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Numerical Investigation of Scale-2 and Scale-3
Haar Wavelet Approaches for Solving Elliptic
Partial Differential Equations
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Abstract—This study presents a numerical investigation of
Scale-2 and Scale-3 Haar wavelet methods for solving elliptic
partial differential equations (PDEs) that describe steady-state
heat distribution. The spatial derivatives are discretized using
Scale-2 and Scale-3 Haar wavelet expansions, which are then
integrated and extended to a 2D solution via Kronecker
tensor product, incorporating boundary conditions through
integration constants. The error analysis and convergence rate
are performed to evaluate the numerical precision of the results.
Computational simulations are carried out using MATLAB
programming. Both the wavelet methods are compared with
the existing finite difference method (FDM), and the results
demonstrate that while all three approaches effectively solve
elliptic PDEs, the Scale-3 Haar wavelet method outperforms
the others by delivering more accurate approximate solutions
with greater efficiency. The findings of this study highlight the
potential and reliability of Haar wavelet methods for solving
complex PDEs in various engineering applications.

Index Terms—Convergence rate, error estimates, Haar
wavelet, symmetric wavelet, antisymmetric wavelet, Kronecker
product

I. INTRODUCTION

ARTIAL differential equations (PDEs) are mathematical

equations involving multiple independent variables,
categorized into parabolic, hyperbolic, and elliptic equations
based on the nature of their terms. They find extensive
application in biological, chemical, and physical scenarios,
capturing diverse interactions through mathematical models.
Existing research studies have significantly focused on
analyzing these models, enabling the development of reliable
numerical solutions when precise parameter information and
initial/boundary conditions are known. However, real-world
complexities, with their inherent variability, pose challenges
to accurate modeling. Despite these difficulties, the
steady-state solutions of parabolic and hyperbolic equations
often converge to solutions of second-order elliptic equations
as time approaches infinity. For instance, modeling the
steady-state heat distribution on a rectangular plate with
specified edge temperatures exemplifies this behavior [[1]-[3].
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Because time is not a factor in this system, the heat
distribution depends solely on the spatial coordinates = and y.
This steady-state heat distribution equation has a wide variety
of applications across various fields, including physics,
chemistry, biology, and earth science, where understanding
heat distribution is crucial. This article focuses on analyzing
the linear, two-dimensional, steady-state heat distribution
equation
Pu  0%u
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where x and y are spatial coordinates that are independent,
u is the dependent variable, and g(x,y) is the heat source
vector.

Numerical methods for solving PDEs, such as finite
difference method [4], [5]], finite element method [6], [[7],
spectral collocation method, and finite volume techniques
[81l, [9]], finite line method [10]], etc., have seen considerable
advancements. While these methods are generally reliable,
alternative approaches have also been explored. For example,
Khan et al. [11] used the natural transform decomposition
method to achieve more accurate solutions for parabolic and
hyperbolic PDEs. Further improvements include a sixth-order
compact scheme for the Helmholtz equation developed by
Kumar and Dubey [12], the non-local operator method
employed by Ren et al. [[13]], and the analytical solution for
linear Fractional PDEs derived using the Fractional Fourier
Transform by Mahae et al. [14]. Recent advancements
have integrated deep learning with numerical methods for
solving PDEs. Uriarte et al. [[15] developed a deep learning
scheme based on the finite element method, expanding the
scope of computational techniques. Subsequently, Zheng
et al. [16] explored the stochastic finite element method,
while Gao et al. [10] applied the finite line method to
PDE solutions. More recently, Saadeh et al. [17] introduced
the Double Laplace Formable Transform Method, further
enhancing the analytical and numerical approaches to solving
PDEs. Some of the other newly developed numerical
methods as well as analysis on PDE can be observed
in [18]-[21]. These continuous developments highlight
the growing sophistication of computational techniques in
addressing complex partial differential equations.

Introduced by Grossman and Morlet in 1984, wavelet
analysis has become a powerful mathematical tool with
unique properties, including vanishing moments, wavelet
decomposition, multiresolution analysis, localization, fast
wavelet transform, and data compression. Its broad
applicability spans signal analysis, DNA fingerprinting,
image processing, and, more recently, numerical analysis.
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Wavelets have proven particularly effective in solving
numerical problems related to calculus, often surpassing
traditional methods. The foundational work of Stephan
Mallat and Yves Meyer established the basis for wavelet
theory, particularly in the area of multiresolution analysis.
This has spurred considerable research interest and a wealth
of publications. Within the diverse family of wavelets,
Haar wavelets are notable for their simplicity and clear
analytical representation and have found application in
the analysis of complex fluid dynamics, as demonstrated
by Karkera et al. [22] in their study of the general
unified MHD boundary-layer flow of a viscous fluid. The
development of compactly supported wavelets by Daubechies
[23] revolutionized wavelet theory, spurring considerable
research and innovation. For instance, Mouley et al. [24]
leveraged Daubechies wavelets to investigate the interaction
between a finite crack and a shear wave, solving the resulting
Fredholm integral equation derived from the governing shear
wave equation via Fourier and Abel transformations. More
recently, Legendre wavelets have been employed by Hussain
et al. [25]] to solve nonlinear hyperbolic equations.

Haar functions, originating with the Hungarian
mathematician Alfred Haar [26] in 1910, have found
widespread application across diverse fields. Their

recognition in the 1980s as equivalent to the Daubechies
wavelet of order 1 established a crucial connection between
these two significant mathematical constructs. Characterized
by their piecewise constant nature, Haar wavelets represent
the simplest orthonormal wavelets with compact support.
Despite their advantages, the inherent discontinuity of
Haar wavelets presents challenges for direct application
in solving differential equations. Two primary strategies
have been developed to address this limitation. The first
involves regularization using interpolating splines, such as
B-splines or Deslaurier-Dabuc interpolating wavelets, as
explored by Cattani [27]. The second approach, pioneered
by Chen and Hsiao [28], utilizes an integral method. Chen
and Hsiao’s foundational work on Haar wavelet analysis in
dynamical systems introduced the Haar operational matrix
for integrating Haar function vectors. Building upon this,
Hsiao [29] further contributed by developing a Haar product
matrix and coefficient matrix, enabling the state analysis
of linear time-delayed systems using Haar wavelets. Later,
Lepik [30]-[32] advanced the field by developing a Haar
wavelet method for solving ordinary and partial differential
equations. Further expanding on this approach, Shi et al.
[33], [34] introduced a novel numerical scheme utilizing a
Scale-2 Haar wavelet (HW) and demonstrating its efficacy on
both regular and irregular domains. Meanwhile, Hariharan
and Kannan [35]] performed a comparative analysis of the
Haar wavelet method against the Restrictive Taylor’s Series
Method (RTSM) for solving convection-diffusion equations,
ultimately establishing the superior performance of the Haar
wavelet approach.

This study explores the solution of elliptic PDEs using
Scale-3 HW, an advanced wavelet framework distinguished
by its symmetric and antisymmetric properties, initially
developed by Mittal and Pandit [36]], [37]]. Scale-3 HW
has garnered considerable attention among mathematicians
and engineers for its effectiveness in solving a wide
range of functional equations, including ODEs, PDEs, and

integro-differential equations [36]], [38]], [39]. The proposed
approach formulates the solution as an infinite series that
exhibits rapid convergence, ensuring high accuracy. The
numerical results are then rigorously validated through
comparison with both Scale-2 HW solutions and exact
solutions, further substantiating the reliability and robustness
of the proposed method.

To ensure the clarity and logical flow of the present
work, this paper is structured as follows: Section 2 provides
essential background on the Scale-2 Haar Wavelets. Sections
3 and 4 provide a detailed exploration of the theoretical
framework underlying the operational matrix of Scale-3 HW
and their application to function approximation. Section
5 introduces the Scale-3 HW methodology for solving
two-dimensional elliptic partial differential equations that
model steady-state heat distribution. Section 6 presents
four numerical examples to demonstrate the efficacy of
the proposed approach. Finally, Section 7 encapsulates the
principal findings and conclusions drawn from this research.

II. SCALE-2 HAAR WAVELETS

Consider the interval [A, B]. Let J be the maximum
resolution level. Define M = 27 and the sub-interval length
At = Bz;MA. The dilation parameter j ranging from 0 to J
determines the level of compression, while the translation
parameter k£ ranging from 0 to m — 1 shifts the wavelet’s
position within the interval. Here m = 2/ and i = m +k+1
is the wavelet number. The first index ¢ = 1 represents the
Haar scaling function hq, given by:

ha(t) = 1 forte[A,B)
n 0 otherwise.

2

Further, when m = 1 and k = 0, the index ¢ = 2 represents
the Haar mother wavelet. The subsequent wavelets can be
identified by:

1 for ¢ € [¢1(4),2(4))
—1 fort € [s2(i),s3(7)) €)]
0 otherwise

hi(t) =

where

s1(i) = A+ 2kpAt

(i) = A+ (2k + 1)pAt

(i) = A+ 2(k + 1)uAt
M

H=—
m

Figure [I] shows the first eight Haar wavelets at resolution
level J = 2 in the interval [0, 1]. Table[]| gives the relationship
between dilation and translation parameters to indicate the
wavelet number.

To address an 7" order differential equation, the
subsequent integral of Haar function are used, which is
defined as follows:

pri(t) = /At /At : --/At hi(z)dz"
1 t

== /A (t— 2)" " hy(2)dz )
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TABLE I: Index generation for Scale-2 Haar basis functions

J o1 1 2 2 2 2 3 3 3 33 3 3 3
m =27 1 2 2 4 4 4 4 8 8 8 8 8 8 8 8
k 0o 01 0 1 2 3 0 1 2 3 4 5 6 17
i=m+k+1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1
= 05 =0 —
<
0 -1 :
0 0.5 1 0 0.5 1
t t
1 1
0 =0 —
= <
1 g
0 0.5 1 0 0.5 1
t t
1 1
0 0
< <
1 L
0 0.5 1 0 0.5 1
t t
1 1
0 % 0 —
< <
1 4
0 0.5 1 0 0.5 1
t t
Fig. 1: The first eight Haar wavelets at resolution level J = 2.
The explicit form of p,;(¢) for i = 2,3,...,2M is given by ITI. SCALE-3 HAAR WAVELETS
0 For any s € [A, B] with maximal resolution level .J, define

M = 37 and sub-interval length as As = %. Let j =
0,1,2,...,J be the dilation parameter, k = 0,1,2,...,m—1
be the translation parameter, where m = 37 and index 7 gives

for t < ¢1()

Lt —q(d)" the relation between m and k. The initial index value, ¢ = 1
for t € [61(i),2(7)) is assigned for scaling function defined as
pra(t) = 1 forse[A,B)
A\ T A\ T h = ’ 7
Lt =) —2(t = w)") 1(e) {0 otherwise. @

for t € 1), 63(1 . . - .
[52(7);55(2)) For indices ¢ > 1, even indices (i = m + 2k + 1) correspond

. ' ’ . to symmetric wavelets, denoted by /(1) (), while odd indices
a1t —(d)" —2(t — ()" + (t —3(9)"} (i = m+ 2k + 2) represent antisymmetric wavelets, denoted

for t > ¢3(1) by ¥(?)(s). Both are defined in function form as:
&) Ny
For the case i = 1 with ¢; = A, ¢ = g3 = B, we have M 1 —1 for s € [k(7), A(9))
1 . ¥ (s) = 2 forse [A(E), n(2)) ®)
pra(t) = ﬁ(t —A)". (©6) —1 for s € [n(3),0(3))
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Fig. 2: Scaling, symmetric and anti-symmetric wavelets of Scale-3 HW.
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S
3 1 for s € [k(i),\(2))
¢§2)(5) — 5 0 for s € [A(7),n(i)) ©
-1 for s € [n(i),0(7))
where
k(i) =A+ (B —A)%
Ai) = A+ (B —A)3ZZL1
n(i) = A+ (B *A)SI;,;Q
0(i) = A+ (B —A)%

Pictorial representation of Scale-3 HW for ¢ = 1,2,3 is
plotted in Figure 2]
The solution of an 7" order differential equation requires
integrals of above Scale-3 HW function which are given by

=4 for s e [A B
pm():{ i 14, 5)

. (10)
0 otherwise

—(s=K(@)"

r!

for s € [k(i), A(7))

—(s—n(i))"'%'-3(s—/\(i))"

for s € [A(4),n(7))
) =

S

*(S*H(i))r+3(sf>’\(i))r*3(5777(%‘))’”

for s € [n(i),0(7))

—(s=r(1)"+3(s=A(1)"=3(s=n(8)) "+(s=0(i))"

for s € [0(), B) §

(1)

(s=r(1))"
]

for s € [k(1), A(@))

(S*K(i))rj(s#\(i))r
for s € [A(4),n(i))

(5= (D)7 = (s=A@)" = (s=n(@)"
for s € [n(i), 0(i))

(S*K(i))T*(S*A(i))T*'(S*n(i))rﬂsfe(i))r
for s € [0(i), B)

(12)
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IV. FUNCTION APPROXIMATION WITH ASSOCIATED
HAAR MATRIX

The orthogonality of Scale-3 Haar wavelets allows any
square-integrable function f(s) defined on the interval [0, 1)
to be expressed as an infinite series, a linear combination of
Scale-3 HW basis functions given by,

>

i—even index

ot (s)

(13)
When f(s) is piecewise constant or can be approximated
as such within each sub-interval, its series expansion can be
truncated to a finite number of terms, effectively yielding a
finite representation, that is,

>

i—odd index

f(s) =cihy + Cz‘%(l)(S) +

3M 3M

oo wMe+ Y

i—even index i—odd index

T
=C H3M

f(s) = crhy + et (s)

where M = 37 and J represent the maximal resolution level.
The notation ¢’ is adopted to signify the 3M -dimensional
row vector, facilitating the representation of Haar wavelet
coefficients [c1,...,c3ps] whereas Hsps denotes the
Haar wavelet operational matrix of order 3M x 3M,
Hyyr = [ha(s), 087 (5), 057 (5), - 63— (8), 053 (9))-
For instance the Haar operational matrix corresponding to
J=0,m=11s 3 X 3 matrix given by,

1 1 1
Hsp(s) = | —0.7071 1.4142 —0.7071
1.2247 0 —1.2247

3x3

As Hsps is an orthogonal matrix, it follows directly
that ¢’ = f(s)HI,,(s) where the superscript 7 indicates
transpose operator.

V. METHOD OF SOLUTION FOR ELLIPTIC PDE

Consider a steady-state heat distribution equation with a
heat source term g(z,y) as

0%y O%u

a7 T g =9 (@) €A BIx[4.B] (14

subject to specified initial and boundary conditions. Utilizing
the Scale-3 HW basis, we approximate the solution, u(z,y),
and its partial derivatives. The approximation process begins
by fixing the variable y and performing the discretization
along grid lines parallel to the z-axis, which is given as
follows,

3M 3M

0%u(x)

o crhy + ;n e () + gd ey (x)(15)
Au(z) el ou(A)
9z = ; cip1,i(z) + oz (16)
3M
u(z) = Z cipa,i(z) + 8u8(xA) (x—A)+u(4) A7)
i=1

where hq(z), wi(l)(:c), 77/11(2) (x) together constitute the Haar
matrix and pi;(x), p2.(x) represent the Haar integral

matrices. At the collocation points, equation (I7) can be
written in matrix form as,

u(z1)
ul) = M@>=Q4ﬂ (18)
u(xdm)
where ¢ = (c1, ¢, ..., canr), bT = (244 4y(A)) and
p21(z1)  p22(z1) p2am(z1) w1 —A 1
p2a(x2)  p22(z2) poanv(z2) w2 —A 1
poi(wsar)  pra(wan) peani(wsn) @ —A 1

Q1

with @1 having dimension 3M x (3M + 2). The boundary
conditions associated with the given problem may be either
Dirichlet or Neumann, which can be easily tackled by this
Scale-3 HW approach as follows:

1. Dirichlet boundary condition: Using equation (I7), the
additional two equations for boundary conditions are

fert = {Z%ﬂ (19)
= Q2 [bj (20)
where
Qo = pQ,I(A) pQ,Z(A) p2,3M(A) 0 1
2 p2~,1(B) p2,2(B> p2,3M(B) B—-A 1

with ()2 having dimension 2 x (3M + 2).

2. Neumann boundary condition: Using equation (16))

far = {Z:Egﬂ (1)
=Q2 [bcl] 22)
where
@= [l me) e ]

with Qo having dimension 2 x (3M + 2).
Combining equation and and substituting for

[bc] in equation (13), we get
1

62u(m ) a2u(93 ) T T —1 u
|: D2 TS] - [H 0 0] W |:f611:|
, (23)
8 u - -1 u
&ﬁHW'{MJBw+BMm (24)

where W = [81} H = [HT 0 0] and specifically, By
2

and B> denote matrices constructed from the first M columns

and the last two columns, respectively, of the matrix H w1t
2

The approximation of agiz(;”) can be extended from 1D to

2D domain by making use of Kronecker tensor product as
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Fig. 3: Scale-3 HW solution plot at resolution level J = 3 for Problem 1.

follows,
6211 X1, Yk
éTy) = Bi1@Iy)u(x,yk) + (B2 @Iy)f1  (25)
= Dxu(xl7 Yk) + kx (26)
where f; is 6M x 1 column vector, I, is the
identity matrix of order 3M x 3M, ul =
(U(itl, yl)a e au(xlv yBM)a u(x% y1)7 e ,’LL(.’ZQ, ySM)a )
w(sa, y1),- - u(@sa,ysm))  and (937 =
(8211({(;012,91) e, 82u(ﬂvhzyaM)7 82“(%122,91) e, 9 u(gm?yaz\/z)7
L9 “(gig““ s Bzu(zgﬁ’yw) ). A similar procedure

is carried out by fixing the variable  and approximating
along the y—axis to get the final equation as

0%u(x1, yk)

ayz = (IX & B3)u(x1, yk) + (IX ® B4)f2

27

= Dyu(x, yk) + ky (28)

where f is 6M x 1 column vector, I, is the identity matrix
of order 3M x 3M.
On adding equations (26) and (28) and comparing it with
equation (T4) at 2D collocation points gives the following
form,

(Dx + Dy)u = g(x1,yk) —kx — ky

The system described in (29) is solved for u employing
the Gauss-Seidel iterative scheme. To evaluate the efficacy
and accuracy of the proposed methodology, few numerical
problems are addressed. The precision of the results obtained
at a specific resolution level J is assessed using error metrics,
including the absolute error, L., error and Lo error with the
following expressions:

(29)

Absolute error = |Upum (T1, Yk) — Uex (T1, Yi)| (30)

Loo = Maxri1<k,i<3M |unum(xly yk) - ue$($l, yk)| (31)
VI Tt (20, ) =t (0, 33)

Ly = (32)

3M 2
\/Zl,k:1 |u6x (xla yk)|

where U,,m, Ue, are the approximate and exact solutions
respectively. The error bound is calculated by L2 norm, given

by
L 1

exr ) - Unum ) S . =07 33

Furthermore, as we increase the resolution level (J — 00),
the error goes to zero, providing evidence that the method
converges. Additionally, we have calculated the experimental
order of convergence, O.(J), defined by

_ 10ge[Loo(J — 1)] = loge[Loo(J)]

OC(J) lOg 3

(34)

VI. RESULTS AND DISCUSSIONS

This section delineates the numerical outcomes of four
illustrative problems, demonstrating the accuracy, versatility,
and convergence properties of the proposed methods. A
comparative evaluation against established methods from the
literature underscores the efficacy of the novel Scale-3 Haar
Wavelet approach. The algorithms were implemented using
MATLAB 2023a, and executed on a system equipped with
an Intel Core i3 processor and 16 GB of RAM.

A. Problem 1:

Consider the steady-state heat distribution equation, given
as follows,
0’u  0%u

gu, gu Ly) € [0,1]x[0,1
o (.9) € 0,1]x[0,1

(35)
with u(x,y) = 0 on the boundaries having an analytical

solution

= —2n?sin(rx)sin(my)

(36)

u(x,y) = sin(mzx)sin(ny).

Approximating the highest derivative along x—axis and
y—axis separately, while keeping the other variable fixed,
we get two equations as

3M

u(x) = Z cip2,i(z) + 81(;;0) (z) + u(0) (37)
3M

w) = Db + 20 +00)
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TABLE II: Comparison of Scale-3 HWM with Scale-2 HWM and FDM for Problem 1.

Scale-2 HW FDM Scale-3 HW Order of
J convergence (O..)
No. of Ly Lo No. of Ly Loo No. of Ly Loo Scale-2 HW  Scale-3 HW
Points Points Points
1 4 0.0241 0.0206 9 0.013 0.013 9 0.0050 0.0050 - -
2 8 0.0063 0.0061 27 0.0012 0.0012 27 5.6334E-04 5.6334E-04 1.7558 1.9873
3 16 0.0016 0.0016 81 1.2852E-04 1.2852E-04 81 6.2669E-05  6.2669E-05 1.9307 1.9989
4 32 4.0121E-04 4.0024E-04 - - - - - - 1.9991 -
5 64 1.0037E-04 1.0031E-04 - - - - - - 1.9964 -
6 128 2.5098E-05 2.5094E-05 - - - - - - 1.9991 -
TABLE III: Time comparison in Problem 1. approximation to the 2D domain we get,
Scale-2 HW FDM Scale-3 HW 0%u(x1,yk)
— " =(B1®I,)u(x + (B2 ® I,))f
7 No.of CPU No.of  CPU No.of  CPU dx2 (B1® Ly)uGa,yio) + (B2 © 1y )fy
Points  Time (s) Points  Time (s) Points  Time (s) = Dxu(x17 yk) + ky
1 4 0.0156 9 0.0312 9 0.0156
2 8 0.0156 27 0.0781 27 0.0625 8211()(1 Yk)
316 00312 81 65781 81 45156 872’ = (Ix ® Ba)u(x1,yk) + (Ix ® Ba)fa
4 32 01875 - - - - Y
5 64 1.9062 - - - - = Dyu(xy,yk) +ky
6 128  67.625 . - - - ) ) ]
where f7, fz are zero vectors of dimension 6 x 1. On adding
o5 above two equations we get,
x10°
6 (Dx + Dy)u = —272sin(rx)sin(ryx) — kx — ky (41)
-5
x10 The system is solved for u using the Gauss-Seidel iterative
6 5 method. The maximum absolute error (L.,) and Lo error
5 ’ are computed, tabulated in Table [l and compared with
54 ,,I,,,,,., ‘.\..3‘5:‘33:‘3‘\\;;.‘\\ 4 the results obtained from the Scale-2 HW method and
N s ots . - .
2 fjff,';;;.:;';:;:.:':;.;‘.::,'.::‘:‘.g:‘g‘:qf:::‘-s‘\xs the existing numerical scheme, Finite Difference Method.
3 S
25 N 3 Although both the Scale-2 HW and Scale-3 HW methods
2 exhibit quadratic convergence, as evidenced in Table |lI} the
2 Scale-3 HW method demonstrates superior accuracy with
0

-

Fig. 4: Absolute error plot at resolution level J = 3 for

Problem 1.

Using given boundary conditions, the additional equations
can be written as

Fouy = [12,1(0)  p2,2(0)
ert 1p2,1(1)  p2a(1)
Fons = [p21(0)  p22(0)
ev? 1p2,1(1)  p22(1)

where ¢!’ = (¢1,ca, ..

p2,30(0)
p2,3M(1)

‘p2,3M(0)
p2,30(1)

ean), dY = (dy,da, ..

0 1][c]
1 1 |b]
(39)
0 1][d]
1 1] |bo]
(40)
.,dspr) are

Haar coefficients along x and y directions respectively, and

bT — (au(O)

ox

Ju(0)), b1 = (249

,u(0)). After extending the

minimal error at lower resolution levels. Specifically, the
accuracy achieved at J = 6 with 128 collocation points
using the Scale-2 HW method is nearly matched by the
Scale-3 HW method at J = 3 with only 81 collocation
points, while requiring significantly less computational time,
as detailed in Table [Tl Furthermore, the CPU time for the
Scale-3 HW method is notably lower than that of FDM
for the same number of collocation points, underscoring
the enhanced efficiency and accuracy of the Scale-3 HW
approach over both Scale-2 HW and FDM. Table [[V]provides
a comparison of the numerical and exact solutions at selected
collocation points. The solution is visualized through 3D
plot and contour plot in Figures [3a] and 3b] while Figure [
illustrates the absolute error plot at resolution level J = 3.
The color variation in Figure [] illustrates the distribution of
errors across different points, with lighter shades indicating
higher errors and darker shades representing lower errors.

B. Problem 2:
Consider
0?u  0%u v
— + -5 ==e
Ox?
The boundary conditions associated with this equation are
u(0,y) = 0, u(l,y) = €Y, u(z,0) = x and u(x,1) = ze.
The aforementioned steady-state heat distribution equation

(x,y) € [0,1] x [0,1] (42)
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Fig. 5: Scale-3 HW solution plot at resolution level J = 3 for Problem 2.

TABLE 1IV: Numerical and exact solution at selected
collocation points for Problem 1 at J = 3.

cgli)icatggn Scale—3. HW Exa.ct
points solution solution
(405 405y 0999937 1.000000
(83,85)  0.104797  0.104804
45 85) 0263358 0.263374
65 65) 00433123 0.043315
L5 195) 00033806  0.0033808
(45 715y 0132786 0.132795
(625, 385)  0.433253 0.43328
(145 335) 0445458 0.445486
(22 325) 0833696  0.833748
(383 413) 076542 0.765468
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Fig. 6: Absolute error plot at resolution level J = 3 for
Problem 2.

possesses an analytical solution given by

u(z,y) = xev. (43)

The final extended approximation for the 2D domain using
the Kronecker tensor product in both the = and y directions
are as follows:

02 ,
% — (B; @ L)u(x1,yi) + (B2 © I, )f
= Dxu(X17 Yk) + kx
2
f‘?ug;m — (I, ® Bs)u(x1, yi) + (Tl @ Ba)fs

= Dyu(x),yk) + ky

Here the f; and fy are non zero 6M X 1 column vectors
given by

T _ 1 T3M
f1- =(0,...,0 ,e", ..., e"M)
———
3741 times

fZT = (ylvyle,y%er, e »y3M,y3Me)

whereas the vectors were zero in Problem 1. On adding above
two equations we get,

(Dx + Dy)u = xlei —kx —ky (44)

and the system of equations is solved to determine wu.
Although both methods yield stable and acceptably accurate
solutions, it is evident that the approximate solution
converges at a faster rate with the Scale-3 HW method
compared to the Scale-2 HW method. The corresponding
solution (3D and contour) and absolute error plots at
resolution level J = 3 are presented in Figures [5a] and [5b|
and Figure [f] respectively. The color variation in Figure [§]
illustrates the distribution of errors across different points,
with lighter shades indicating higher errors and darker shades
representing lower errors. A comparison of the numerical
and exact solutions is provided in Table [V| while Table
highlights the L., and Ly error comparisons between the
FDM and the Scale-3 HW method. For various resolution
levels J =1,2,...,6, the accuracy of the proposed method
is evaluated and compared with the Scale-2 HW method. The
results are graphically represented in Figure [/} Additionally,
logarithmic plots of the maximum absolute errors for
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different J values, as shown in Figure EI, demonstrate the
order of convergence of the Scale-2 HW and Scale-3 HW
methods.

TABLE V: Numerical and Exact solution at some collocation
points for Problem 2 at J = 3.

cjli)icatggn Scale—3‘ HW Exa.ct
points solution solution
(405 405y 082436 0.824361
(82 85) 0116549  0.116549
(25 85) 0335935  0.335935
(785, 55) 1.02336  1.02336
L5 795) 0049415  0.049415
(455 7T5) 146236 1.46236
(%2 %0) 1.665 1.665
(145 335) 0355185  0.355185
(25 825y 0507109 0507109
(%85, 4L5) 120553 1.20553

C. Problem 3:

Consider steady-state heat distribution equation with
sinusoidal heat source vector
?u 9%u

92 + —— = sin(mz)

P (x,y) €10,1] x [0,1] (45)

Applying the proposed scheme to the current problem yields
an approximate solution that is well close to the closed-form
solution

sin(mx) (sinh(my)+sinh(r(1—y))—sinh(r))

(46)
The Dirichlet boundary conditions are derived from the given
analytical solution. After applying all approximations, the
final system of equations is given by

(Dx + Dy)u = sin(mx1) — kx — ky

u(@,y) = mw2sinh ()

(47)

This system is then solved to determine u. The simulation
results are visualized graphically, with Figures Qa] and [9b]
displaying the Scale-3 HW solution surface plot as well
as contour plot. As observed in Figures [I0] and [I2] the
proposed method demonstrates higher accuracy and lower
computational error compared to the Scale-2 HW method.
The color variations in Figures [I0] and [T1] represent the
error distribution at different collocation points, where lighter
colors indicate higher errors and darker colors signify lower
errors. The Scale-3 HW and exact solutions are presented
in Table [VII} Table [VII] compares the Finite Difference
Method with the Scale-3 HW method in terms of maximum
absolute error and Lo error, highlighting the superiority of
Scale-3 HW over FDM. Additionally, the logarithmic plot in
Figure [[3] confirms the quadratic convergence of the Scale-2
and Scale-3 HW methods toward the solution.
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TABLE VI: Evaluation of the numerical accuracy of Scale-3 HWM and FDM solutions for Problem 2.

10°0-

. Lo Lo
Points
FDM Scale3 HW FDM Scale3 HW
9 8.5906E-05 3.4037E-05 3.7594E-05 1.7497E-05
27 8.2942E-06  3.8433E-06 4.0436E-06 1.9761E-06
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Fig. 9: Scale-3 HW solution plot at resolution level J = 3 for Problem 3.
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Fig. 11: Contour plot of absolute error at resolution level
J = 3 for Problem 3.

TABLE VII: Numerical and exact solution at some
collocation points for Problem 3 at J = 3.
C:ﬁiﬁggn Scale-3 HW Exact
. solution solution
points
40.
(425 405) 00609408  -0.060941
(32,%3)  -0.00829978 -0.00829971
(25,85)  .0.0208576  -0.0208574
765 65) -0.00354928  -0.00354924
L5 T93) .0.00030456  -0.00030455
(425, 75)  .0.0114989  -0.0114988
(625, 385)  .0.0286731  -0.0286731
(145 552) 00287463  -0.0287463
(2L2,323) 00516417  -0.0516418
(385, 4L5)  .0.0466601  -0.0466602

D. Problem 4:
Consider the steady state heat distribution in a unit plane
where two sides are insulated, which leads to a set of both
Dirichlet and Neumann boundary conditions.
0? 0?
87;; + a—;; = —8n?sin(2mx)sin(2my)

Boundary conditions are

(43)

uz(0,y) = 2wsin(27y)
ux (L, y)

u

= 27sin(2my)
z,0)=0
z,1)=0

Exact solution for this problem is

(
(

u

u(z,y) = sin(2mx)sin(2wy). (49)

The approximation is carried out as said in Section 5, and
we get,

3M
du(0
u(@) =3 cipaai(e) + gi)(x)+u(0) (50)
=1
Ou(z) & du(0)
o :;cipl,xmw B (51)
along x direction and
duly) o~ du(0)
By - ;clpl,xyw D9 (52)
3M
du(0
wy) = Y cmnl) + T ) +ul0) 6
=1

along y direction respectively. Using given Dirichlet and
Neumann boundary conditions, the additional equations can
be written as

f 1:_]7171(0) p1,2(0) -+ piam(0) 1 0f |c
e p1,1(1) pr2(l) -+ pram(l) 1 0] [b1]
(54)
Fors = [p2,1(0)  p2.2(0) posm(0) 0 1] [d]
T p2a(1) pap(l) p2sm(l) 1 1] [bo]
(55)
where b7 = (%50 w(0)), bT = (%52 u(0)) and
CT = (C1,CQ,...,C3M), dT = (dl,dQ,...,dg,M) are Haar

coefficients along x and y directions respectively. After
extending the approximation to the 2D domain we get,

0? ,
% — (B1 ® L)u(x1, yi) + (B2 ® L)y
= Dxu(Xh Yk) + kx
2
(‘Ng;yk) — (I ® Ba)u(x1, yi) + (I @ Ba)fa

- Dyu(Xh yk) + ky

Here f; and fo are 60 x 1 column vectors where f17 =
(2mwsin(2mway),. .., 2wsin(2wesny ), 2wsin(2way ), . . .,
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Fig. 12: Error estimates at different resolution levels for Problem 3.

TABLE VIII: Evaluation of the numerical accuracy of Scale-3 HWM and FDM solutions for Problem 3.

. L Lo
Points
FDM Scale-3 HW FDM Scale-3 HW
9 4.7044E-05 1.5041E-05 6.8154E-04 2.1417E-04
27 4.8105E-06  2.1550E-06 6.7221E-05 3.0329E-05
81 5.1095E-07 2.4871E-07 7.1208E-06  3.4625E-06

TABLE IX: Comparison of Scale-3 HWM with Scale-2 HWM and FDM for Problem 4.

Scale-2 HW FDM Scale-3 HW Order of
J convergence (O..)
No.of ) L Noob oy, Lo Noob oy, Lo  Scale2 HW Scale-3 HW
Points Points Points
1 4 0.0452 0.0319 9 0.0528 0.0495 9 0.0153 0.0154 . .
28 0.0189 0.0175 27 0.0043 0.0048 27 0.0018 0.0018 0.8662 1.9539
316 0.0051 0.0051 81  43062E-04 5.1191E-04 81  2.0584E-04 2.3058E-04 1.7788 1.8705
4 3 0.0013 0.0013 . . y y y 1.9720 .
5 64  32951E-04 3.6099E-04 1.8485 .
6 128  82479E-05 9.5115E-05 1.9242 -

2rsin(2mxsy)) and fa = 0. Addition of above two
equations leads to the following system of equations

(Dx+Dy)u= —81?sin(2mx1)sin(2myy) — Ky — ky (56)

The system is solved, and the resulting Lo error and
maximum absolute errors are presented in Table [X| where
they are compared with the results of the Scale-2 HW method
and the FDM. The CPU time required for computation

is recorded for all three methods at various resolution
levels and compared in Table [X] The results indicate that
the Scale-3 HW method surpasses the Scale-2 HW and
FDM in terms of accuracy and computational efficiency. A
comparison between the numerical solution obtained using
above proposed method and the exact solutions at selected
ponits is provided in Table [XI} Additionally, the numerical
solutions and absolute errors are pictorially represented in
Figures [14a] [14b] and [T5] respectively. The color variation
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Fig. 14: Scale-3 HW solution plot at resolution level J = 3 for Problem 4.

in Figure [T3] illustrate the error distribution across different
points, with lighter shades indicating higher errors and darker
shades representing lower errors. The choice of boundary
condition significantly impacts the error distribution in
Figures [T3] and [T6 Specifically, the Neumann conditions
at the left and right boundaries result in higher errors
than the Dirichlet conditions applied to the top and bottom
boundaries.

VII. CONCLUSION

In this study, three different numerical methods, the
Scale-3 HW method, the Scale-2 HW method, and the
Finite Difference Method were compared for solving
the steady-state heat distribution equation in terms of
error estimates and computational efficiency. The results
demonstrate that the Scale-3 HW method outperforms
both the Scale-2 HW method and FDM, achieving higher
accuracy with lower Ly and L., errors. Additionally,
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Fig. 16: Contour plot of absolute error at resolution level
J = 3 for Problem 4.

TABLE X: Time comparison in Problem 4.

Scale-2 HW FDM Scale-3 HW
7 No.of CPU No.of CPU No.of  CPU
Points  Time (s) Points  Time (s) Points  Time (s)
1 4 0.0156 9 0.0469 9 0.0156
2 8 0.0156 27 0.0938 27 0.0625
3 16 0.0312 81 6.6406 81 4.6094
4 32 0.1562 - - - -
5 64 1.6875 - - - -
6 128 63.578 - - - -

the computational time required for the Scale-3 HW
method is significantly reduced compared to the other
two approaches, highlighting its efficiency in handling
high-resolution solutions. The superior performance of
the Scale-3 HW method can be attributed to its better
approximation properties and adaptability to complex
functions, making it a good choice for solving PDEs. The
comparison of numerical and exact solutions at selected
points further confirms its accuracy. The error distribution

TABLE XI: Numerical and exact solution at some collocation
points for Problem 4 at J = 3.

C(?liz)i(gtei?)n Scale-3 HW Exact
points solution solution
(495 405)  9.30483e-15 0
(82,85) 0375264 0375279
245 85) (579487  0.579611
(163 65) 0165278  -0.165234
L5 195) 00135 -0.013478
(482 773) 01014 0.101423
(655 383) 0918553  0.918711
(145555) 082825  -0.828385
(L3 325) 0491826 0491934
(385 4L5) 00762992 0.0763151

visualization also reveals that the Scale-3 HW method
minimizes local errors more effectively than the Scale-2 HW
and FDM methods. Future work may involve extending the
method to higher-dimensional PDEs and nonlinear problems
and applying the method to real-world applications in
engineering, physics, and finance to validate its practical
effectiveness using quantum computing techniques.
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