lead to loss of information in
the frequency band, while too small will lead to redundancy
of information. For this reason, the ELG-BKA algorithm is
used in this paper to optimize these two parameters.
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TABLE II: CEC2022 function test index results

Data Index ELG-BKA BKA SO PSO GWO WOA AVOA DBO

F1

Mean 3.00000E+02 7.85189E+03 3.01255E+02 3.00001E+02 4.29176E+03 1.87301E+ 04 3.01808E+02 3.96026E+02
Std 1.61945E-11 1.90742E+03 2.37189E+00 6.42722E-04 1.95251E+03 9.00684E+03 5.76114E+00 3.10550E+02
Best 3.00000E+02 5.28210E+03 3.00001E+02 3.00000E+02 3.24881E+02 2.86664E+03 3.00000E+02 3.00000E+02
Rank 1 7 3 2 6 8 4 5

F2

Mean 4.07850E+02 4.14007E+02 4.08891E+02 4.06903E+02 4.24339E+02 4.42395E+02 4.17089E+02 4.31726E+02
Std 1.82322E+01 2.64018E+01 1.66951E+01 1.24511+-01 2.16795E+01 5.71972E+01 2.53548E+01 3.16844E+01
Best 4.00023E+02 4.00001E+02 4.00002E+02 4.00009E+02 4.06727E+02 4.00699E+02 4.00000E+02 4.05289E+02
Rank 2 4 3 1 6 8 5 7

F3

Mean 6.00883E+02 6.19967E+02 6.04611E+02 6.09846E+02 6.01179E+02 6.37655E+02 6.17691E+02 6.11161E+02
Std 1.26402E+00 9.82784E+00 4.96155E+00 8.50195E+00 1.23745E+00 1.25365E+01 1.03598E+01 7.74521E+00
Best 6.00010E+02 6.04572E+02 6.00052E+02 6.00619E+02 6.00055E+02 6.15089E+02 6.00541E+02 6.00902E+02
Rank 1 7 3 4 2 8 6 5

F4

Mean 8.14659E+02 8.19468E+02 8.22353E+02 8.22320E+02 8.18267E+02 8.36118E+02 8.30210E+02 8.33059E+02
Std 5.35433E+00 5.04417E+00 5.57796E+00 6.59297E+00 7.74000E+00 1.72823E+01 9.40828E+00 1.23284E+01
Best 8.04975E+02 8.10945E+02 8.08955E+02 8.10945E+02 8.06095E+02 8.12052E+02 8.10945E+02 8.13929E+02
Rank 1 3 5 4 2 8 6 7

F5

Mean 9.00000E+02 9.90365E+02 9.22402E+02 9.76567E+02 9.15004E+02 1.45877E+03 1.27160E+03 9.48855E+02
Std 0.00000E+00 9.26659E+01 2.82247E+01 1.58551E+02 2.80383E+01 3.14844E+02 1.75556E+02 4.60901E+01
Best 9.00000E+02 9.05908E+02 9.00000E+02 9.00000E+02 9.00100E+02 9.63942E+02 9.75818E+02 9.05518E+02
Rank 1 6 3 5 2 8 7 4

F6

Mean 1.87823E+03 3.05733E+03 3.83924E+03 3.56283E+03 5.11840E+03 3.14209E+03 3.58913E+03 5.81409E+03
Std 5.75221E+01 1.02132E+03 1.53155E+03 2.27539E+03 2.43754E+03 1.07620E+03 1.72806E+03 2.24633E+03
Best 1.80538E+03 1.88034E+03 1.87184E+03 1.87176E+03 2.14801E+03 1.92406E+03 1.87095E+03 2.17033E+03
Rank 1 2 6 4 7 3 5 8

F7

Mean 2.02933E+03 2.10651E+03 2.03187E+03 2.03137E+03 2.03180E+03 2.06871E+03 2.04261E+03 2.03876E+03
Std 1.18274E+01 4.49292E+01 2.72115E+01 1.06845E+01 1.49580E+01 3.01740E+01 2.49638E+01 1.93981E+01
Best 2.00796E+03 2.04747E+03 2.00242E+03 2.02000E+03 2.02010E+03 2.03140E+03 2.00562E+03 2.00542E+03
Rank 1 8 4 2 3 7 6 5

F8

Mean 2.21994E+03 2.39075E+03 2.22410E+03 2.22073E+03 2.22520E+03 2.23446E+03 2.22633E+03 2.22794E+03
Std 5.94857E+00 1.21717E+02 2.27665E+01 4.27146E-01 4.71913E+00 9.93222E+00 5.68010E+00 7.85960E+00
Best 2.20037E+03 2.22319E+03 2.20071E+03 2.22004E+03 2.20400E+03 2.22334E+03 2.21764E+03 2.22114E+03
Rank 1 8 3 2 4 7 5 6

F9

Mean 2.53011E+03 2.59322E+03 2.50457E+03 2.53429E+03 2.56452E+03 2.57609E+03 2.53908E+03 2.53961E+03
Std 4.20671E+00 1.45229E+01 5.81925E+01 2.68059E+01 3.00239E+01 4.66762E+01 3.72778E+01 2.84367E+01
Best 2.52928E+03 2.55894E+03 2.48550E+03 2.52928E+03 2.52929E+03 2.53022E+03 2.52928E+03 2.52928E+03
Rank 2 8 1 3 6 7 4 5

F10

Mean 2.52126E+03 2.74666E+03 2.55562E+03 2.57962E+03 2.56915E+03 2.61923E+03 2.57449E+03 2.53538E+03
Std 4.71265E+01 3.97895E+02 1.04236E+02 9.62933E+01 6.47013E+01 1.36895E+02 6.20865E+01 5.84529E+01
Best 2.50037E+03 2.53789E+03 2.42853E+03 2.50020E+03 2.50029E+03 2.50052E+03 2.50047E+03 2.50054E+03
Rank 1 8 3 6 4 7 5 2

F11

Mean 2.62841E+03 2.75000E+03 2.7297E+03 2.75339E+03 2.78676E+03 2.84535E+03 2.73649E+03 2.78602E+03
Std 8.38598E+01 1.52564E+02 1.16408E+02 1.60243E+02 1.36656E+02 1.53207E+02 1.38391E+02 1.55712E+02
Best 2.60000E+03 2.60000E+03 2.60000E+03 2.60000E+03 2.60193E+03 2.63904E+03 2.60000E+03 2.60000E+03
Rank 1 4 2 5 7 8 3 6

F12

Mean 2.86566E+03 3.00385E+03 2.86984E+03 2.86471E+03 2.86663E+03 2.88742E+03 2.86964E+03 2.87481E+03
Std 5.30522E+00 5.91039E+01 3.40325E+00 2.33349E+01 6.47263E+00 2.62556E+01 8.15949E+00 1.88649E+01
Best 2.86144E+03 2.92092E+03 2.86319E+03 2.84613E+03 2.85955E+03 2.86304E+03 2.86257E+03 2.86327E+03
Rank 2 8 5 1 3 7 4 6

Toal rank 15 73 41 39 52 86 60 66
Final rank 1 7 3 2 4 8 5 6

* The rank is based on Mean. When Mean values are the same, the algorithm with a smaller Std wins. The winner is shown in bold.

Convolutional Neural Network (CNN), as the core al-
gorithm of deep learning, is able to mine features from
stock market time-series data, and is a feed-forward network
containing convolutional operations, which consists of a
convolutional layer, a pooling layer, and a fully connected
layer. The convolutional layer extracts stock price spatial
distribution features through multiple convolutional kernels,
but the output feature dimensions are high; the pooling layer
reduces the dimensionality of the high-dimensional data to
improve the network operation efficiency and extracts the
secondary features; and the fully-connected layer integrates
the local features into the global features to ultimately realize
the stock price prediction[27].

Attention mechanism (ATT) simulates human brain per-
ception and improves information processing efficiency and

prediction accuracy by assigning feature weights to input
data. Its core is a weighted summation based on the impor-
tance of the inputs to the prediction task, which is achieved
in three steps: calculation of weights, normalization, and
weighting. In this paper, ATT is incorporated into the predic-
tion model, which can accurately extract the key information
of the stock price sequence, filter the secondary content, and
effectively improve the efficiency of feature extraction[28].

Long Short-Term Memory (LSTM) network is an im-
proved version of RNN with long-term memory capability,
which solves the problem of gradient vanishing and explo-
sion by effectively controlling the flow of information, better
captures time series dependencies, and utilizes memory units
to store and update the historical state, which is suitable
for time-series data prediction such as stock prices[29]. The
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Fig. 3: 3D visualization of CEC2022 benchmark functions
with dimension dim=10.
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Fig. 4: Convergence curves of CEC2022 function F3.

LSTM unit consists of a forget gate, an input gate, an output
gate and a memory cell: the forget gate filters redundant
information, the input gate screens the memorized content,
and the output gate regulates the output. The units share the
parameters and are optimized in the loop learning. Given that
LSTM hyperparameters affect the performance, this paper
uses ELG-BKA to optimize the number of hidden layers, the
initial learning rate and the L2 regularization parameters.

Support Vector Machine (SVM) is a classical supervised
learning algorithm for classification and regression tasks,
with significant advantages in classifying small and medium-
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Fig. 5: Convergence curves of CEC2022 function F6.
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sized datasets. Its core is to maximize the category data
interval by finding the optimal hyperplane to enhance the
model generalization ability[30].

Consequently, this study constructs a hybrid LSTM model
based on error compensation by integrating the advantages
of ELG-BKA optimization, VMD, CNN-ATT feature ex-
traction, LSTM prediction, SVM error correction. And the
structure of this model is illustrated in Fig.10.

V. EXPERIMENTAL DESIGN

A. Data sources and description

The experimental data are taken from the Tushare database
(https://tushare.pro/), covering the opening price and vol-
ume of seven stocks from July 9, 2018, to February
21, 2025, and other information. The seven new energy
stocks are: BYD Company Limited (BYD), Gotion High-
tech Co.,Ltd (Gotion), Shenzhen Senior Technology Material
Co., Ltd (Senior), Shanghai Kelai Mechatronics Engineering
Co.,Ltd (Kelai), Contemporary Amperex Technology Co.,
Ltd (CATL), Zhejiang Sanhua Intelligent Controls Co.,Ltd
(Sanhua), Sunwoda Electronic Co., Ltd (Sunwoda). Influ-
enced by the new crown epidemic, Russia-Ukraine conflict

and the goals on carbon peak and carbon neutrality and other
events, the stock price of the new energy industry fluctu-
ates drastically, showing non-linearity and instability, which
makes forecasting more difficult. Taking CATL stock as an
example, Table III shows some of the data, and Fig.11 shows
its closing price trend. It is evident that the closing prices
fluctuate significantly during the sample period, presenting a
certain level of forecasting difficulty.

B. Feature construction

The data characteristics of each stock cover basic trading
data, fundamental data, technical indicators, and the basic
trading data of stocks in the same industry is also an im-
portant supplement. In the case of CATL, Table IV presents
its stock data characteristics. Among them, the basic stock
trading indicators, directly obtained technical indicators and
industry trading indicators can be obtained from the Tushare
database, and some stock technical indicators are constructed
according to their own definitions.

C. Data processing

1) VMD decomposition: ELG-BKA is used to optimize
the number of decompositions K and the penalty factor α
of VMD for decomposing the historical closing price series
with minimum sample entropy as the objective function. The
convergence curve is shown in Fig.12, and finally K = 7
and α = 4600 are determined, and the results of the
decomposition of the closing price of CATL stock are shown
in Fig.13 and Fig.14.

2) Feature screening: Pearson’s correlation coefficient
method is used to measure the degree of linear correlation
between two variables, based on the covariance and
standard deviation calculation, taking the value of the
range of [−1, 1], the closer the absolute value of 1
correlation is the stronger, the sign characterizes the
direction of correlation. This method is often applied to
feature screening, retaining features that are significantly
correlated (|r| > Threshold) with the target variable
for dimensionality reduction. In this paper, this method
is applied to eliminate irrelevant features to determine
the model inputs, and the correlation coefficients are
shown in Table V (the high correlation values are marked
in bold), and the features with |r| > 0.7 are selected
as the model inputs[31]. The 22 features selected are:
Open, High, Low, Close, Pre close, Total mv, BOLL LB,
BOLL MD, BOLL UB, OBV, MA 5, MA 10, MA 20,
Close 002050.SZ, Close 002460.SZ, Close 002594.SZ,
Close 002886.SZ, Close 300207.SZ, Close 300274.SZ,
Close 300568.SZ, Close 300648.SZ, Close 300712.SZ.

3) Data normalization: In order to eliminate the magni-
tude and scale differences between features and to improve
the efficiency of model processing, the indicator dataset was
normalized to [0, 1] with the following calculation formula:

Y =
(Ymax − Ymin)× (X −Xmin)

Xmax −Xmin
+ Ymin (15)

Where, Y is the normalized value; X is the original value;
Xmin, Xmax is the minimum and maximum value of the
original data; Ymin = 0, Ymax = 1 is the minimum and
maximum value of the target interval after normalization.
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TABLE III: Selected data on CATL stock price

No. Date Open High Low Close Pre close Change Pct chg Volume Amount Turnover rate
1 20180709 37.76 38.17067 36.85867 38.16 70.88 0.67 0.95 310689.79 2183986.5 14.3014
2 20180710 40 40.47467 38.21867 38.61333 71.55 0.85 1.19 364844.01 2666043.24 16.7942
3 20180711 37.33333 42.10133 37.10933 41.09867 72.4 4.66 6.44 491208.05 3695050.77 22.6109
4 20180712 40.54933 45.21067 40.32 45.21067 77.06 7.71 10.01 430852.12 3430182.91 19.8327
5 20180713 43.73333 47.184 43.216 44.10667 84.77 -2.07 -2.44 482020.55 4049051.4 22.188

TABLE IV: CATL stock price data characteristics

Feature type No. Indicator Indicator description

Basic trading
indicators of
individual stocks

1 Open Opening price
2 High Highest price
3 Low Lowest price
4 Close Closing price
5 Pre close Yesterday’s closing price
6 Change Amount of change
7 Pct chg Percentage change
8 Volume Amount of trading
9 Amount Trading value

Indicators of
individual stocks
that can be
directly obtained

1 Turnover rate Turnover rate
2 Volume ratio Volume ratio
3 Pe Price-to-earnings ratio
4 Pe ttm Trailing-twelve-month price-to-earnings ratio
5 Pb Price-to-book ratio
6 Ps Price-to-sales ratio
7 Ps ttm Trailing-twelve-month price-to-sales ratio
8 Total share Total share capital
9 Total mv Total market value

Constructed technical
indicators of
individual stocks

1 MACD Moving Average Convergence Divergence
2 KDJ K Stochastic oscillator K-line
3 KDJ D Stochastic oscillator D-line
4 KDJ J Stochastic oscillator J-line
5 RSI 6 6-day Relative Strength Index
6 RSI 12 12-day Relative Strength Index
7 RSI 24 24-day Relative Strength Index
8 W&R Williams %R
9 BOLL LB The lower band of the Bollinger Bands
10 BOLL MD The middle band of the Bollinger Bands
11 BOLL UB The upper band of the Bollinger Bands
12 CCI Commodity Channel Index
13 PSY Psychological Line
14 OBV On-Balance Volume
15 MA 5 5-day moving average
16 MA 10 10-day moving average
17 MA 20 20-day moving average
18 VMA 5 5-day average trading volume
19 VMA 10 10-day average trading volume
20 VMA 20 20-day average trading volume

Basic trading
indicators of
individual stocks
within the
same industry

1 Close 002050.SZ Closing price of Zhejiang Sanhua Intelligent Controls Co.,Ltd
2 Close 002460.SZ Closing price of Ganfeng Lithium Group Co., Ltd
3 Close 002594.SZ Closing price of BYD Company Limited
4 Close 002886.SZ Closing price of Shenzhen WOTE Advanced Materials Co., Ltd
5 Close 300207.SZ Closing price of Sunwoda Electronic Co., Ltd
6 Close 300274.SZ Closing price of Sungrow Power Supply Co., Ltd
7 Close 300568.SZ Closing price of Shenzhen Senior Technology Material Co., Ltd
8 Close 300648.SZ Closing price of Fujian Nebula Electronics., Ltd
9 Close 300712.SZ Closing price of Fujian Yongfu Power Engineering Co.,Ltd
10 Close 300713.SZ Closing price of Shenzhen Increase Technology Co., Ltd

TABLE V: The correlation coefficients of the characteristics of CATL stock price data

No. Feature r No. Feature r No. Feature r
01 Open 1 17 Total share 0.31 33 MA 5 1
02 High 1 18 Total mv 1 34 MA 10 1
03 Low 1 19 MACD -0.0048 35 MA 20 0.99
04 Close 1 20 KDJ K 0.0033 36 VMA 5 0.14
05 Pre close 0.89 21 KDJ D 0.0006 37 VMA 10 0.14
06 Change 0.023 22 KDJ J 0.0057 38 VMA 20 0.13
07 Pct chg 0.0052 23 RSI 6 -0.0078 39 Close 002050.SZ 0.78
08 Volume 0.12 24 RSI 12 -0.024 40 Close 002460.SZ 0.83
09 Amount 0.69 25 RSI 24 -0.081 41 Close 002594.SZ 0.95
10 Turnover rate -0.48 26 WR -0.0085 42 Close 002886.SZ 0.71
11 Volume ratio -0.0045 27 BOLL LB 0.98 43 Close 300207.SZ 0.76
12 Pe 0.46 28 BOLL MD 0.99 44 Close 300274.SZ 0.95
13 P ttm 0.31 29 BOLL UB 0.99 45 Close 300568.SZ 0.83
14 Pb 0.57 30 CCI -0.005 46 Close 300648.SZ 0.75
15 Ps 0.4 31 PSY -0.072 47 Close 300712.SZ 0.84
16 Ps ttm 0.3 32 OBV 0.91 48 Close 300713.SZ 0.39
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Fig. 10: Structure of LSTM hybrid model based on error compensation.
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Fig. 11: CATL closing price.

4) Evaluation metrics: In this paper, four metrics, mean
absolute error (MAE), mean absolute percentage error
(MAPE), root mean square error (RMSE), and fit coefficient
(R2), are used to assess the model prediction effect, and the
calculation is shown in Table VI. In the equation: yi is the
actual value, y′i is the predicted value, ȳ is the average value,
and n is the number of data.
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Fig. 12: Convergence curve of VMD for ELG-BKA.

5) Experimental methods: In order to validate the predic-
tion accuracy and stability of the error complement-based
LSTM hybrid model proposed in this paper, experiments are
conducted on 7 stock datasets (BYD, Gotion, Kelai, CATL,
Sanhua, Sunwoda, and Senior). First, a fully orthogonal
experiment of the hybrid model is designed based on the
stock price of CATL to verify the validity of the sub-
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Fig. 13: Breakdown curve of the closing price of CATL
stock.
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Fig. 14: Spectrogram of the decomposition of the closing
price of CATL stock.

TABLE VI: Evaluation metrics

Metrics Equation

MAE MAE = 1
n

∑n
i=1 |yi − y′i|

MAPE MAPE = 1
n

∑n
i=1

∣∣∣ yi−y′
i

yi

∣∣∣
RMSE RMSE =

√
1
n

∑n
i=1(yi − y′i)

2

R2 R2 = 1−
∑n

i=1(yi−y′
i)

2∑n
i=1(yi−ȳ)2

module for the hybrid model. Then, a model comparison
experiment is designed based on seven representative new
energy stocks, and BiLSTM, BiGRU, Transformer-LSTM,
Transformer-GRU, Transformer-BiLSTM, and Transformer-
BiGRU models with high competitiveness are selected to
comprehensively compare the four prediction evaluation met-
rics to verify the superiority of the hybrid model proposed
in this paper.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. Results of orthogonal experiment

The results of the orthogonal experimental model eval-
uation metrics are shown in Table VII, and the prediction
results are shown in Fig.15. From the data in the table, it
can be seen that the LSTM hybrid model based on error
complement proposed in this paper outperforms the other
comparative models in all the metrics, reflecting a good
prediction ability. The comparison reveals that the model
performance decreases significantly when key components
in the model are gradually removed. For example, after
removing the VMD decomposition step, the model shows
a significant increase in MAE, MAPE and RMSE metrics
and a decrease in R2 value, which indicates that the pre-
processing of the original stock price series by the VMD
decomposition is able to effectively extract different features
and improve the model prediction accuracy. After adding
the SVM error compensation mechanism, the R2 value of
the model is further improved, and the MAE, MAPE and
RMSE metrics are all decreased, which indicates that the
error compensation mechanism can significantly improve the
accuracy of the model. Similarly, the absence of components
such as ELG-BKA optimization parameters and CNN-ATT
feature extraction prominence can lead to deterioration of the
performance of the LSTM hybrid model, which fully proves
the importance of the various parts of the model constructed
in this paper working in concert, and the absence of one is
indispensable. Specifically, the LSTM hybrid model based
on error compensation improves 18.72%-89.44% on MAE,
19.55%-88.67% on MAPE, 17.47%-89.28% on RMSE, and
31.25%-98.83% on R2.

B. Results of the individual stock multi-model comparison
experiment

The evaluation metrics for the stock prices of the 7 new
energy representatives across the 7 comparative models are
presented in Table VIII. As shown in the table, the error
compensation-based hybrid model proposed in this paper
demonstrates superior performance to the other comparative
models in predicting different stocks. This result validates
its outstanding performance in stock price forecasting and
underscores its strong generalization ability. Specifically, the
metric improvements are detailed in Table IX. For individual
stock prediction, the error compensation-based hybrid model
achieves lower MAE, MAPE, and RMSE values compared
to the other models, while attaining a higher R2 metric. This
indicates that the model more effectively captures the rela-
tionship between features and the target variable, exhibiting
a high degree of goodness-of-fit.

As shown in Fig.16 and Fig.17, taking the prediction
results of BYD and Senior stock as examples, all models
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TABLE VII: Orthogonal experimental model evaluation metrics results

No. Factors Models Metrics
VMD ELG-BKA CNN-ATT SVM LSTM MAE MAPE RMSE R2

1 0 0 0 0 1 LSTM 9.9326 4.7501 12.782 0.9024
2 0 0 0 1 1 LSTM-SVM 3.4551 1.6723 5.5946 0.9811
3 0 0 1 0 1 CNN-ATT-LSTM 13.037 6.1575 16.106 0.8450
4 0 0 1 1 1 CNN-ATT-LSTM-SVM 3.5515 1.7169 5.7437 0.9801
5 0 1 0 0 1 ELG-BKA-LSTM 2.8449 1.4923 3.5705 0.9924
6 0 1 0 1 1 ELG-BKA-LSTM-SVM 3.2621 1.4599 4.6290 0.9871
7 0 1 1 0 1 ELG-BKA-CNN-ATT-LSTM 1.9297 1.0004 2.3023 0.9968
8 0 1 1 1 1 ELG-BKA-CNN-ATT-LSTM-SVM 2.7382 1.3168 4.1893 0.9894
9 1 0 0 0 1 VMD-LSTM 14.853 7.1002 17.721 0.8123
10 1 0 0 1 1 VMD-LSTM-SVM 3.5922 1.7367 5.7895 0.9798
11 1 0 1 0 1 VMD-CNN-ATT-LSTM 7.4626 3.9454 9.0123 0.9515
12 1 0 1 1 1 VMD-CNN-ATT-LSTM-SVM 2.7190 1.3522 4.0808 0.9900
13 1 1 0 0 1 VMD-ELG-BKA-LSTM 4.1973 1.9338 6.2074 0.9770
14 1 1 0 1 1 VMD-ELG-BKA-LSTM-SVM 2.0894 0.9822 3.5805 0.9923
15 1 1 1 0 1 VMD-ELG-BKA-CNN-ATT-LSTM 5.6389 2.7006 7.8565 0.9631
16 1 1 1 1 1 VMD-ELG-BKA-CNN-ATT-LSTM-SVM 1.5684 0.8048 1.9002 0.9978
Note: 0 represents the absence, and 1 represents the presence.

Fig. 15: Orthogonal experimental model prediction results.

can track the stock price trend, but with a lag. In contrast,
the hybrid model based on error compensation is closer to
the real stock price in the multi-stage prediction and shows
higher prediction accuracy. Specifically, BYD’s stock price
exhibited an initial slight decline followed by a significant
increase, while Senior’ stock price showed an initial sharp
drop followed by fluctuating movements. Yet, the proposed
model accurately predicted both trends, demonstrating its
robust capability in stock price forecasting. In summary,
the error compensation-based hybrid model delivers supe-
rior performance in predicting new energy stock prices,
demonstrating strong potential and value for stock prediction
applications.

VII. SUMMARY

A. Summary of research results

This study constructs an error compensation-based hybrid
LSTM model for new energy stock price prediction. The
non-stationary price series are processed using VMD, com-
bined with Pearson correlation coefficients for dimensionality
reduction. CNN-ATT extracts salient features to optimize
LSTM inputs. The SVM error compensation module en-
hances prediction accuracy, while the proposed ELG-BKA
algorithm optimizes VMD and LSTM parameters. Experi-
mental results verify that the proposed model achieves supe-
rior prediction accuracy and stability compared to benchmark
models, demonstrating adaptability to market dynamics while
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Fig. 16: BYD stock price prediction results.

Fig. 17: Senior stock price prediction results.

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 4030-4044

 
______________________________________________________________________________________ 



TABLE VIII: Individual stock prediction evaluation metrics results

Data Metrics Models

BiLSTM BiGRU Transformer-
LSTM

Transformer-
GRU

Transformer-
BiLSTM

Transformer-
BiGRU

ELG-BKA-VMD-
CNN-ATT-LSTM-SVM

BYD

MAE 7.8672 6.3581 10.6660 13.4076 7.6147 7.7690 4.9651
MAPE 3.0890 2.4858 4.2872 5.5174 2.9370 2.9779 2.0128
RMSE 10.5454 9.0793 13.3617 15.8324 11.4870 13.8102 7.3237
R2 0.9394 0.9551 0.9028 0.8635 0.9281 0.8974 0.9708
Rank 3 2 5 7 4 6 1

Gotion

MAE 0.9634 0.2935 0.2002 0.5028 0.4494 0.2730 0.1675
MAPE 4.8421 1.4732 0.9865 2.5124 0.0217 1.2940 0.8119
RMSE 1.0367 0.3458 0.2603 0.5954 0.5251 0.3399 0.2271
R2 0.6454 0.9606 0.9776 0.8828 0.9090 0.9619 0.9830
Rank 7 4 2 6 4 3 1

CATL

MAE 6.8818 7.2436 7.2577 8.7236 8.3439 7.8002 6.7230
MAPE 3.0796 3.3536 3.3680 3.9463 4.0097 3.6430 3.1618
RMSE 10.1838 10.4471 10.1328 12.4056 10.9907 10.7477 9.6753
R2 0.9375 0.9342 0.9381 0.9072 0.9272 0.9303 0.9436
Rank 3 4 2 8 6 5 1

Senior

MAE 0.3694 0.5108 0.3545 0.5550 0.4366 0.6809 0.3197
MAPE 3.5161 4.7740 3.4562 5.6979 4.3812 7.0460 2.9811
RMSE 0.5094 0.6674 0.4826 0.6476 0.5624 0.7856 0.4608
R2 0.9511 0.9134 0.9561 0.9210 0.9404 0.8837 0.9600
Rank 3 6 2 5 4 7 1

Kelai

MAE 1.0723 1.0293 0.9511 0.8732 0.8588 0.9416 0.7907
MAPE 4.6692 4.4929 4.5884 4.3349 3.7515 4.7757 3.5015
RMSE 1.6140 1.5564 1.3165 1.2402 1.3919 1.4555 1.1661
R2 0.9238 0.9292 0.9493 0.9550 0.9433 0.9381 0.9602
Rank 7 6 3 2 4 5 1

Sanhua

MAE 1.2713 1.0533 1.2985 1.4215 1.4216 1.3253 0.9475
MAPE 5.9715 4.8197 5.4322 6.4471 6.4931 6.0732 4.3487
RMSE 1.4935 1.2475 1.7963 1.6491 1.6394 1.5728 1.1513
R2 0.8675 0.9075 0.8090 0.8384 0.8403 0.8530 0.9213
Rank 3 2 7 6 5 4 1

Sunwoda

MAE 0.6646 0.6380 0.5652 0.5768 0.5696 0.6748 0.5651
MAPE 3.5589 3.8266 3.1972 3.4892 3.4119 3.7187 3.3539
RMSE 0.9921 0.8477 0.9050 0.8060 0.8195 0.9953 0.7919
R2 0.9318 0.9503 0.9439 0.9550 0.9535 0.9314 0.9566
Rank 6 4 5 2 3 7 1

TABLE IX: Enhancements of individual stock prediction based on error-compensated hybrid models

Data Metrics and enhancements
MAE MAPE RMSE R2

BYD 21.91%-62.97% 19.03%-63.52% 19.34%-53.74% 34.93%-78.60%
Gotion 16.34%-82.62% 17.70%-83.23% 12.74%-78.09% 23.88%-95.20%
CATL 7.37%-22.93% 6.12%-19.88% 4.52%-22.01% 8.93%-39.18%
Senior 9.81%-53.04% 13.75%-57.69% 4.53%-41.35% 8.86%-65.60%
Kelai 9.44%-26.26% 19.23%-25.01% 5.97%-27.75% 11.61%-47.81%
Sanhua 10.04%-27.03% 9.77%-19.95% 7.71%-35.91% 14.83%-58.77%
Sunwoda 2.04%-16.26% 3.88%-10.88% 1.79%-20.44% 3.47%-36.70%

providing actionable insights for investment decisions. This
approach holds substantial theoretical and practical implica-
tions for the research of new energy stock price prediction.

B. Research limitations and future directions

This study exhibits several avenues for enhancement:
First, the experimental data covers only a limited set of
new energy stocks (e.g., CATL, BYD). Subsequent research
should expand the sample coverage to include diverse mar-
ket environments and cross-sector equities, thereby further
validating the model’s generalization capability. Second, the
model remains inadequate in handling extreme markets and
contingencies. Methods capturing the impact of emergencies
(e.g., sentiment analytics) should be introduced to enhance
robustness. Third, novel intelligent optimization algorithms
or improved algorithmic combinations could be explored,
with error compensation mechanisms integrated into new
frameworks to elevate prediction performance. Future work
will focus on the above directions to refine the proposed

stock price prediction method, providing stronger support for
financial market research.
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