Engineering Letters

A Method for Solving TSP Based on Multi-scale
GNN and Enhanced Ant Colony Optimization

Qiongdan Huang, Shilin Kang, Jiapeng Wang, Jiejing Han and Lulu Liu

Abstract—In recent years, Graph Neural Networks (GNN)
have shown substantial promise when combined with bio-
inspired algorithms. However, current methods still struggle to
solve large-scale instances of the Traveling Salesman Problems
(TSP) due to limited feature extraction capabilities, inefficient
utilization of global information, and suboptimal local search
(LS) performance. To address these challenges, this paper
proposes a Multi-Scale Temporal Fusion Ant Colony Opti-
mization (MS-TFACO) algorithm, which integrates a Multi-
Scale Temporal Feature Aggregation (MSTFA) module and a
Dynamic Neural-guided Local Search (DNLS) strategy, seam-
lessly combining GNN with Ant Colony Optimization (ACO).
By leveraging neural-learned heuristics, the proposed method
reduces dependence on expert-designed features while improv-
ing solution quality and computational efficiency. The MSTFA
module utilizes multi-scale convolutions and pooling operations
to extract hierarchical representations and enhance interactions
between local and global information. An attention mechanism
is employed to further prioritize salient features, supporting
more effective and holistic path planning. Building on this,
the DNLS strategy dynamically predicts perturbation strengths
to adaptively guide local search, enabling the algorithm to
escape local optima and maintain a balance between exploration
and exploitation. Experimental results demonstrate that MS-
TFACO outperforms traditional ACO methods and achieves
competitive performance compared to state-of-the-art Neural
Combinatorial Optimization (NCO) approaches on standard
TSP benchmarks.

Index Terms—Ant colony algorithm, Traveling salesman
problems, Graph Neural Networks, Local search.

I. INTRODUCTION

HE ACO [1] is a swarm intelligence optimization

algorithm inspired by the foraging behavior of ants,
initially proposed by Marco Dorigo in the 1990s. It simulates
the pheromone-based communication mechanism used by
ants to mark paths while searching for food, thereby enabling
an iterative search for optimal solutions. During the execution
of the algorithm, each “ant” deposits pheromones along its
traversed path, with the pheromone concentration indicat-
ing the collective preference for that route. As iterations

Manuscript received April 22, 2025; revised August 7, 2025.

This work was supported by the Key R&D Program Project of Shaanxi
Province, China, Grant 2024NC-YBXM-217.

Qiongdan Huang is an associate professor at the School of Communica-
tion and Information Engineering, Xi’an University of Posts and Telecom-
munications, Xi’an, 710121, China. (e-mail: limitlessO010@ 163.com).

Shilin Kang is a postgraduate student at the School of Communication
and Information Engineering, Xi’an University of Posts and Telecommuni-
cations, Xi’an, 710121, China (e-mail: 15686479558 @ 163.com).

Jiapeng Wang is a postgraduate student at the School of Communication
and Information Engineering, Xi’an University of Posts and Telecommuni-
cations, Xi’an, 710121, China (e-mail: 1075861687 @qq.com).

Jiejing Han is a postgraduate student at the School of Communication
and Information Engineering, Xi’an University of Posts and Telecommuni-
cations, Xi’an, 710121, China (e-mail: 18729432603 @163.com).

Lulu Liu is a postgraduate student at the School of Communication and
Information Engineering, Xi’an University of Posts and Telecommunica-
tions, Xi’an, 710121, China (e-mail: liululu0222@163.com).

progress, pheromones accumulate on higher-quality paths,
while those on inferior ones gradually evaporate. To enhance
search efficiency, LS algorithms are often integrated with
ACO. LS explores the neighborhood structure of the solution
space by iteratively seeking improvements from an initial
solution and terminates when no further enhancement can
be achieved. By applying local optimization to the solutions
generated by ACO, the convergence speed can be accelerated
and the solution quality improved, thus mitigating ACO’s
tendency to become trapped in local optima when solving
complex problems. This hybrid approach effectively guides
the ant colony toward a globally optimal path and has been
successfully applied to complex combinatorial optimization
problems, such as the TSP.

One of the key challenges of ACO lies in the design
of effective prior knowledge for its probabilistic model.
Inadequate heuristic priors may lead to sluggish pheromone
updates, increased computational overhead, and slow con-
vergence. To overcome this limitation, Ye et al. proposed
DeepACO [2], which integrates policy-gradient-based rein-
forcement learning into the ACO framework. By pretraining
on specific problem instances through reinforcement learn-
ing, DeepACO enhances the efficiency of path selection.
The reinforcement learning model guides the ant colony
to concentrate on high-reward regions, thereby accelerat-
ing pheromone updates and significantly improving Deep-
ACO’s generalization capability to unseen problem instances.
Nonetheless, DeepACO still encounters challenges when
addressing larger-scale and more complex TSP, such as
limited feature extraction capability, inadequate exploitation
of global information, and suboptimal LS performance—all
of which constrain its practical applicability.

To address these limitations, this paper proposes a neural-
enhanced metaheuristic algorithm, named MS-TFACO,
aimed at improving the heuristic efficiency of ACO. Within
MS-TFACO, the MSTFA module and DNLS strategy ef-
fectively learn mappings from problem instances to heuris-
tic information. The approach begins by training a neural
model on multiple TSP instances to extract and encode
task-relevant features. Subsequently, it refines the pheromone
update mechanism during the optimization phase. Experi-
mental results demonstrate that MS-TFACO achieves faster
convergence and improved solution quality when tackling
larger-scale and structurally more complex TSP.

The main contributions of this paper are as follows:

1) A novel MSTFA module is introduced within the MS-
TFACO algorithm to enhance feature extraction via multi-
scale convolution and to strengthen local—global information
interaction through pooling operations. This design ensures
stable adaptability across TSP of varying scales. Further-
more, the integration of an attention mechanism enables
the model to adaptively weight features at different scales,

Volume 33, Issue 10, October 2025, Pages 4071-4082

Engineering Letters

thereby improving global information utilization and effec-
tively mitigating the suboptimal decisions caused by exces-
sive reliance on local information in traditional methods.

2) A DNLS strategy is proposed to predict perturbation
intensity using a neural network and to dynamically adjust
the LS policy. This facilitates escape from local optima and
improves the performance of local search. Simultaneously,
the strategy maintains a well-balanced trade-off between
exploration and exploitation, significantly enhancing the so-
lution quality for complex TSP instances.

II. RELATED WORK
A. Ant Colony Optimization

ACO is a metaheuristic algorithm inspired by the foraging
behavior of ants and is widely applied to optimal path-
finding problems. Traditional ACO algorithms, such as the
Ant Colony System [1], Max-Min Ant System [3], and
Elitist Ant System [4], constitute the theoretical foundation
for many state-of-the-art ACO variants. The effectiveness of
these algorithms largely relies on carefully crafted heuristic
designs. To alleviate the dependence on manually designed
heuristics, Ye et al. [2] proposed a neural-guided ACO
method, DeepACO, which replaces handcrafted heuristics
with automatically acquired knowledge, thereby enabling
adaptive optimization. However, DeepACO still suffers from
slow convergence and suboptimal solution quality when
addressing large-scale instances.

B. Neural Combinatorial Optimization in Travelling Sales-
man Problem

NCO is an interdisciplinary approach that employs deep
learning techniques to tackle combinatorial optimization
problems such as the TSP. NCO-based methods have demon-
strated strong capabilities in solving TSP instances effi-
ciently. In general, existing NCO approaches for TSP can
be broadly categorized into two groups: end-to-end methods
and neural-heuristic methods.

End-to-end methods in neural combinatorial optimiza-
tion learn autoregressive solution construction or generate
heatmaps to facilitate subsequent sampling-based decoding.
Bresson et al. [5] applied the Transformer architecture to the
TSP, utilizing reinforcement learning and beam search for
decoding. Jin et al. [6] proposed a multi-pointer Transformer
for deep reinforcement learning with controlled memory
consumption, while Xin et al. [7] introduced a multi-decoder
attention model to train multiple strategies and design a
customized beam search, using the embedding layer to enrich
information for solving the path planning problem. Innova-
tive training techniques include those proposed by Jiang et al.
[8], who enhanced TSP-solving performance by improving
the model’s adaptability to diverse data distributions through
distributionally robust optimization. Similarly, Kim et al.
[9] introduced the Sym-NCO model, which leverages the
symmetry properties of combinatorial optimization problems
to improve model efficiency and performance. Qiu et al. [10]
developed the Dimes model, a meta-learning approach based
on differentiable solvers capable of addressing a broader
range of TSP instances. Xiao et al. [11] proposed NAR4TSP,
which integrates reinforcement learning into the decoding
process of a non-autoregressive (NAR) network, achieving

superior performance in solution quality, generalization abil-
ity, and inference speed. Further advancements include the
ASP method by Wang et al. [12], a general-purpose neural
solver that continuously refines its model to tackle multiple
optimization tasks. Cheng et al. [13] proposed a selection and
optimization strategy that dynamically identifies key nodes
and optimizes their sequence, thereby improving efficiency
and scalability for large-scale TSP. Choo et al. [14] en-
hanced the practicality of neural combinatorial optimization
by introducing simulated guided beam search (SimG-BS)
to effectively screen candidate solutions. Pan et al. [15]
developed a hierarchical TSP framework (H-TSP), which
improves solution quality and efficiency through hierarchical
decomposition and step-wise optimization. Sun and Yang
[16] introduced Difusco, which constructs solutions through
a graph diffusion process, enhancing the stability and gen-
eralization capability of TSP solutions. Wang et al. [17]
proposed DEITSP, a diffusion model-based NAR solver that
improves solution quality and inference efficiency via one-
step denoising and a two-mode graph Transformer. Fang et
al. [18] presented a novel mixed-fleet vehicle routing model
under multiple distribution centers, integrating electric and
fuel-powered vehicles to solve complex routing problems.
Despite the substantial progress achieved by both end-to-
end and neural-heuristic approaches in solving TSP, several
critical challenges remain. Although end-to-end methods
have improved solution quality and inference speed through
techniques such as reinforcement learning and multi-decoder
architectures, they often rely on single-scale modeling for
feature extraction. This limits their ability to fully capture
the intricate topological structures inherent in TSP instances.
Moreover, these methods face scalability bottlenecks in terms
of computational complexity and inference latency when
dealing with large-scale TSP. Their limited capacity to ex-
ploit global information across varying data distributions
and complex scenarios further constrains their generalization
ability.

Neural-heuristic methods enhance performance by en-
abling neural networks to participate in decision-making
within heuristic algorithms or to generate heatmaps that
assist the heuristic process. For neural networks to con-
tribute effectively, they must be tightly integrated within
the algorithmic loop. Li et al. [19] proposed a delegated
learning framework in which a neural network collaborates
with a heuristic algorithm to make decisions in large-scale
vehicle path planning problems. Ma et al. [20] designed an
iterative solution approach using a dual collaborative Trans-
former architecture, which effectively addresses dynamic
adjustment requirements in TSP. Wu et al. [21] introduced
a learning-based method grounded in a large neighborhood
search strategy for integer programming, thereby enhancing
the search capability of the learning model. An improved
heuristic learning strategy for solving TSP was also proposed
in a separate study [22]. A recent advancement in this
field is the ability to generate heatmaps in a single step
to support downstream algorithms. Xin et al. [23] proposed
NeurolKH, which integrates a deep learning model with the
Lin-Kernighan-Helsgaun (LKH) heuristic algorithm to effi-
ciently solve TSP. This method leverages the representational
strength of neural networks along with the complementary
advantages of classical heuristics to achieve high-quality

Volume 33, Issue 10, October 2025, Pages 4071-4082

Engineering Letters

solutions. Building upon the LKH framework, Helsgaun et
al. [24] extended its application to constrained TSP and
vehicle routing problems, demonstrating strong performance
in scenarios involving complex constraints. Fu et al. [25]
showcased the generalization capability of a compact pre-
trained model on large-scale TSP instances, thereby en-
hancing model versatility while maintaining high solving
efficiency. Hudson et al. [26] proposed a novel approach that
utilizes GNN to guide the LS strategy in TSP solving. Ye et
al. [27] introduced Glop, a framework that addresses large-
scale routing problems by combining global partitioning and
local construction strategies. Further developments include
the unified divide-and-conquer framework (UDC) proposed
by Zheng et al. [28], specifically designed for large-scale
combinatorial optimization. Wang et al. [29] explored effi-
cient non-autoregressive solvers based on diffusion models.
Xiao et al. [30] presented strategies that bridge global as-
sessment with local selection, effectively solving TSP across
varying scales. Neural-heuristic methods improve search
efficiency by combining the decision-making capability of
neural networks with traditional heuristic solvers. However,
they remain limited by the intrinsic constraints of heuristic
algorithms—particularly in their local search capabilities. In
scenarios requiring complex constraint handling or dynamic
adaptability, the reliance on fixed LS strategies often ham-
pers the model’s ability to escape local optima, ultimately
impacting the overall solution quality.

C. MS-TFACO proposed motivation

The MS-TFACO algorithm is proposed to address the
limitations of traditional ACO algorithms and NCO methods
in solving large-scale TSP, particularly with regard to limited
feature extraction capacity, insufficient utilization of global
information, and inadequate LS capabilities. To overcome
these challenges, MS-TFACO incorporates two innovative
components: the MSTFA module and the DNLS strategy.
The MSTFA module consists of two key designs: multi-
scale feature extraction and temporal fusion attention. The
multi-scale feature extraction component employs convo-
lutional networks with varying receptive fields to capture
hierarchical graph-structural features, while pooling oper-
ations are used to enhance the interaction between local
and global information. This design enables the model to
more comprehensively capture the structural characteristics
of TSP graphs. The temporal fusion attention mechanism
adaptively adjusts the weights of features across different
scales through an attention-based fusion process, thereby
improving the model’s capability to represent overall tour
structures and mitigating suboptimal decisions resulting from
excessive reliance on local information. The DNLS strategy
utilizes a neural network to predict perturbation intensity
and adaptively adjust the scope of the LS procedure. This
adaptive adjustment allows the search process to better es-
cape local optima and maintain an effective balance between
exploration and exploitation, ultimately improving search
efficiency and solution quality in complex problem settings.

In comparative experiments against both ACO and NCO-
based methods, MS-TFACO demonstrated significant per-
formance advantages. Compared with traditional ACO al-
gorithms, MS-TFACO achieved a 4.55% improvement in

solution quality on the TSP1000 problem. In contrast, NCO
methods typically suffer from limitations in feature extraction
and LS performance, resulting in slower convergence and
relatively lower solution quality. By integrating the MSTFA
module and DNLS strategy, MS-TFACO significantly en-
hances both representational capacity and local search ef-
ficiency. Against DeepACO, a representative NCO method,
MS-TFACO achieved a 0.46% improvement in solution
quality on the TSP1000 problem. Overall, the experimental
results confirm that MS-TFACO effectively overcomes the
key limitations of traditional ACO and NCO approaches in
terms of feature extraction, global information exploitation,
and LS performance when solving large-scale TSP. More-
over, MS-TFACO demonstrates superior overall performance
on large-scale TSP tasks, indicating its strong potential for
practical application in complex combinatorial optimization
scenarios.

III. PRELIMINARY
A. Local Search

LS is a widely used optimization method for solving TSP.
Its core idea is to start from an initial solution and iteratively
explore its neighborhood to find a better one, continuing this
process until no further improvement can be identified. LS
typically yields high-quality approximate solutions within a
reasonable time frame; however, it tends to get trapped in
local optima. Among LS algorithms for TSP, one of the most
widely adopted is 2-opt. The basic concept of 2-opt is to
enhance a given tour by repeatedly removing two edges and
reconnecting the resulting segments in a different way to
reduce the total tour length. Specifically, for a given TSP
route, 2-opt selects two points and reverses the order of
the nodes between them. If the new route is shorter, the
change is accepted, and the process continues until no further
improvement is possible.

B. Travelling Salesman Problem

The TSP can be formulated as follows: each city cor-
responds to a variable X;, and the set of all variables
X = {X1,Xs,---,X,,} defines the search space S. Each
variable X; is associated with a finite domain D; =
{vi,-- . v{p, }(i = 1,--- ,n), representing the cities that
can be visited. The constraint set {2 enforces that each city
must be visited exactly once and that the traveler must return
to the starting city, thereby forming a complete Hamiltonian
cycle. The objective function f : S — R* denotes the total
length of the tour, and the optimization goal is to minimize
f(s) in order to obtain the shortest possible travel path.

C. Pheromone model and Solution construction

In ACO, the TSP is modeled using a pheromone frame-
work. In this model, cities are represented as nodes, and
paths between cities correspond to edges, forming a graph of
decision variables. The path optimization problem of the TSP
can be transformed into a pheromone-guided problem, where
the pheromone concentration influences the path selection
process.

During the solution construction phase, the pheromone
intensity and heuristic information values associated with

Volume 33, Issue 10, October 2025, Pages 4071-4082

Engineering Letters

the paths serve as guiding factors. Typically, ACO initializes
pheromone values uniformly and updates these pheromone
trails based on iterative results, while pheromone evaporation
occurs at fixed time intervals.

Under the influence of ¢;; and 1);;, an ant constructs a
solution by traversing the build graph s = {s;} ;. If the ant
is located at node ¢ during the ¢ th construction step (s;—1 =
i) and has constructed a partial solution s; = {s;}!_1, then
the probability of choosing node j as its next destination
(s¢ = j) is usually given by the following equation:

o T
| Zzg ¢:‘J‘ i if d;; € M(s<t)
P(St :]|S<tap) = dijeM(S<t) K K
0 otherwise

ey
where p denotes a TSP instance; M (s<;) represents the set
of selectable edges given the partial solution s<; v and y are
control parameters; d;; corresponds to the group component
of the solution, representing the decision variable for transi-
tioning from node 7 to node j; ¢;; indicates the pheromone
intensity; and);; denotes the heuristic information value.
For notational simplicity, the dependence of ¢, v, d, and M
on p is omitted. According to Eq. 1, constructing a complete
solution requires m steps of graph traversal. The probability
of generating a full solution can thus be factorized as:

m
P(S|p) = HP(5t|5<t,P) 2)
t=1
where P(S|p) represents the probability of constructing the
solution S given the TSP instance p; P(s¢|s<, p) denotes the
probability that, at step ¢, the ant selects the next node s, from
the current path, with this choice depending on the previously
constructed partial solution s.; and the TSP instance p;
and HL denotes the product of the probabilities across all
steps. Consequently, the probability of constructing the entire
path is the concatenated multiplication of the probabilities
associated with each step.

After the solution construction, the pheromone update
process evaluates the solutions and adjusts the pheromone
trails accordingly. By iteratively performing this process,
ACO intelligently explores the solution space and eventually
converges to an optimal or near-optimal solution.

IV. METHODOLOGY

This paper proposes an intelligent optimization framework,
termed MS-TFACO, which integrates GNN and ACO to
substantially improve both the efficiency and quality of
solving complex TSP. MS-TFACO comprises a GNN back-
bone network, the MSTFA module, the ACO algorithm, and
the DNLS strategy. The GNN backbone is based on the
neural architecture introduced by Joshi et al. [31], utilizing
anisotropic message passing and edge gating mechanisms
to enhance the expressive capacity of the graph neural
network. The MSTFA module incorporates a multi-scale
feature extractor along with a temporal fusion attention
mechanism, thereby improving the model’s ability to extract
discriminative features and exploit global information. The
ACO component leverages the parameters learned by the
neural network as heuristic information to guide the solution
process. DNLS integrates LS with dynamic neural-guided

perturbations, aiming to further enhance the effectiveness of
LS.

The overall framework is depicted in Figure 1. Initially, the
graph structure of the TSP instance is provided as input, and
a K-nearest neighbors strategy [32] is applied to eliminate
less promising solutions and accelerate the computational
process. Subsequently, GNN utilize a message passing mech-
anism to extract features from the graph structure, capturing
both local and global topological relationships between nodes
and edges, thereby generating high-dimensional edge embed-
dings. These embeddings are then processed by the MSTFA
module, which integrates a multi-scale feature extractor
and a temporal fusion attention mechanism to refine and
enhance the embeddings, resulting in more expressive fused
edge representations. A Multilayer Perceptron (MLP) is then
employed to perform nonlinear mapping on the fused em-
beddings, producing real-valued heuristic parameters. These
parameters are subsequently converted into matrices by a
heuristic converter, yielding heuristic weights that are directly
used by the ACO algorithm. These weights guide the ant
colony in selecting edges more effectively during the path
construction phase, thereby enhancing the quality of the
obtained solutions.

During the training phase, heuristic parameters are itera-
tively optimized by integrating reinforcement learning with
the DNLS strategy. Reinforcement learning evaluates the
quality of the current policy via a feedback mechanism and
adjusts the heuristic parameters to improve the model’s gen-
eralization capability. Concurrently, DNLS adaptively modi-
fies the search scope through dynamic perturbations, enabling
the algorithm to escape local optima and further enhance
solution quality. Upon completion of training, the optimized
heuristic parameters are fixed and subsequently employed as
heuristic information to guide the ACO algorithm during the
path construction process.

In the testing phase, ACO conducts path search on the
input problem instance by combining pheromone intensities
with the trained heuristic weights. As the search proceeds,
pheromone is deposited and updated along the constructed
paths, incrementally guiding the ant colony toward better
solutions. Through multiple rounds of pheromone reinforce-
ment, ACO efficiently iterates and explores the solution
space, ultimately yielding high-quality TSP solutions. Fur-
thermore, the DNLS strategy can optionally be incorporated
during testing to further enhance solution quality, improving
both robustness and convergence speed.

A. GNN module

The GNN presented in this paper is an anisotropic GNN
architecture that employs an edge gating mechanism [33],
which updates node and edge features at each layer through
the message passing process inherent to GNN. Let z} and eéj
denote the node and edge features corresponding to node ¢
and edge ¢j at layer [, respectively. The features for the next
layer are computed using an anisotropic message passing
scheme, formulated as follows:

e =2l 4o BN(U'Z! + Ajen, (o(el)) o Vial)) @)

e,lijl = eéj +o- BN(Pleéj + Qlal + Rlxé-)

“4)

Volume 33, Issue 10, October 2025, Pages 4071-4082

Engineering Letters

D

N AN A

-

‘mmm 0
Heuristic weight Heuristic "p’%ramete

Solution generation and optional DNLS

e — o — — — — — —

Reward
/

Training

Input instances

Post-trained heuristic parameter

Pheromone update

1

Pheromone trials

® =

STINQ [euondo pue uonelsusb uonnjos

Heuristic weight

Test and ACO module

Fig. 1: Overall view of MS-TFACO

where U!, V!, P!, Q', and R' are the learnable parameters
at layer [; o denotes the activation function (specifically,
SiL.U [34]); BN refers to the batch normalization operator; A
represents the uniform pooling operation; o is the sigmoid
function; ® denotes the Hadamard product; and N; repre-
sents the set of neighbors of node i. After L layers of updates,
the final edge embedding is denoted as Fjgny € RNex9,
where d is the dimensionality of the edge feature vector and
N, is the total number of edges in the TSP.

B. MSTFA module

Efficient feature extraction and temporal fusion are es-
sential for effectively solving TSP. The MSTFA module
is designed to capture deep structural information from
TSP instances by integrating multi-scale feature extraction
with an attention mechanism, thereby enhancing the global
perception of both nodes and edges. The processing flow of
this module is outlined as follows.

The final edge embedding, Fgya1, is obtained within the
GNN module. Edge embeddings at two distinct time steps
are selected and denoted as Efinai1 and Egpaje. Subsequently,
the feature matrices Egopyp € RNeXXHXW and E. e €
RNexdxXHxW are defined via convolution operations to ex-
tract multi-scale features. Here, H and W represent the
spatial dimensions of the convolved features, which are
computed as follows:

E.onvi = ReLU (COIIV3 x3(Pfinati) + Convs x5 (Efinali)
&)
=+ ConV7><7(Eﬁnali)), 1€{1,2}

where C'onvy«, denotes a 2D convolution operation with a
kernel size of k£ x k. By employing 3 x 3, 5 x 5, and 7 x 7
convolution kernels, the model captures information from
both local and broader receptive fields, thereby enhancing
its capability to extract features across multiple scales. The
ReLU function acts as a nonlinear activation function, intro-
ducing nonlinearity to improve the expressiveness of the re-

sulting feature representations. The extracted features, Fcony1
and FE.onyv2, encode multiscale information corresponding to
distinct temporal stages. This design enables the model to
effectively capture structural patterns at varying scales, which
is essential for addressing the diverse path structures inherent
in TSP.

Next, a channel attention mechanism is employed to fur-
ther enhance the salient features. The corresponding weight
C is computed as follows:

C = Softmax (COI]VID (Cat (AP(ECO,M), MP(Econy1),

AP(Econv2), MP(EconV2)>)) (6)

where cat denotes the concatenation operation; AP and
MP represent average pooling and max pooling operations,
respectively, which are employed to extract global informa-
tion along the channel dimension. ConvlD refers to one-
dimensional convolution, which is applied to capture inter-
channel relationships and emphasize salient features. Soft-
max performs weight normalization to produce a meaningful
distribution across channels. This mechanism enables the
model to automatically focus on the most discriminative
channel features while suppressing redundant information,
thereby enhancing overall representational capability.

On this basis, a spatial attention mechanism is incorporated
to enhance the model’s ability to capture spatial information.
The computation of the spatial attention weights S is defined
as follows:

S = Softmax (Consz (Cat (AP(ECOnV 1)s MP(Econvt),

AP(Econ2), MP(Econv2))))

where average pooling and max pooling are employed to ex-
tract global information along the spatial dimension. Spatial
weights are computed using a Conv2D operation to capture
the relative importance of features across different spatial
locations. The spatial attention mechanism enables the model

(7

Volume 33, Issue 10, October 2025, Pages 4071-4082

Engineering Letters

to focus more precisely on critical regions, such as high-
weight edges or important nodes in the TSP graph, thereby
enhancing its global path planning capability.

To effectively integrate multi-scale and attention informa-
tion, we define the fusion weights F' as:

F=C+S+1 3
the final fusion is characterized as:
Efuse =F (Econvl + EconvZ) (9)

through the fusion weights, the model preserves funda-
mental information while simultaneously enhancing the ef-
fects of both channel and spatial features. The final fused
features are obtained via weighted multiplication, allowing
the importance of features across different spatial locations
and channels to be dynamically adjusted. This approach
adaptively allocates the contributions of various features,
enabling the final representation to jointly incorporate multi-
scale information, channel attention, and spatial attention.
As a result, the model’s capability for global information
perception during the TSP solving process is significantly
improved.

The overall architecture of the MSTFA module is illus-
trated in Figure 2. Following the aforementioned processing
flow, the module enables deep feature learning for both
nodes and edges in the TSP, and leverages multi-scale feature
extraction in conjunction with temporal fusion attention
mechanisms to enhance the global perception of node and
edge representations. This, in turn, improves both the quality
and efficiency of TSP solutions.

C. ACO module

The final fused feature Ff,. obtained from the MSTFA
module is fed into an MLP with jump connections [35],
where the extracted edge features are mapped to real-valued
heuristic parameters 6. The prediction is computed according
to the following formulation:

=0 (WMLP . Efuse) (10)

where Wip denotes the learnable parameters of the MLP.
In this study, we employ a three-layer MLP. The function
o represents the Sigmoid activation function, and 6 denotes
the output heuristic parameters. Using these parameters, we
define a heuristic converter to construct a matrix repre-
sentation. This converter maps the input TSP instances to
their corresponding heuristic weights by leveraging the edge
information of the graph, denoted as 7 (p). The formulation
is expressed as follows:

E—-1
M6(p) = € Inwn + »_ O[k] - EC+I%)
k=0

(1)

where N and E denote the total numbers of nodes and
edges in the TSP graph, respectively; 0[k] represents the
heuristic value associated with the kth edge; (i, j) indicates
the indices of the start and end nodes of the kth edge;
1n« N denotes an all-ones matrix; E(r:dk) ig a basis matrix
with a value of 1 at position (ig,jr) and O elsewhere; and
€ is a small constant added to ensure numerical stability.
The resulting heuristic weights are employed to replace the

manually defined heuristic information traditionally required
in ACO algorithms.

ng(p) consists of non-negative real values 7;;.9 associated
with each solution component d;;, where ¢ € {1,...,m}
and j € {1,...,|D;|}. The MS-TFACO algorithm constructs
solutions according to Eq. 2, with the introduction of 7y(p)
acting as a bias term to guide the solution construction
process:

Py (S1p) = [T Paooy (st | 5<t:p) (12)
t=1

D. Dynamic Neural-guided Local Search

This paper extends the original NLS [2] algorithm by
proposing a LS-based method, termed DNLS, which al-
ternates between dynamic local search and neural-guided
perturbations. The pseudocode of DNLS is provided in Table
I. This enhancement is designed to improve the adaptability
of perturbation steps, strengthen the algorithm’s global search
capability, and mitigate the risk of premature convergence to
local optima.

TABLE I: DNLS

DNLS pseudo-code

1: Input: A solution s; an objective function f; well-learned heuristic
measures 79 (p); a local search operator LS; the initial number of
perturbation moves T1£0>; decay parameters \; and the maximum number
of DNLS iterations Tpnrs; min perturbation Tzsmi">; PS represents the
perturbation strength.

2: Output: The best improved solution S*.

3: s =LS(s, f, +00)

4: s* = copy(s)

5: for iter = 0 to TpnLs do

6: Tp = max(T,Smi“),round(TZS0>)|
7: pPS=_-1.
ne(p)

8: s =LS(s,PS,T}p)

9: s =LS(s, f, +00)
10: if f(s) < f(s*) then
11: s*=s

12: end for

In the original algorithm, the number of perturbation
steps, T),, is fixed. Such a static configuration can lead to
either insufficient or excessive perturbations across varying
problem scales or search phases, thereby constraining the
algorithm’s search efficiency. In the early stages of the
search, larger perturbations promote broader exploration and
help escape local optima, whereas smaller perturbations in
the later stages conserve computational resources and refine
solutions. To overcome these limitations, we_introduce a
minimum number of perturbation steps, T,Emm), which can
be adaptively tuned to prevent the total number of steps from
becoming ineffective. Moreover, an attenuation parameter A
(set to 0.1 in this study) and a total number of iterations iter
(set to 10) are incorporated. These parameters dynamically
adjust 7T}, thereby enhancing the algorithm’s adaptive search
behavior. The adjustment formula is expressed as follows:

T, = max (Témin), round <TI§O) . e*)"””)) (13)

Volume 33, Issue 10, October 2025, Pages 4071-4082

Engineering Letters

Multi-Scale Pooling in spatial dimension

[
Avgpool Maxpool
Avgpool 'Maxpool

Pooling in channel dimension

Graph embedding feture T1

Graph embedding feture T2 Pooling in spatial dimension

Multi-Scale

Pooling in channel dimension

Channel Features

N
Avgpool Maxpool
VZpoo axpool Cat ﬂ
SN
Spatial F “a
Avepool Maxpool patial Features

1D Convolution

Fig. 2: MSTFA diagram

where ngo) denotes the initial number of perturbation steps,

which is set to 20, and round(:) denotes the rounding
operation to the nearest integer.

The improved DNLS algorithm incorporates a dynamic
perturbation strategy to better balance global search and
LS. This strategy effectively improves search efficiency and
enhances the algorithm’s ability to escape local optima,
thereby significantly boosting both solution quality and com-
putational performance for complex TSP instances.

E. Training heuristic parameters

The heuristic learner is trained on TSP instances by
learning the heuristic parameters €, which map each instance
p to its corresponding heuristic weights 74 (p). The training
objective is to minimize the discrepancy between the objec-
tive value of the constructed solution and that of the solution
optimized by DNLS:

minimize L(0 | p) =Esp, (10 [f(5)
+W f (DNLS(s, f, +00))]

where W is a weighting coefficient used to balance the
two loss terms; f(DNLS(s, f,+00)) denotes the objective
value of the solution optimized by the DNLS strategy; and
f(s) denotes the objective value of the current solution s.
The first loss term directly guides the construction of an
optimal solution. However, due to the inherent complexity
of TSP, achieving this objective directly is often difficult.
In contrast, the second loss term encourages the generation
of solutions that are more amenable to further optimization
by DNLS, which tends to produce high-quality results more
reliably in an end-to-end framework. Nonetheless, relying
solely on the second term may reduce training efficiency, as
the quality of DNLS-optimized solutions typically exhibits
limited variability. Therefore, combining both loss terms
yields a more effective training signal and leads to improved
overall performance.

Solution construction is based on the ACO framework.
Equation 15 is derived from Equation 14, with the initial
pheromone values set to 1 to ensure unbiased estimation.
Furthermore, the REINFORCE algorithm is employed to

(14)

dynamically update the learner parameters 6 using a gradient
estimator, as defined below:

VL | p) =Esnp,, 1o [(f(s) = b(p)) +
W (f (DNLS(s, f,+00)) — bones(p)))] (15)
- Vo log Py) (s | p)]
where b(p) denotes the average objective value of solutions
generated by the current strategy, serving as a baseline to
reduce the variance of the gradient estimate and improve the
stability of parameter updates. Similarly, bpnrs(p) repre-
sents the average objective value of solutions obtained after
DNLS optimization, acting as a benchmark to further reduce
gradient variance. The term Vg log P,,(,)(s|p) denotes the
policy gradient, computed as the gradient of the strategy
network P, ,) with respect to the parameter ¢, and is used
to update 6 accordingly.

V. EXPERIMENTATION

In this section, a comprehensive evaluation of the proposed
MS-TFACO algorithm’s performance in solving the TSP is
conducted. The experiments include extensive comparisons
with classical ACO algorithms, deep learning-based methods,
and NCO approaches.

A. Experimental setup

1) Dataset and Example Generation: The experimental
data were divided into two categories: synthetic and real data:

Synthesized data: TSP instances are generated uniformly
and randomly in the region [0,1]%. 1280 test instances are
used for TSP20, TSP50 and TSP100. 128 test instances are
used for TSP200, TSP500 and TSP1000.

Real data: 50 symmetric TSP instances with Euclidean dis-
tance properties were selected from the TSPLIB dataset. All
instances are mapped to the [0,1]? region after normalization
to ensure experimental consistency.

2) Computing platforms: Graphics: NVIDIA GeForce
RTX 4090 (24GB video memory)

Processor: 16-core Intel Xeon(R) Platinum 8352V

Software environment: Python 3.8, using PyTorch 2.0.0
for model training and inference.

Volume 33, Issue 10, October 2025, Pages 4071-4082

Engineering Letters

ACO Variants Comparison in TSP20

5.2 —— Base ACO
Elitist ACO
5.0 —— Min-Max ACO
—— MS-TFACO
@ 4.8
<]
o
L 4.6
o
g 4.4
4.2
4.0 ¥ \
3.8
0 20 40 60 80 100
Iterations (T)
ACO Variants Comparison in TSP100
16
— Base ACO
15 . Elitist ACO
14 —— Min-Max ACO
= —— MS-TFACO
o 13
o
12
I
g 11
10
9
\;
8
0 20 40 60 80 100
Iterations (T)
ACO Variants Comparison in TSP500
50 —— Base ACO
Elitist ACO
45 —— Min-Max ACO
—— MS-TFACO

Yy
o

Average Cost
w
(%))

30
25
20 ~—
0 20 40 60 80 100

Iterations (T)

ACO Variants Comparison in TSP50

11
—— Base ACO
Elitist ACO
10 —— Min-Max ACO
o —— MS-TFACO
8 9
(]
g
E 8
<
7
—_—
6 ¥
0 20 40 60 80 100
Iterations (T)
ACO Variants Comparison in TSP200
26 —— Base ACO
Elitist ACO
24 .
—— Min-Max ACO
- 22 —— MS-TFACO
3
Y20
Q
[o)}
018
2
<16
14
12 —~——
0 20 40 60 80 100
Iterations (T)
100 ACO Variants Comparison in TSP1000
—— Base ACO
90 Elitist ACO
801 —— Min-Max ACO
= —— MS-TFACO
S 707
[
g 60 -
2
Z 507
404
30—

0 20 40 60 80
Iterations (T)

100

Fig. 3: MS-TFACO vs. Benchmark ACO

3) Key parameters: To improve computational efficiency
and reduce the impact of suboptimal solutions, the graphs
used in this experiment were sparsified by retaining only the
k nearest neighbors for each node. The specific parameter
settings are provided in Table II. In the experiments, the
baseline heuristic is defined as the reciprocal of the edge
length. The average path cost and average runtime represent
the mean values obtained from three independent runs of the
same model on the retained test set.

TABLE II: Graph sparsification parameter settings

A TSP20 TSP50 TSP100 TSP200 TSP500 TSP1000
B 20 20 30 50 100 200
C 10 20 20 20 50 100

B. Algorithmic Performance Evaluation of MS-TFACO

In this section, experiments were conducted to compre-
hensively compare MS-TFACO without DNLS against both
classical ACO methods and deep learning-based ACO ap-
proaches. The objective was to evaluate the effectiveness of
the learned heuristic information.

1) Comparison with traditional ACO algorithms: In this
section, three classical ACO algorithms were selected for
comparison: Ant Colony System, Elite Ant System, and
Max-Min Ant System. Performance comparisons between
traditional ACO algorithms and MS-TFACO on TSP in-
stances of varying scales were conducted. The experimen-
tal results are presented in Figure 3. As the number of
iterations increases, the average path costs of MS-TFACO
across all TSP scales remain significantly lower than those of
traditional ACO algorithms and their variants. Furthermore,
MS-TFACO demonstrates faster convergence. These results
indicate that MS-TFACO can search for high-quality solu-

Volume 33, Issue 10, October 2025, Pages 4071-4082

Engineering Letters

ACO Variants Comparison in TSP20

3.98
—— Deep ACO

3.06 MS-TFACO

w
0
B

Average Cost
w
©
N

3.90
3.88
3.86
2 4 6 8 10
Iterations (T)
ACO Variants Comparison in TSP100
—— Deep ACO
8.91 MS-TFACO
8.81
]
[e]
© 8.71
[
o
o
5 8.6 1
z
8.51
8.41
2 4 6 8 10
Iterations (T)
ACO Variants Comparison in TSP500
—— Deep ACO
21.0 MS TFACO
4 20.5
o
(o]
&
© 20.0
g
<
19.5
19.0

Iterations (T)

ACO Variants Comparison in TSP50

—— Deep ACO
MS-TFACO

o
i
u

Average Cost
o
-
S)

o
=]
G

Iterations (T)

ACO Variants Comparison in TSP200

12.8 —— Deep ACO

MS-TFACO
12.6

Average Cost
—
N
S

=
N
N

Iterations (T)

ACO Variants Comparison in TSP1000

3L5 —— Deep ACO

31.0 MS-TFACO
30.5

o

8

8 30.0

&
2295

]
g: 29.0
28.5

28.0

27.5

2 4 6 8 10
Iterations (T)

Fig. 4: MS-TFACO vs. DeepACO

tions more efficiently while maintaining strong adaptability
on larger-scale TSP problems. Moreover, while traditional
ACO relies on manually designed heuristic information for
path construction, MS-TFACO employs MSTFA and GNN
to learn more effective heuristics, enabling it to select better
paths even at the early stages of the search.

2) Comparison with deep learning based ACO algo-
rithms: In this section, MS-TFACO was compared with
Deep-ACO, and the experimental results are shown in Fig-
ure 4. MS-TFACO achieves significantly lower average path
costs than Deep-ACO across different TSP scales. Notably,
for large-scale TSP instances, MS-TFACO converges faster
and achieves lower final average path costs, demonstrating
stronger optimization capability and adaptability. These re-
sults indicate that MS-TFACO is better suited for solving
large-scale TSP problems and possesses higher practical
value. Furthermore, owing to its superior neural network de-
sign, MS-TFACO learns more effective heuristic information,

enabling it to select better paths even at the early stages of
the search.

C. Algorithm performance evaluation of MS-TFACO com-
bined with DNLS

In this section, comprehensive comparisons were con-
ducted between MS-TFACO and existing NCO methods
with the DNLS strategy enabled. The experiments evaluated
their performance on both synthetic and real-world TSP
datasets. Additionally, ablation studies were performed to
assess the individual contributions of key components within
the proposed framework.

1) Comparison with the NCO methodology: In this sec-
tion, the performance of the proposed MS-TFACO frame-
work is comprehensively evaluated on the TSP500 and
TSP1000 benchmark datasets. The DNLS strategy is inte-
grated into MS-TFACO and combined with the conventional

Volume 33, Issue 10, October 2025, Pages 4071-4082

Engineering Letters

2-opt local search algorithm, which is well-established for
improving TSP solutions by iteratively eliminating edge
crossovers. Table III presents a detailed comparative analysis
between MS-TFACO and several state-of-the-art NCO meth-
ods, as well as traditional heuristic algorithms. The results
demonstrate that MS-TFACO consistently achieves superior
solution quality and computational efficiency. Specifically, on
the TSP500 dataset, MS-TFACO attains the lowest average
objective value of 16.83, corresponding to a mere 1.69%
optimality gap relative to the optimal solutions obtained by
Concorde. This performance notably surpasses that of promi-
nent learning-based baselines such as AM (31.42%), POMO
(25.98%), and DIMES (5.80%), as well as recent GNN-based
approaches like UDC (4.95%), DEITSP (3.12%), and GELD
(3.47%), indicating enhanced generalization capability. Sim-
ilar performance trends are observed on the larger-scale
TSP1000 dataset, where MS-TFACO achieves an objective
value of 23.71 with a minimal 2.51% gap, outperforming AM
(49.37%), SO (11.41%), UDC (4.98%), DEITSP (3.14%),
and GELD (3.02%). These results highlight the ability of
MS-TFACO to generalize well to more complex and larger
instances. Regarding computational efficiency, MS-TFACO
exhibits competitive or superior runtime performance. For
example, on TSP500, the method completes within 19 sec-
onds, outperforming DeepACO (24s), ACO(LS) (39s), and
several GNN-based methods including DIMES (25s), UDC
(25s), DEITSP (34s), and GELD (32s). On TSP1000, MS-
TFACO maintains scalability with a runtime of 115 seconds,
which is faster than DeepACO (121s), DIMES (135s), UDC
(133s), and GELD (84s), and significantly reduces compu-
tational time compared to POMO (987s) and AM (745s).
Moreover, comparisons with traditional and hybrid ACO
algorithms further highlight the effectiveness of MS-TFACO.
Despite the use of LS and handcrafted features in ACO(LS)
and GFACS, their solution quality remains inferior to MS-
TFACO, underscoring the benefits of integrating dynamic
neural LS with multi-scale feature aggregation. In summary,
the proposed MS-TFACO framework achieves a compelling
balance between solution accuracy and computational ef-
ficiency. Its superior gap minimization and reduced time
complexity demonstrate its potential as a robust and scalable
approach for solving large-scale combinatorial optimization
problems in practical applications.

2) Performance on the TSPLIB dataset: In this section,
experiments are conducted in the TSPLIB dataset for dif-
ferent sizes of instances (20 < n < 100, 100 < n < 300,
300 < n < 700, 700 < n < 1500, 1500 < n < 5000), and
the inference is performed using models trained on TSP50,
TSP200, TSP500, TSP1000, and TSP2000, respectively. The
experimental findings are presented in Table IV. MS-TFACO
demonstrates superior performance in terms of maximum
superiority gap across all instance sizes. In problems of
very small size (20-100), MS-TFACO achieves an optimality
gap of 0.87%, compared to 1.25% for ACO and 0.95%
for DeepACO, showing excellent performance in small-scale
problem generalization. In problems of small size (101-300),
MS-TFACO achieves an optimality gap of 1.23%, compared
to 1.70% for ACO and 1.30% for DeepACO, demonstrat-
ing good LS capability and generalization performance. As
the problem size increases, on medium-sized (301-700)
instances, the optimality gap of MS-TFACO is 2.65%, which

TABLE III: Comparative Results of MS-TFACO and NCO
Methods

Method . TSP500 . . TSP1000 .
Obj. Gap(%) Time Obj. Gap(%) Time
Concorde 16.55 - - 23.13 -
LKH-3 16.55 - - 23.13 - -
AM[36] 2175 3142 187s 34.55 49.37 745s
POMOI[37] 20.87 25.98 247s 3390 46.56 987s
DIMES[10] 17.51 5.80 25s 24.75 7.00 135s
SO[13] 17.04 2.96 19s 25.77 11.41 98s
Pointerformer[6] 17.18 3.81 3s 25.10 8.51 15s
GFACS[38] 16.85 1.81 25s 23.89 3.29 135s
GLOP[27] 17.37 4.95 Ss 25.17 8.82 17s
UDCI28] 16.94 2.40 20s 23.79 2.85 32s
DEITSP[29] 17.06 3.12 53s 24.14 4.36 226s
GELDI[30] 17.37 4.95 36s 25.17 8.82 84s
ACO(LS) 17.46 5.50 39s 24.84 7.39 240s
DeepACO 16.85 1.81 24s 23.82 2.98 121s
Ours 16.83 1.69 19s 23.71 2.51 115s

is lower than that of ACO’s 4.25% and DeepACO’s 2.78%.
This finding indicates that MS-TFACO maintains robust op-
timization capability in more complex scenarios. In problems
of a large scale (701-1500), despite the substantial increase
in problem complexity, MS-TFACO exhibits an optimality
gap of 3.85%, which is more favorable than ACO’s 7.15%
and DeepACO’s 4.06%. Furthermore, for very large-scale
instances (1501-5000), MS-TFACO continues to outperform
with an optimality gap of 5.56%, significantly lower than
ACO’s 12.69% and DeepACO’s 6.16%. This further sub-
stantiates the efficacy, scalability, and convergence capacity
of MS-TFACO in solving large-scale TSP instances within
the TSPLIB dataset. # denotes the number of instances in
each set.

TABLE IV: Results of the Experimental Comparison of MS-
TFACO with ACO and DeepACO on the TSPLIB Dataset

TSPLIB # ACO DeepACO MS-TFACO
20-100 30 1.25% 0.95% 0.87%
101-300 30 1.70% 1.30% 1.23%
301-700 10 4.25% 2.78% 2.65%
701-1500 10 7.15% 4.06% 3.85%
1501-5000 10 12.69% 6.16% 5.56%

3) Ablation experiments with MS-TFACO: This section
presents ablation experiments on the MSTFA module and
DNLS strategy of MS-TFACO to analyze their contributions
to the overall performance. The experimental results are
shown in Table V. After removing the DNLS and MSTFA
modules respectively, the solution quality significantly deteri-
orated, clearly demonstrating the critical roles of these mod-
ules in enhancing the final results. Specifically, upon removal
of the DNLS module, the average path costs for TSP500
and TSP1000 increased from 16.83 to 18.47 and from 23.71
to 26.76, respectively, indicating that DNLS plays a key
role in providing local optimization capabilities; its absence
reduces solution refinement. Furthermore, after removing the
MSTFA module, the values further increased to 16.93 and

Volume 33, Issue 10, October 2025, Pages 4071-4082

Engineering Letters

24.89 for TSP500 and TSP1000, respectively, suggesting that
this module significantly contributes to feature extraction and
the utilization of global information.

TABLE V: Results of MS-TFACO Ablation Experiments

Method TSP500 TSP1000
MS-TFACO 16.83 23.71
-DNLS 18.47 26.76
-MSTFA 16.93 24.89

To further elucidate the optimization effectiveness of the
dynamic perturbation strategy in DNLS, this section also
presents a comparative analysis of the runtime performance
between the MS-TFACO algorithm and its variant without
the dynamic perturbation strategy, reporting the average
execution time for each instance. The experimental results,
shown in Table VI, indicate a reduction in runtime of 7 sec-
onds and 16 seconds for TSP500 and TSP1000, respectively.
This improvement is mainly attributed to the dynamic pertur-
bation mechanism, which adaptively adjusts the perturbation
magnitude during iterations, effectively avoiding redundancy
while ensuring global search capability.

TABLE VI: Experimental results of MS-TFACO ablation
with dynamic perturbation removal strategy

Method TSP500 TSP1000
MS-TFACO 19s 115s
-dynamic T, 26s 131s

VI. CONCLUSION

In this study, we propose an intelligent optimization
framework, MS-TFACO, which integrates GNN, the MSTFA
module, the DNLS strategy, and the ACO algorithm. This
framework is designed to overcome the limitations of con-
ventional ACO and NCO methods in solving large-scale
TSP, particularly addressing challenges related to insufficient
feature extraction, limited utilization of global information,
and suboptimal local search performance. The MSTFA mod-
ule employs multi-scale feature extraction via convolutional
networks to capture hierarchical graph structural information,
thereby enhancing the model’s ability to aggregate global
context through pooling operations. Additionally, a temporal
fusion attention mechanism adaptively weighs features across
different scales, further improving the exploitation of global
information. The DNLS strategy leverages a neural network
to predict perturbation intensity and dynamically modulate
the local search scope, enabling the algorithm to effectively
escape local optima by adjusting both perturbation strength
and local search range.

Experimental comparisons with traditional ACO and
DeepACO methods demonstrate that, even without the DNLS
strategy, MS-TFACQ’s incorporation of multi-scale feature
extraction and temporal fusion attention facilitates more
effective heuristic information learning, resulting in sub-
stantial performance improvements over these baselines.
Notably, MS-TFACO exhibits enhanced adaptability and
computational efficiency, especially when solving complex

TSP instances. Furthermore, compared to baseline NCO ap-
proaches, the integration of the DNLS strategy significantly
enhances the search’s ability to avoid local optima, yielding
superior solution quality and competitive performance rel-
ative to state-of-the-art NCO methods. Experiments on the
TSPLIB dataset further confirm that MS-TFACO achieves
smaller optimality gaps than both ACO and DeepACO.
Ablation studies validate the critical contributions of the
MSTFA module and DNLS strategy: omission of the MSTFA
module leads to increased average path costs, underscoring
its importance in feature extraction and temporal information
fusion, while removal of the DNLS strategy substantially
degrades local search optimization capability. These results
collectively substantiate the efficacy and superiority of MS-
TFACO for large-scale TSP optimization.

REFERENCES

[1] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization
by a colony of cooperating agents,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), vol. 26, no. 1, pp. 29-41,
1996.

[2] H. Ye, J. Wang, Z. Cao, et al., “DeepACO: neural-enhanced ant sys-

tems for combinatorial optimization,” Advances in Neural Information

Processing Systems, vol. 36, 2024.

T. Stiitzle and H. H. Hoos, “MAX-MIN ant system,” Future Genera-

tion Computer Systems, vol. 16, no. 8, pp. 889-914, 2000.

M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative

learning approach to the traveling salesman problem,” IEEE Transac-

tions on Evolutionary Computation, vol. 1, no. 1, pp. 53-66, 1997.

[5] X. Bresson and T. Laurent, “The Transformer Network for the Trav-
eling Salesman Problem,” arXiv, 2021.

[6] Y. Jin, Y. Ding, X. Pan, et al., “Pointerformer: Deep reinforced

multi-pointer transformer for the traveling salesman problem,” in

Proceedings of the AAAI Conference on Artificial Intelligence, vol.

37, 2023, pp. 8132-8140.

L. Xin, W. Song, Z. Cao, et al., “Neurolkh: Combining deep learning

model with Lin-Kernighan-Helsgaun heuristic for solving the travel-

ing salesman problem,” Advances in Neural Information Processing

Systems, vol. 34, pp. 7472-7483, 2021.

Y. Jiang, Y. Wu, Z. Cao, et al., “Learning to solve routing problems

via distributionally robust optimization,” in Proceedings of the AAAI

Conference on Artificial Intelligence, vol. 36, 2022, pp. 9786-9794.

[9] M. Kim, J. Park, and J. Park, “Sym-nco: Leveraging symmetricity for
neural combinatorial optimization,” Advances in Neural Information
Processing Systems, vol. 35, pp. 1936-1949, 2022.

[10] R. Qiu, Z. Sun, and Y. Yang, “DIMES: A Differentiable Meta Solver
for Combinatorial Optimization Problems,” [Online].

[11] Y. Xiao, D. Wang, B. Li, et al., “Reinforcement learning-based nonau-
toregressive solver for traveling salesman problems,” IEEE Transac-
tions on Neural Networks and Learning Systems, 2024.

[12] C. Wang, Z. Yu, S. McAleer, et al., “ASP: Learn a universal neural
solver!,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2024.

[13] H. Cheng, H. Zheng, Y. Cong, et al., “Select and optimize: Learning
to solve large-scale TSP instances,” in International Conference on
Artificial Intelligence and Statistics, PMLR, 2023, pp. 1219-1231.

[14] J. Choo, Y. D. Kwon, J. Kim, et al., “Simulation-guided beam
search for neural combinatorial optimization,” Advances in Neural
Information Processing Systems, vol. 35, pp. 8760-8772, 2022.

[15] X. Pan, Y. Jin, Y. Ding, et al., “H-TSP: Hierarchically solving the
large-scale traveling salesman problem,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 37, 2023, pp. 9345-9353.

[16] Z. Sun and Y. Yang, “Difusco: Graph-based diffusion solvers for com-
binatorial optimization,” Advances in Neural Information Processing
Systems, vol. 36, pp. 3706-3731, 2023.

[17] M. Wang, Y. Zhou, Z. Cao, et al., “An Efficient Diffusion-based Non-
Autoregressive Solver for Traveling Salesman Problem,” arXiv, 2025.

[18] X. Fang, J. Liu, and L. Wang, “Path optimization for mixed use of
electric and fuel trucks under multiple distribution centers,” Engineer-
ing Letters, vol. 33, no. 6, pp. 1919-1936, 2025.

[19] S.Li, Z. Yan, and C. Wu, “Learning to delegate for large-scale vehicle
routing,” Advances in Neural Information Processing Systems, vol. 34,
pp. 26198-26211, 2021.

[3

[t}

[4

=

[7

—

[8

=

Volume 33, Issue 10, October 2025, Pages 4071-4082

Engineering Letters

[20] Y. Ma, J. Li, Z. Cao, et al., “Learning to iteratively solve routing
problems with dual-aspect collaborative transformer,” Advances in
Neural Information Processing Systems, vol. 34, pp. 11096-11107,
2021.

[21] Y. Wu, W. Song, Z. Cao, et al., “Learning large neighborhood search
policy for integer programming,” Advances in Neural Information
Processing Systems, vol. 34, pp. 30075-30087, 2021.

[22] Y. Wu, W. Song, Z. Cao, et al., “Learning improvement heuristics for
solving routing problems,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 33, no. 9, pp. 5057-5069, 2021.

[23] L. Xin, W. Song, Z. Cao, et al., “Multi-decoder attention model
with embedding glimpse for solving vehicle routing problems,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol.
35, 2021, pp. 12042-12049.

[24] K. Helsgaun, “An extension of the Lin-Kernighan-Helsgaun TSP
solver for constrained traveling salesman and vehicle routing prob-
lems,” Roskilde University, 2017, pp. 966-980.

[25] Z. H. Fu, K. B. Qiu, and H. Zha, “Generalize a small pre-trained
model to arbitrarily large TSP instances,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, 2021, pp. 7474-7482.

[26] B. Hudson, Q. Li, M. Malencia, et al., “Graph Neural Network Guided
Local Search for the Traveling Salesperson Problem,” arXiv, 2022.

[27] H. Ye, J. Wang, H. Liang, et al., “GLOP: Learning global partition
and local construction for solving large-scale routing problems in real-
time,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 38, 2024, pp. 20284-20292.

[28] Z. Zheng, C. Zhou, X. Tong, M. Yuan, and Z. Wang, “UDC: A unified
neural divide-and-conquer framework for large-scale combinatorial
optimization problems,” Advances in Neural Information Processing
Systems, vol. 37, pp. 6081-6125, 2024.

[29] M. Wang, Y. Zhou, Z. Cao, Y. Xiao, X. Wu, W. Pang, Y. Jiang,
H. Yang, P. Zhao, and Y. Li, “An efficient diffusion-based non-
autoregressive solver for traveling salesman problem,” Proceedings of
the ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2025.

[30] Y. Xiao, D. Wang, Z. Cao, R. Cao, X. Wu, B. Li, and Y. Zhou, “From
global assessment to local selection: Efficiently solving traveling
salesman problems of all sizes,” arXiv:2025.

[31] C. K. Joshi, Q. Cappart, L. M. Rousseau, et al., “Learning the
Travelling Salesperson Problem Requires Rethinking Generalization,”
LIPIcs, vol. 210, CP 2021, 2021, pp. 33:1-33:21.

[32] S. Lin, “An efficient heuristic algorithm for the traveling salesman
problem,” Oper. Res., vol. 21, pp. 498-516, 1973.

[33] X. Bresson and T. Laurent, “An experimental study of neural networks
for variable graphs,” 2018.

[34] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units
for neural network function approximation in reinforcement learning,”
Neural Networks, vol. 107, pp. 3-11, 2018.

[35] K. He, X. Zhang, S. Ren, et al., “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 770-778.

[36] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve
routing problems!” arXiv, 2019.

[37] Y. D. Kwon, J. Choo, B. Kim, et al., “POMO: Policy optimization
with multiple optima for reinforcement learning,” Advances in Neural
Information Processing Systems, vol. 33, pp. 21188-21198, 2020.

[38] M. Kim, S. Choi, H. Kim, et al., “Ant colony sampling with
GFlowNets for combinatorial optimization,” arXiv, 2024.

Volume 33, Issue 10, October 2025, Pages 4071-4082

