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Abstract—Oral radiological indices are important non-
invasive markers for assessing disease risk. However, current
related work is relatively scarce and most methods rely on
manual calculations, lacking precision and efficiency. This study
aims to improve the performance of oral radiological index
calculations using the Segment Anything Model (SAM). A
method based on SAM was developed with a modified use of a
point-prompt approach to improve the robustness and efficiency
of the segmentation. Also, a dental panoramic radiograph
dataset, ORIC340, was constructed and annotated for fine-
tuning. Finally, the method was tested on ORIC340 and a
publicly available dental panoramic radiograph dataset from
Kaggle. The experimental results showed that errors of the pro-
posed method do not exceed 8.75% on dataset ORIC340 and
5.88% on a dataset from Kaggle for Panoramic Mandibular
Index(PMI). The method’s robustness was also demonstrated,
while reducing calculation time per image from 90 seconds
manually to 7 seconds. By integrating SAM with medical image
processing, our method offers a robust and efficient solution
for calculating oral radiological indices, enhancing early disease
risk assessment. This method provides a reliable tool for clinical
practice, enhancing the radiological index calculations with
better performance, low user requirements and convenient
implementation.

Index Terms—Oral radiological index, SAM, Point prompt,
Deep learning.

Manuscript received March 3, 2025; revised June 24, 2025
Yupeng Du is a postgraduate student of the Institute of Applied Artifi-

cial Intelligence of the Guangdong-Hong Kong-Macao Greater Bay Area,
Shenzhen Polytechnic University, PR China (e-mail: 1004962884@qq.com).

Qiang Qu is a professor of the School of Electronic and Information
Engineering, University of Science and Technology Liaoning, PR China
(e-mail: quqiang@ustl.edu.cn).

Cong Zhang is an attending physician of the School of Medical
Technology and Nursing, Shenzhen Polytechnic University, PR China (e-
mail:congpaopao1988@szpu.edu.cn).

Xu Wang is a vice researcher of the Institute of Applied Artificial Intel-
ligence of the Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen
Polytechnic University, PR China (corresponding author to provide phone:
+86 18038161609; fax: 26018406; e-mail: wangxu@szpu.edu.cn).

Guowen Kuang is a vice researcher of the Institute of Applied Artifi-
cial Intelligence of the Guangdong-Hong Kong-Macao Greater Bay Area,
Shenzhen Polytechnic University, PR China (e-mail:gkuang@szpu.edu.cn).

Mengna Wen is an assistant researcher of the Institute of Applied Artificial
Intelligence of the Guangdong-Hong Kong-Macao Greater Bay Area, Shen-
zhen Polytechnic University, PR China (e-mail:WMN251718@163.com).

Man Liu is an associate chief physician of the School of Medical
Technology and Nursing, Shenzhen Polytechnic University, PR China (e-
mail:liumandentist@126.com).

Jinfeng Yang is a professor of the Institute of Applied Artificial Intelli-
gence of the Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen
Polytechnic University, PR China (e-mail:jfyang@szpu.edu.cn).

Fengyu Liang is a postgraduate student of the Institute of Ap-
plied Artificial Intelligence of the Guangdong-Hong Kong-Macao
Greater Bay Area, Shenzhen Polytechnic University, PR China (e-
mail:fengyuliang@stu.ustl.edu.cn).

Panpan Yuan is a postgraduate student of the Institute of Applied Arti-
ficial Intelligence of the Guangdong-Hong Kong-Macao Greater Bay Area,
Shenzhen Polytechnic University, PR China (e-mail:2532849624@qq.com).

I. INTRODUCTION

Fig. 1. The definition of oral radiological index PMI

Fig. 2. The definition of MRI

DENTAL panoramic radiograph plays an important role
in contemporary dental care, providing intricate details

of dental structures, including bone loss and lesions not
apparent in conventional oral examinations [1, 2]. This
advanced imaging technique is crucial for the early detection
of cysts, tumors, and jawbone abnormalities, significantly
improving the likelihood of successful treatments [3]. Also,
dental panoramic radiographs have been used to predict
low bone mineral density in patients [4–6]. Specifically, a
number of oral radiological indices, including the Mandible
Resorption Index (MRI)and Panoramic Mandibular Index
(PMI), have been developed to assess and quantify the
quality of mandibular bone mass and resorption for diagnose
of osteopenia [7–15].
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PMI is the ratio of the thickness (CW ) of the mandibular
cortical bone to the distance (h1) from the mental foramen to
the edge of the mandibular cortical bone, as shown in Fig. 1.
MRI is the ratio of the distance (H) from the upper border
of the mandible in the mental foramen area to the distance
(h2) between the center of the mental foramen and the lower
edge of the mandible, as shown in Fig. 2. PMI and MRI
can reflect the bone density of the human body, which is
valuable for the early screening of osteoporosis [16].

Various methods have already been developed for the
calculation of these indices. In 2006, Arifin et al. developed
a computer-aided system to measure mandibular cortical
width (MCW ) on panoramic radiographs to aid diagnos-
ing osteoporosis in postmenopausal women [17]. In 2012,
a support vector machine-based computer-aided diagnosis
system was developed by Kavitha et al. to detect osteo-
porosis using dental panoramic radiographs [18]. Also, in
2019, Muramatsu et al. developed a method for measuring
mandibular cortical width on dental panoramic radiographs
[19]. In 2020, Aliaga et al. developed an automated method
based on fuzzy K-means classification and texture analysis to
compute mandibular indices in dental panoramic radiographs
[20]. To our knowledge, this is the latest work on calculating
mandibular cortical indices. It employed a series of tradi-
tional image processing techniques, including fuzzy K-means
clustering, texture analysis-based tangent line adjustments,
multi-threshold binarization, morphological operations and
feature description methods to compute relevant oral ra-
diological indices. This method allows for the automatic
identification and measurement of mandibular features to
calculate the mandibular cortical width (MCW ), Panoramic
Mandibular Index (PMI) and mandibular ratio (M/M ).
However, the robustness of these methods depend on the
quality of the input images with massive hyperparameter ad-
justment, which hinder the widespread application in routine
clinical practice. Related work remains scarce, and the data
and code are not publicly available.

In other side, deep learning has shown immense potential
in various medical image processing. Precise segmentation
would provide accurate volumetric and morphological infor-
mation of the target structures, thereby supporting a wide
range of subsequent clinical applications [21–34]. Further-
more, with the advent of large-scale pre-trained models
[35] and its corresponding revolutionary shift (zero-shot and
few-shot generalization capabilities) in the field of artificial
intelligence, many foundational models have emerged and
been applied to medical image analysis. In 2022, a study
developed a model to identify human activities and assess
hazard levels in hospital environments using deep learning
models like YOLOv2, VGG16, and MobileNetv2 SSD. The
VGG16 model achieved the highest accuracy (93.33%) in
classifying hazardous activities. The research highlighted the
need for more data to improve model performance in real-
world settings [36]. This approach aligns with our work
in leveraging deep learning for medical applications, where
accurately classifying and assessing risks from radiographic
images can similarly benefit from robust, data-driven models.
Wong et al. conducted experiments using the ScribblePrompt
interactive segmentation tool on a variety of biomedical
imaging datasets, providing rapid and flexible annotations.
However, it is more suitable for annotation instead of ap-

plication in clinical or research settings [37]. Ma et al.
conducted experiments using the MedSAM model on diverse
medical imaging datasets, demonstrating its high accuracy
and robustness across various tasks. However, MedSAM’s
performance in oral imaging did not demonstrate the high
performance found in other medical datasets, almost failing
to segment complete teeth in dental panoramic radiographs
[38].

Among these pre-trained models, SAM [39] is a versatile
segmentation model with remarkable zero-shot generaliza-
tion ability, capable of generating masks of various granular-
ities through point prompts, mask prompts, box prompts, or
text prompts. It consists of three core components: the image
encoder, the prompt encoder, and the mask decoder [39]. The
image encoder adopts a Vision Transformer (ViT) [40] pre-
trained with Masked Autoencoder (MAE) [41], emphasizing
scalability and robustness. The prompt encoder processes two
types of prompts: sparse (such as points, boxes, text) and
dense (mask). In this work, the point prompt is adopted to im-
prove segmentation accuracy, which is easy and convenient
to use in practice. The mask decoder utilizes Transformer
[42–45] decoder modules to generate mask, by leveraging
prompt self-attention and cross-attention mechanisms. How-
ever, numerous studies indicate a significant performance
gap between SAM and current state-of-the-art models within
medical field. Roy et al. conducted experiments on the
AMOS22 abdominal CT organ segmentation dataset [46],
and the results show that the performance of SAM was
inferior to SOTA models. Furthermore, according to literature
[47], the experiments indicate that SAM could achieve better
performance with prompts, while there remains a substantial
performance gap compared to the classic U-Net architecture
[48]. One prime reason for this gap is the lack of proper fine-
tuning of SAM model or the absence of specialized medical
training dataset [49]. No pre-trained model (e.g. SAM) based
method for calculating oral radiological indices has been
found yet.

To address these challenges, a SAM-based method is
developed. Also, a dental panoramic radiograph dataset
ORIC340 was built and annotated with PMI and MRI
value, including corresponding masks, i.e. the masks of the
mental foramen, the second premolar, the alveolar bone
adjacent to the second premolar, and the mandibular cortical
bone for fine-tuning and verification. Besides, the way of
using prompt point is modified, with the decoder of SAM
being fine-tuned to improve performance of medical tasks
and ease of use. Finally, the proposed method is tested on
datasets ORIC340 and Kaggle [50].

Our contributions can be summarized as follows:
1) A method was developed for calculating oral radiolog-

ical indices by integrating SAM with medical image
processing.

2) Integrating human-in-loop with SAM through modified
point prompt, i.e. only one single click in the assigned
feature region, which improves the efficiency, accuracy
and reliability of oral radiological indices calculation.

3) Corresponding post-processing is designed based on
the segmentation output of SAM and the oral radio-
logical index’s definition.

4) The dataset ORIC340 of dental panoramic radio-
graphs was built and annotated with PMI and MRI
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Fig. 3. Annotated dental panoramic radiograph with color-coded masks

SAM

Fig. 4. The SAM-based method for dental panoramic radiograph segmen-
tation for PMI and MRI

values and their corresponding masks, which is used
to fine-tune SAM.

II. MATERIAL AND METHODS

A. Dataset

To verify the effectiveness of the proposed method
and fine-tune SAM, a dental panoramic radiograph dataset
ORIC340 was built. It contains 340 dental panoramic ra-
diographs, annotated by several radiologists. For each dental
panoramic image, four feature region masks are annotated,
i.e. the (left and right) second premolar mask (red), the cor-
tical bone mask (yellow), the (left and right) mental foramen
mask (blue), and the area adjacent to the second premolar
mask (green), as shown in Fig. 3. Also, the corresponding
groundtruth of PMI and MRI are calculated by hand. The
dataset is divided into training set with 323 dental panoramic
radiograph images and test set with 17 images.

Furthermore, the public dental panoramic radiographs
dataset on Kaggle was downloaded and annotated by hand to
verify the effectiveness of proposed method. The annotation
is the same as ORIC340, as shown in Fig. 3. After
removing the samples with unclear mental foramen or no
mental foramen, the dataset contains 104 samples, which
is also divided into training set with 86 samples and test
set with 18 samples. However, due to the Kaggle dataset
containing many samples with missing teeth which makes
it impossible to locate the second premolar, only PMI is
calculated.

B. Framework

The framework of the proposed method is shown in Fig.
4, which is comprised of three main components: the image
encoder, the point prompt encoder and the mask decoder.

The image encoder utilizes the structure of SAM’s en-
coder, including corresponding weights, which are fixed
during training. This is for two reasons. Firstly, SAM
has been pre-trained on large-scale datasets, its powerful
image encoder is capable of extracting feature from dental
panoramic radiographs. Secondly, this encoder can be
directly applied to calculating other oral radiological indices.

Note that the point prompt is different from the original
version of SAM. In SAM, one point prompt only corresponds
to one region, i.e., one mask. In contrast, the point prompt in
this method corresponds to all regions that required by oral
radiological index, which means that only one point prompt
is needed to calculate oral radiological index. Take PMI
for example, the prompt point is selected from the mental
foramen region. The point corresponds not only to the mental
foramen region, but also to the mandibular cortical bone
region. Although the prompt point is outside mandibular
cortical bone regions, their relative positions remain fixed,
which makes it feasible to predict the masks for these regions
only by one outside prompt point. Furthermore, the mental
foramen region is not always well caught by photography
equipment, and these low-quality images without clear men-
tal foramen region could be filtered out during this prompt
procedure by users. In Fig. 4, p(x, y) represents the point
coordinates corresponding to the user’s click on the mental
foramen.

As mentioned above, the mask decoder of the proposed
method is trained to generate masks for the feature regions
required by oral radiological index with only a single point
prompt. The output channel dimension N of the mask
decoder is equal to the categorie number of the index feature
regions, e.g. N = 2 for PMI index. To calculate other
indices, only the output channel dimension N of the mask
decoder need to be modified, with its weight being trained
or fine-tuned. In this work, N is set to 4 for calculating both
PMI and MRI , where the output masks are the second
premolar mask M5, the cortical bone mask Mmcb, the mask
of the feature area adjacent to the second premolar Mb, and
the mental foramen mask Mk, respectively, as shown on the
right side of Fig. 4. Note that only the mask decoder is trained
during the fine-tuning to accurately segment key regions from
medical images, while the encoder is kept fixed.

The detailed procedure to calculate the oral radiological
index is as follows:

First, the output dimension N is determined by the cate-
gories of the feature regions according to the definition of
the oral radiological index.

Second, choose a critical feature region and set it as the
prompt region from which the point prompt is picked. Here,
a point prompt is for all the regions related with the oral
radiological index, in comparison with SAM where one point
prompt only corresponds to one region.

Then, SAM segments the input image and generates the
masks of regions based on the point prompt.

Finally, the oral radiological index is calculated by the re-
gion masks according to its definition in the post-processing.
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Fig. 5. The calculation of PMI with mask segmentation.

Fig. 6. Identify the inferior edge of the mandibular cortical bone

C. Post-processing

With the output masks of the feature regions, the index
could be calculated according to its definition in the post-
processing. Considering that the definitions are different from
each other, the post-processing is specific for each oral
radiological index. For instance, to calculate PMI , the post-
processing is as follows:

1) Employ erosion and dilation operation to polish the
masks Mk and Mmcb(the green area and blue area in
Fig. 5). To filter out noise, the kernels are 5 × 5 and
3×10 for Mk and Mmcb respectively. Then, the largest
connected region is selected as the feature region.

2) Obtain the center point kc on the mask Mk of the
mental foramen region and turn each pixel point above
the mask maskmcb into white. Find out the point bd
in the black area Ablack in Fig. 6, satisfying

bd = argmaxp∈Ablack
||p− kc||2 (1)

where ||p − kc||2 is the Euclidean distance between
points p and kc. Thus, the obtained bd is on the edge
of lower bound of maskmcb with minimal distance to
kc, as shown in Fig. 6.

3) Line from kc to bd intersecting with the boundary
of maskk and maskmcb to obtain the two boundary
points kd and bu, as shown in Fig. 6.

4) Calculate h1, i.e. the distance between the lower edge
of the mandible and the lower edge of the mental
foramen, by h1 = ||kd − bd||2. Calculate CW , i.e. the
thickness of the cortical bone by CW = ||bu − bd||2.

5) Finally, obtain the value of PMI by PMI = CW/h1.

D. Loss Function

The Dice-CE loss [51–53] is employed for the training of
the mask decoder. The Dice-CE loss contains Dice loss (Equ.
2) and CE loss (Equ. 3),

lossDice = 1− 2× TP

2× TP + FP + FN
(2)

where TP , FP and FN represents true positives, false
positives and false negatives respectively, according to the
mask ground truths.

lossCE = − (y log(p) + (1− y) log(1− p)) (3)

where y ∈ {0, 1} represents the ground truth label for
oral image segmentation. The label 1 indicates that a pixel
belongs to a target area such as the mandibular cortex, mental
foramen, etc., while 0 signifies that a pixel is not part of the
target area. p ∈ [0, 1] denotes the probability predicted by
the model that a pixel belongs to the target area.

Dice-CE loss(Equ. 4) is as follows:

lossDice−CE = α× lossDice + (1− α)× lossCE (4)

where α ∈ [0, 1] is used to balance the contributions of Dice
loss and CE loss in training.

Thus, the total loss losstotal is as follows:

losstotal =
N∑
i=1

αi · lossiDice−CE (5)

where N is the number of output channel, i.e. the number of
the feature mask categories, and N = 4 for calculating PMI
and MRI . In this work, all αi is set to 1 during training.

III. RESULTS

To test and verify the effectiveness of the proposed
method, three experiments were conducted. Initially, the
proposed method was tested on the dental panoramic ra-
diograph dataset ORIC340. Then, the robustness for point
prompt was tested(shown in Section IV). Finally, an open-
source dataset from Kaggle was relabeled and used to verify
the performance of the proposed method. The results were
only compared with the human labels. The results of the
model segmentation are visualized in Fig. 7. The example
panoramic dental image shows that the mandibular cortical
bone and mental foramens to calculate MPI are accurately
segmented. A comparison of the results before and after fine-
tuning is shown in Fig. 8. It is evident that the model output
after fine-tuning using the proposed method has a significant
visual improvement over the original model.

The experiments were executed on a PC with an Nvidia
RTX 3080 GPU(10G). Excluding the 2 seconds required to
upload the image, our method only takes 7 seconds per image
to compute the indices. In comparison, manual calculation
takes as long as 90 seconds per image on average.
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Fig. 7. Visualization of feature region segmentation results for calculating
PMI

Mask with Untuned Model Mask with Tuned Model 

Fig. 8. Comparison and visualization of segmentation effects before and
after fine-tuning

A. Evaluation metrics

In this work, the relative error is used to evaluate the
performance of the proposed method, as shown in Equ. 6.

error =
ylabel − youtput

ylabel
× 100% (6)

here, ylabel represents the human label, and youtput is the
output of the method.

B. Experiment results

The experiment result on Dataset ORIC340 is shown in
Tab. I. Besides the value of PMI and MRI , Tab. I also gives
out the value of the distance h1 from the lower edge of the
mental foramen to the lower edge of the cortical bone, the
thickness CW of the cortical bone, the distance h2 from the
center of the mental foramen to the lower edge of the cortical
bone, and the distance H from the apex of the alveolar bone
of the second premolar to the lower edge of the cortical bone,
as shown in the definitions of PMI and MRI(Fig. 1 and
2). These are helpful for the analysis of the performance of
the proposed method. Furthermore, all experiments in this
work use the pixel as unit.

Also, the proposed method is tested on the dataset Kaggle
as mentioned above, and the result for calculating PMI
is shown in Tab. II. It is obvious that with point prompt
and fine-tune, the performance of the proposed method is
satisfactory from one dataset to another dataset. In summary,
the proposed method could provide feasible estimation of the
oral radiological indices under practical conditions.

Additionally, we tested the robustness of our system by
rotating the test samples from the ORIC dataset by 5 degrees,
as shown in Table VI. It can be observed that, despite the
rotation of the samples, the errors in the results calculated

Fig. 9. The comparison between the feature points and their labels of the
test sample S15 for calculating PMI

by the system remain within a relatively small range. This
demonstrates that the system maintains its accuracy even
when the input images undergo slight transformations

IV. DISCUSSION

In this study, by integrating the pre-trained model SAM, a
method was developed to calculate oral radiological indices
through a simple click on the mental foramen. Compared
with traditional manual methods, the proposed method sig-
nificantly improves efficiency and accuracy, verified by the
experiments. However, there are certain limitations in the
proposed method. For instance, the performance of the model
may be affected by the quality of the input data, such as
the clarity of the mental foramen in the training set, which
could impact the actual reference value of the PMI [54].
Also, the method has to be fine-tuned when being applied to
a new dataset, and the post-process depends on the definition
of the oral radiological indices.

In Tab. I, the proposed method could provide valid esti-
mation of PMI and MRI . The maximum error is 8.75%
in calculating PMI for the sample S15. In sample S15, the
value of CW is 16.155, very close to label value 16.54,
while h1 value is 48.104, smaller than the label value 53.56,
as shown in Fig. 9. In Fig. 9, the red round circles are hand
labels, and the green points are generated by our proposed
method. The error comes mainly from the difference between
the point kd and its label, as shown in the yellow box in Fig.
9, which is due to the unclear boundary of the structure of
the mental foramen. Such error also appears in calculating
MRI for sample S22, as shown in Fig. 10. In practice, this
kind of error seems inevitable even by hand, where the value
differs from person to person.

Additionally, some test samples were marked as ”None” in
the Tab. I due to the absence of the key feature teeth, making
it impossible to give out value for MRI . In practical usage,
these dental panoramic radiographs would be considered as
fault and filtered out by hand in the prompt procedure. Then,
the error of the Kaggle dataset is shown in Fig. 11. It is easy
to find that the blurred mandibular edge leads to calculation
errors. Finally, to evaluate the impact of the coordinates of
the prompt point on the accuracy of the feature index, an
experiment is conducted on an image with a clearly visible
mental foramen from ORIC340. 10 points, shown in Fig.
12, were randomly picked from the the foramen region as
the point prompts to calculate PMI , and their results are
shown in Tab. III.
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TABLE I
THE EXPERIMENT RESULT ON DATASET ORIC340 FOR CALCULATING ORAL RADIOLOGICAL INDICES PMI AND MRI .

number Ground Truth Inference Error
CW h1 h2 H PMI MRI CW h1 h2 H PMI MRI errorPMI errorMRI

Z2 21.63 58.09 64.6 162.88 0.372 2.521 21.471 59.481 67.535 159.665 0.361 2.364 -3.06% -6.23%
Z24 23.01 66.47 73.1 168.18 0.346 2.301 20.248 59.237 70.937 166.571 0.342 2.348 -1.26% 2.06%
Z27 18.96 82.76 92.05 165.06 0.229 1.793 18.788 78.791 88.640 166.027 0.238 1.873 4.09% 4.46%
Z32 20.35 76.82 84.17 175.33 0.265 2.083 21.024 75.584 82.292 176.664 0.278 2.147 5.00% 3.06%
Z43 16.76 56.53 62.37 151.33 0.296 2.426 17.464 54.571 63.789 None 0.320 None 7.94% None
Z53 23.65 63.11 68.27 168.33 0.375 2.466 22.361 56.365 67.543 169.523 0.397 2.510 5.86% 1.79%
Z56 21.19 64.03 70.79 161.58 0.331 2.283 19.235 61.814 77.201 166.760 0.311 2.160 -5.97% -5.36%
Z58 23.84 70.91 76.90 None 0.336 None 23.259 65.307 75.153 178.941 0.356 2.381 5.94% None
Z60 27.39 61.09 66.92 164.19 0.448 2.454 25.000 59.481 65.803 165.130 0.420 2.509 -6.26% 2.28%
Z61 17.96 52.19 57.92 147.25 0.344 2.542 15.652 46.957 58.138 159.656 0.333 2.746 -3.14% 8.02%
S15 16.54 53.56 59.97 124.98 0.309 2.084 16.155 48.104 58.873 127.224 0.336 2.161 8.75% 3.69%
S16 20.45 62.94 70.16 None 0.325 None 18.788 59.933 68.877 None 0.313 None -3.52% None
S22 22.79 50.62 59.03 128.78 0.450 2.182 23.409 49.041 59.808 144.312 0.477 2.413 6.03% 10.60%
S29 17.62 67.88 74.37 157.85 0.249 2.122 18.028 66.731 75.273 161.307 0.270 2.143 4.08% 0.96%
S35 14.07 82.53 91.24 196.31 0.170 2.152 13.000 73.539 85.615 198.540 0.177 2.319 3.69% 7.78%
S40 21.23 64.07 72.79 158.83 0.331 2.182 19.925 63.246 70.520 160.963 0.315 2.283 -4.92% 4.61%
S44 18.78 69.14 75.06 144.73 0.272 1.928 19.235 67.082 None None 0.287 None 5.57% None

TABLE II
THE RESULT OF PMI ESTIMATION ON DATASET Kaggle

name p(x,y) Ground Truth Inference Loss error
CW h1 PMI CW h1 PMI PMI

2 [1982, 972 ] 47.449 182.483 0.260 47.424 182.082 0.260 0.17%
8 [2023, 1054] 52.947 176.930 0.299 51.971 183. 371 0.283 -5.29%

10 [1922, 970 ] 49.978 171.817 0.291 51.923 171.292 0.303 4.21%
14 [1038, 948 ] 35.518 113.592 0.313 37.483 113.600 0.330 5.53%
18 [1021, 1055] 51.72 127.350 0.406 50.804 119.050 0.427 5.08%
24 [1873, 1013] 52.342 157.027 0.333 53.151 156.461 0.340 1.91%
25 [1862, 975] 38.982 117.000 0.333 40.000 118.000 0.339 1.74%
26 [1884, 912] 48.659 124.753 0.390 48.662 124.615 0.390 0.12%
31 [1160, 983] 64.548 173.081 0.373 44.283 112.752 0.393 5.31%
33 [1166, 997] 69.442 166.704 0.417 66.098 168.585 0.392 -5.88%
34 [1953, 927] 45.909 167.913 0.273 45.706 166.904 0.274 0.16%
50 [1938, 852] 49.098 187.432 0.262 48.166 187.601 0.257 -1.99%
67 [1079, 851] 37.992 116.011 0.327 38.000 116.000 0.328 0.03%
70 [1764, 893] 38.102 132.890 0.287 37.108 133.154 0.279 -2.80%
93 [2111, 936] 52.452 150.319 0.349 55.579 162.779 0.341 -2.15%
107 [2111, 1059] 57.016 154.993 0.368 56.000 156.000 0.359 -2.42%
111 [973, 920] 49.263 164.669 0.299 50.804 165.560 0.307 2.57%
112 [1905, 932] 40.026 163.240 0.245 38.639 163.957 0.236 -3.89%

TABLE III
THE EXPERIMENT RESULT WITH 10 RANDOM PROMPT POINTS IN DENTAL PANORAMIC RADIOGRAPH S29 FOR CALCULATING PMI .

name p(x,y) Ground Truth Inference
CW h1 PMI CW h1 PMI

S29 [887,642]

17.62 67.88 0.260 18.028

67.067 0.269
S29 [887,643] 67.067 0.269
S29 [890,645] 67.067 0.269
S29 [896,643] 66.731 0.270
S29 [889,644] 67.067 0.269
S29 [894,641] 66.731 0.270
S29 [893,642] 66.731 0.270
S29 [890,641] 67.067 0.269
S29 [892,640] 66.731 0.270
S29 [890,644] 67.067 0.269

It is obvious that the value of PMI is nearly not affected
by the exact value of the prompt point’s coordinate at all,

which indicates that the proposed method can be applied
conveniently in practice, with only one human action, i.e.,
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TABLE IV
EXPERIMENTAL RESULTS ON THE CALCULATION TIME OF INDICATORS FOR EACH ORAL PANORAMA ON THE ORIC340 DATASET.

name p(x,y) Ground Truth Inference
PMI PMI Loss error time total time average time time variance

Z2 [550, 687] 0.372 0.361 -3.06% 4.958

63.884 3.757 0.403

Z24 [861, 696] 0.346 0.342 -1.26% 4.031
Z27 [873, 685] 0.229 0.238 4.09% 3.942
Z32 [526, 685] 0.265 0.278 5.00% 3.389
Z43 [862, 689] 0.296 0.320 7.94% 3.619
Z53 [539, 661] 0.375 0.397 5.86% 2.938
Z56 [543, 680] 0.331 0.311 -5.97% 4.070
Z58 [892, 688] 0.336 0.356 5.94% 3.246
Z60 [881, 653] 0.448 0.420 -6.26% 4.069
Z61 [870, 692] 0.344 0.333 -3.14% 2.883
S15 [838, 595] 0.309 0.336 8.75% 3.800
S16 [547, 601] 0.325 0.313 -3.52% 2.598
S22 [848, 642] 0.450 0.477 6.03% 4.457
S29 [891, 640] 0.260 0.270 4.08% 4.407
S35 [526, 639] 0.170 0.177 3.69% 4.269
S40 [526, 669] 0.356 0.315 -4.92% 3.219
S44 [550, 626] 0.359 0.287 5.57% 3.989

TABLE V
EXPERIMENTAL RESULTS ON THE CALCULATION TIME OF INDICATORS FOR EACH ORAL PANORAMA ON THE Kaggle DATASET.

name p(x,y) Ground Truth Inference
PMI PMI Loss error time total time average time time variance

2 (1982,972) 0.260 0.260 0.17% 4.412

76.711 4.265 0.146

8 [2023,1054] 0.299 0.283 -5.29% 4.251
10 [1922,970] 0.291 0.303 4.21% 4.619
14 [1038,948] 0.313 0.330 5.53% 4.290
18 [1021,1055] 0.406 0.427 5.08% 4.430
24 [1873,1013] 0.333 0.340 1.91% 5.228
25 [1862,975] 0.333 0.339 1.74% 4.269
26 [1884,912] 0.390 0.390 0.12% 4.222
31 [1160,983] 0.373 0.393 5.31% 3.493
33 [1166,997] 0.417 0.392 -5.88% 3.827
34 [1953,927] 0.273 0.274 0.16% 4.310
50 [1938,852] 0.262 0.257 -1.99% 4.020
67 [1079,851] 0.327 0.328 0.03% 4.138
70 [1764,893] 0.287 0.279 -2.80% 4.279
93 [2111,936] 0.349 0.341 -2.15% 3.622
107 [2111,1059] 0.368 0.359 -2.42% 4.430
111 [973,920] 0.299 0.307 2.57% 4.433
112 [1905,932] 0.245 0.236 -3.89% 4.498

Fig. 10. The comparison between the feature points and their labels of the
test sample S22 for calculating MRI

one click in the foramen region.
We also recorded the time taken to calculate the PMI for

samples from the Kaggle dataset and the ORIC340 dataset, as
shown in Tables V and IV. It can be observed that our system
takes approximately 3 to 4 seconds to calculate the Oral

Fig. 11. The comparison between the feature points and their labels of the
test sample 18 for calculating PMI

Radiological Indices, while the traditional manual calculation
method takes about 60 seconds per image. This clearly
demonstrates that the efficiency of our proposed method
significantly outperforms that of the manual approach.
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TABLE VI
EXPERIMENTAL RESULTS OF CALCULATING PMI FOR ORIC DATASET AFTER ROTATION

name p(x,y) Ground Truth Inference Loss error
CW h1 PMI CW h1 PMI PMI

Z2 [857,678] 21.63 58.09 0.372 21.954 60.902 0.360 -3.19%
Z24 [534,688] 23.01 66.47 0.346 20.248 63.285 0.320 -7.57%
Z27 [867,682] 18.96 82.76 0.229 18.028 79.712 0.226 -1.28%
Z32 [528,690] 20.35 76.82 0.265 20.125 75.133 0.268 1.11%
Z43 [538,680] 16.76 56.53 0.296 19.698 68.447 0.288 -2.93%
Z53 [875,668] 23.65 63.11 0.375 21.190 56.303 0.376 0.43%
Z56 [550,672] 21.19 64.03 0.331 19.235 61.984 0.310 -6.23%
Z58 [555,686] 23.84 70.91 0.336 21.954 64.140 0.342 1.81%
Z60 [883,656] 27.39 61.09 0.448 25.000 59.203 0.422 -5.82%
Z61 [557,709] 17.96 52.19 0.344 17.720 51.923 0.341 -0.83%
S15 [588,595] 16.54 53.56 0.309 14.142 50.359 0.281 -9.06%
S16 [551,602] 20.45 62.94 0.325 17.889 59.481 0.301 -7.44%
S22 [551,663] 22.79 50.62 0.450 20.396 46.872 0.435 -3.35%
S29 [891,640] 17.62 67.88 0.260 16.763 62.642 0.268 3.09%
S35 [873,646] 14.07 82.53 0.170 13.000 77.078 0.169 -1.07%
S40 [526,664] 21.23 64.07 0.331 20.881 63.600 0.328 -0.92%
S44 [544,631] 18.78 69.14 0.272 19.235 67.082 0.287 5.57%

Fig. 12. 10 random points picked from the right mental foramen of the
dental panoramic radiograph S29

V. ENGINEERING IMPLEMENTATION

The system adopts a client-server separation architecture,
with integrated front-end and back-end development imple-
mented through the Gradio framework. The front-end module
constructs the interactive interface using Gradio’s UI com-
ponents, including an image upload window , an interactive
image annotation area, and a result display panel, as shown
in Fig. 13. The image upload window (left box in Fig. 13)
arranges the upload button supporting both drag-and-drop
upload. The right-up area in Fig. 13) is the corresponding
interactive annotation area for click annotation by doctors or
other users, and the results,including segmentation masks and
the oral radiological indices are given in a result display panel
(right-down box in Fig. 13). Further, the system support both
PNG and DICOM files, where pydicom library is applied
to extract metadata. Then, the DICOM data is normalized
and scaled to 1024 × 1024 by OpenCV, eliminating device
differences that may affect model inference.

The system architecture is shown in Fig. 14, where the

Fig. 13. Front-End Interface
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Fig. 14. Oral index intelligent calculation system framework

back-end module consists the image encoder, the prompt
encoder, the mask decoder and post-processing. All these
back-end functions runs in Python, and the @cache decorator
is used to optimize model singleton loading, with the local
storage module utilizing the tempfile library to manage
temporary data. The image encoder is the pretrained SAM
model with frozen weight, while the prompt encoder converts
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user-clicked positions into point prompt vectors in the format
[[x, y, 1]] through coordinate mapping. Then, the fine-tuned
mask decoder outputs four kinds of masks (for the premolar,
mandibular cortical bone, second premolar, and its adjacent
regions) in the result display panel. Finally, after the oral
radiological indices being calculated and shown in the result
display panel, all the input data is automatically destroyed
to ensure zero retention of patient privacy data. The system
avoids the I/O bottleneck of databases and compresses the
processing time for a single image to under 7 seconds, about
2 to 4 times faster than cloud services.

VI. CONCLUSION

In this work, a SAM-based method is developed to assist
the calculation of feature indices for dental panoramic ra-
diographs. The results on datasets ORIC340 and Kaggle
show that this approach significantly improves the efficiency
of calculating oral indices, while being robust against users,
offering an efficient and reliable solution for the early screen-
ing and assessment of oral diseases. The future work will
extend this method to handle 3D data, such as CBCT, which
could relief the limitations, such as the clarity of the mental
foramen depending on the perspective of the camera. All
source codes and models will be publicly available after the
acceptance of this paper.
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