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Abstract—With the development of society and the growth 

of human demands, energy consumption is also continuously 

increasing. Green building energy-saving design is currently 

an important component in the field of energy consumption. It 

is also one of the current challenges that need to be addressed. 

To optimize the design of green buildings and reduce energy 

consumption while ensuring building comfort, a 

multi-objective green building energy-saving optimization 

model is constructed. An improved multi-objective back-bone 

particle swarm optimization algorithm based on adaptive 

disturbance factors is designed. To reduce the running time, a 

decomposition-based proxy model assisted multi-objective 

particle swarm optimization algorithm is designed. A new 

sample selection strategy guided by dual reserve sets is also 

designed. According to the experimental results, in single 

room and three bedroom buildings, the average hypervolume 

measurement values were 29311 and 49504, respectively. The 

average hypervolume measurement values of the proxy model 

were 21153 and 40230, respectively. The designed algorithm 

has good performance, which can provide technical support 

for the optimization design of green buildings. 

 
Index Terms—Green, Architecture, MOPSO, Design, 

Optimization 

 

I.  INTRODUCTION 

NERGY consumption is constantly increasing. The 

construction industry accounts for 40%. The 

energy-saving design has become the main direction of 

architectural design. Green building energy-saving design is 

a Multi-Objective Optimization (MOO) problem with 

multiple conflicting performance indicators [1]. With the 

advance in computer science, more researchers are starting 

from models to optimize the energy consumption. Lin et al. 

aimed to optimize building performance. An interactive 

architectural performance optimization model was designed. 

A multi-objective building optimization method was 

designed [2]. However, the algorithms used in these 

research also have problems. For example, control 

parameters are sensitive and the operating cost is expensive 

[3]. The proxy model assisted evolutionary algorithm can 

save the computational cost of evolutionary algorithms and 

solve the expensive operation costs. In previous studies, 

some scholars have designed an efficient proxy assisted 

hybrid optimization algorithm to solve expensive problems. 

This algorithm combines teaching based optimization 

algorithm and differential evolution algorithm [4]. However, 

when dealing with MOO problems, this method also faces 

difficulties in sample selection and complex model 

construction [5]. The current problems in optimizing green 

building design include algorithm sensitivity to control 

parameters and time-consuming calculations. 
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To address the sensitive control parameters, a Back-Bone 

Multi-Objective Particle Swarm Optimization (PSO) based 

on Adaptive Disturbance Factor (BBMOPSO-A) is 

innovatively designed firstly. Secondly, in response to the 

insufficient computation time of evolutionary 

optimization-based methods, a decomposition-based proxy 

model assisted multi-objective PSO (MOPSO) is designed, 

and the generation of proxy model management strategies is 

also designed to better reduce the running time of the 

algorithm. There are two innovations. The first point is the 

combination of disturbance factors and backbone MOPSO. 

The second point is the combination of proxy models and 

MOPSO. The research aims to enhance the global 

optimization ability of MOPSO, and reduce the running 

time and computational time, providing technical support 

for green building energy-saving design. 

II.  RELATED WORKS 

With the development of society, reducing building 

energy consumption and improving building energy 

efficiency have become issues that experts from all over the 

world consider together. Many experts have conducted 

research on the design optimization of green buildings. 

Zhou et al. selected a green office building in a certain city 

in China as an example to evaluate the indoor 

environmental quality and energy consumption of green 

office buildings, providing reference for the design of green 

buildings. The on-site measurement method was used to 

obtain the indoor environmental quality. The questionnaire 

survey was used to obtain users’ satisfaction with the 

building. The green office building was far less than the 

constraint value of national standards [6]. Almeida et al. 

selected university green buildings and non-green buildings 

with similar characteristics to analyze the impact of 

residential behavior on energy use. The building simulation 

method is used to compare the energy utilization of 

buildings. The interaction between occupants and systems 

in the building was simulated. The research results showed 

that the impact of occupants on building energy 

performance was about 72%, which provided reference for 

the green buildings [7]. Yue et al. designed a 

three-dimensional urban landscape model to analyze the 

application of green building materials. The 

auto-correlation function was used to simulate landscape 

signals. In addition, the study also adopted fuzzy evaluation 

methods and improved the 3D model. Different types of 

green building materials play different functions in urban 

landscape design [8]. Andiyan et al. analyzed the response 

of buildings to environmental issues. A harmonious 

relationship between the main functions of office buildings 

and the environment was created through the application of 

green building concepts. The results indicated that the green 

building concept could continue to be used to address 
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environmental issues in buildings [9].  

MOPSO can effectively solve MOO problems, which has 

been applied to solve MOO problems in different fields. 

Trng et al. designed a combination algorithm that combined 

MOPSO and third-generation non-dominated sorting 

genetic algorithm to achieve cost optimization of stiffness 

parameters for powertrain suspension systems. This study 

transformed the cost optimization into a MOO problem 

with six optimization objectives. It was better than that of a 

single MOPSO or the third generation non-dominated 

sorting genetic algorithm [10]. Xu et al. used probability 

theory to analyze the global convergence of MOPSO. The 

study also defined convergence metrics. The global 

convergence was transformed into the convergence of the 

metric sequence. The MOPSO did not guarantee global 

convergence with probability [11]. Anh et al. designed an 

improved MOPSO for optimal energy management of 

micro-grids. Pareto frontiers were used to seek multiple 

objective solutions. The algorithm designed in the research 

could be optimized in real-time. It had better performance 

than other heuristic algorithms [12]. Zhi et al. designed a 

control optimization method based on MOPSO to optimize 

the condenser control system in nuclear power plants. In 

this control method, the optimization object was the control 

parameters. The optimization objective was the step 

response performance. The designed method could obtain 

high-quality control parameters, with good performance 

[13]. 

In summary, the research on green building optimization 

and MOPSO is relatively rich. Moreover, the methods and 

fields involved are also relatively diverse. However, these 

research also have shortcomings. For example, the 

convergence of MOPSO is highly dependent on control 

parameters. Running is time-consuming and has many 

control parameters. Therefore, an improved multi-objective 

backbone PSO based on adaptive disturbance factors is 

designed. A decomposition-based proxy model assisted 

MOPSO is also developed. 

III. CONSTRUCTION OF ENERGY-SAVING DESIGN 

METHOD FOR GREEN BUILDINGS BASED ON 

MOPSO 

In this chapter, a BBMOPSO-A is constructed to 

address the shortcomings of traditional PSO. To improve 

the operational cost of the multi-objective backbone PSO, a 

decomposition-based proxy model assisted MOPSO is also 

developed. 

A. The BBMOPSO-A for green building energy-saving 

design 

There are two problems with the traditional PSO for 

the energy-saving design. One is sensitive to the control 

parameter value. The other is time-consuming in calculation 

[14-16]. A BBMOPSO-A model is designed to address the 

sensitivity of control parameter value. For this design, the 

main indicators are energy consumption and comfort. 

Therefore, the study constructs a MOO model based on 

these two indicators. Meanwhile, the study also uses 

EnergyPlus software. EnergyPlus software can ensure the 

accuracy of building models to a certain extent [17]. The 

multi-objective green building energy-saving optimization 

model is shown in equation (1). 
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In equation (1), EC  represents building energy 

consumption. DL  represents the user’s discomfort level. 

orx  represents the orientation of the room. In the air 

conditioning system, cstx  represents the cooling setting 

temperature. tolwx  is the thickness of the external 

insulation layer of the wall. hstx  represents the heating 

setting temperature. wlx  represents the window length. 

epdx  is the device power density. 
ghtcx  represents the heat 

transfer coefficient. whx  represents the window height. 

lpdx
 

is the lighting power density. srarx  represents the 

solar absorption rate of the exterior wall. 
shgcx  represents 

the solar heat acquisition rate of the window. 
pdx  is the 

personnel density. The Bare-Bones PSO (BBPSO) can solve 

single objective problems. The particle update method is 

shown in equation (2) [18-19]. 
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In equation (2), N  represents the particle swarm size. 

i  represents the i -th particle. ( )jgb t  stands for the 

global optimum of i -th particles. ( ),i jpb t  stands for the 

j -th dimension of the optimal value for the i -th 

individual in the t -th iteration. t  represents the number 

of iterations. This particle update method can be modified. 

The modified particle update method is shown in equation 

(3). 
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In equation (3), ( )0,1U  stands for a random number 

in [0, 1]. Figure 1 displays the BBPSO. 

From Figure 1, firstly, initialize the population of the 

BBPSO. Next, update the particle position. Thirdly, 

determine whether the particle has crossed the boundary. If 

it is determined to be yes, the particles will be reinitialized. 

Otherwise, proceed to the next step. Fourthly, calculate the 

particle fitness. Fifthly, update the individual best and 

global best. Sixthly, determine whether the termination 

conditions are met. If it is met, the optimal solution is 

output and the process ends. Otherwise, the number of 

iterations is increased by 1 before returning to the second 

step. To apply the BBPSO to solving MOO problems, a 

Gaussian distribution based on the global and individual 

best of particles is applied to update particle positions. A 

Bare-Bones MOPSO (BBMOPSO) with few control 

parameters is formed. The particle update method of 

BBMOPSO algorithm is shown in equation (4).
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In equation (4), 3r  represents a random number 

within the range  0,1 . ( ),i jgb t  stands for the j -th 

dimension of the i -th global optimal point in the t -th 

iteration. However, the BBMOPSO algorithm still suffers 

from the particles repeatedly searching for known regions 

and wasting computational resources. Therefore, the 

BBMOPSO algorithm is improved by introducing adaptive 

disturbance factors, resulting in the final BBMOPSO-A 

algorithm. The particle update method after introducing the 

adaptive disturbance factor is shown in equation (5). 

In equation (5), D  represents the disturbance factor, 

as shown in equation (6). 

( ) ( )5
, _
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In equation (6), T  stands for the maximum iterations. 
up

Dx  stands for the upper bound of the D -th decision 

variable value. low

Dx  stands for the lower bound for the 

variable value. _pro d  represents the disturbance 

probability. The specific calculation is shown in equation (7) 

[20]. 
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In equation (7), M  is the total objective function. 

m  represents the m -th objective function. max

mf  and 

min

mf  stand for the maximum and minimum values of all 

solutions in the reserve set regarding the m -th objective 

function, respectively. ( )( )m if Pb t  and ( )( )m if Gb t  

represent the m -th objective function values of iGb  and 

iPb , respectively. Figure 2 displays the BBMOPSO-A. 

From Figure 2, firstly, set the the required parameters 

of BBMOPSO-A. Secondly, generate the particle position 

and set the feasible reserve set to an empty set. Thirdly, 

calculate the objective function value. Fourthly, update the 

external reserve set. Fifthly, determine whether the 

maximum iterations are reached. If it is achieved, output the 

result. Otherwise, proceed to the next step. Sixthly, select 

the global extreme point of each particle. Seventhly, 

determine the individual extreme points of particles through 

the Pareto dominance relationship. Eighthly, generate new 

particle positions and perform consistent mutations, and 

then return to the third step. The research uses MATLAB to 

implement the designed algorithm. The specific process of 

BBMOPSO-A algorithm combined with MATLAB and 

EnergyPlus software is shown in Figure 3. 

From Figure 3, firstly, build a room model of a green 

building in the EnergyPlus software. Secondly, initialize the 

variable parameters. Thirdly, obtain the results of the 

EnergyPlus software. Fourthly, use MATLAB to write the 

BBMOPSO-A algorithm and update the particle positions. 

Fifthly, input the decision variable value into EnergyPlus. 

Sixthly, start and read the results in EnergyPlus through 

MATLAB. Seventhly, determine whether the result meets 

the standard. If it meets the standard, the process can be 

ended. Otherwise, it returns to the fourth step. 

N Y
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Fig.2 The specific process of BBMOPSO-A algorithm 
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Fig.1 The basic process of BBPSO 
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B. SMOPSO/D algorithm design for green building 

energy-saving design 

The BBMOPSO-A still has high running cost. To 

solve the computational time problem of BBMOPSO-A 

algorithm, a low computational cost proxy model assisted 

MOPSO is designed. This method first constructs the proxy 

model. Then the proposed Surrogate-model assisted 

Multi-Objective PSO based on Decomposition 

(SMOPSO/D) is designed. Figure 4 displays the 

SMOPSO/D. 

From Figure 4, firstly, for the SMOPSO/D algorithm 

framework, predict new particles and their target values. 

Secondly, input the predicted target value into reserve set 1. 

Thirdly, obtain both global and individual guides. Fourthly, 

update the particles and other operators. Fifthly, transfer the 

new particles and solutions to the proxy model. Sixthly, 

determine whether to update the proxy model again. If the 

result is no, output the optimal solution set and end the 

process. Otherwise, proceed to the next step. Seventhly, 

implement a representative solution selection mechanism. 

Eighthly, truly evaluate the representative solution. The 

newly generated representative solution and the true target 

value are input into reserve set 2. Ninthly, retrain the 

training agent model. The tenth step is to output the Pareto 

optimal solution set and end the process. The study adopts a 

dual reserve sets collaborative guided variable sample size 

proxy model management strategy. The first step of this 

management strategy is to build an initial proxy model. The 

second step is to generate specific proxy model 

management strategies. When constructing the initial proxy 

model, Latin hyper-cubes are used for sampling. It serves as 

a sample for building the model. The number of samples 

required for the initial proxy model is shown in equation (8) 

[21]. 

( )( )1 2

2

+ +
=

n n
Q                (8) 

In equation (8), n  represents the number of 

randomly selected points. The proxy model update strategy 

with variable sample size guided by dual reserve sets 

collaboration is mainly divided into three parts. The first 

part is to determine the update timing of the proxy model. 

In response to the increased training cost of updating the 

proxy model, the average prediction error is used to 

determine the update timing. The average prediction error 

for reserve set 1 is shown in equation (9). 
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In equation (9), ˆ
qf  represents the q -th objective 

function value obtained by fitting the proxy model. 
qf  

represents the true objective function value calculated by 

the energy consumption software. EP  is the set of 

endpoints selected from reserve set 1.   is the number of 

endpoints. '

ix  is the decision variable. The second part is 

the new sample selection strategy. To evaluate the overall 

similarity between the two datasets, the Hausdorff distance 

is adopted, as shown in equation (10) [22]. 

( ) ( ) ( )( ), max , , ,=H A B h A B h B A       (10) 

In equation (10), A  and B  represent two different 

datasets, respectively. ( ),h A B  represents the directed 

Hausdorff distance from datasets A  to B . ( ),h B A  

stands for the reverse Hausdorff distance. The ( ),h A B  is 

shown in equation (11). 

( ), max min
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= −
b Ba A
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In equation (11),  −a b  stands for the distance 

norm between a  and b . 
a  and 

b  are points in 

datasets A  and B , respectively. The ( ),h B A
 

is shown 

in equation (12). 
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 
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The specific steps of the new sample selection strategy 

guided by the dual reserve sets are shown in Figure 5. 
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Fig.3 The specific process of BBMOPSO-A algorithm after 

integrating MATLAB and EnergyPlus software 
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Fig.4 The specific framework of SMOPSO/D algorithm 
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From Figure 5, the first step of the new sample 

selection strategy is to store all new solutions in reserve set 

1. The second step is to evaluate all solutions in reserve set 

1. The third step is to update reserve set 1. The fourth step 

is to find the   endpoints in reserve set 1 that optimize the 

objective function. The fifth step is to determine whether 

the found endpoint has been stored in reserve set 2. If it is 

determined to be yes, proceed to the next step. Otherwise, 

the endpoint is placed in the temporary collection before 

proceeding to the next step. The sixth step is to calculate the 

non inferior points in reserve set 1 and endpoint set, as well 

as the Hausdorff distance of the elements in reserve set 2. 

The seventh step is to store the point with the maximum 

Hausdorff distance in a temporary set. The eighth step is to 

evaluate the solutions in the temporary set. The ninth step is 

to input a new sample point. The third part of the proxy 

model update strategy is to adaptively adjust the size of 

newly added samples. The new sample size is shown in 

equation (13). 

  ( )min max min, = +  − L l E f EP l l       (13) 

In equation (13), minl  represents the minimum sample 

size. maxl  represents the maximum sample size. 

 ,E f EP  is the model prediction error.     represents an 

upward rounding function. The SMOPSO/D algorithm 

utilizes the decomposition idea of the Multi-objective 

Optimization Evolutionary Algorithm based on 

Decomposition (MOEA/D). To generate initial particles 

with good distribution, a population initialization strategy 

based on crowding degree is introduced in the study. To 

ensure the diversity of the particle search method, the 

particle global and local guide update strategies based on 

decomposition are also introduced. The optimal solution of 

the aggregation function is shown in equation (14) [23]. 

( ) ( ) * *

1

ˆmin | , max |  
 

= −q

q q
q R

g x z f x z     (14) 

In equation (14),   represents the  -th weight 

vector. R  is the number of weight vectors. *z  is the 

objective function. *

qz  represents the objective function. 


q  is the  -th weight vector of the proxy model. The 

objective function *z  is shown in equation (15). 

( )   * ˆmin | , 1,2,...,=  qz f x x q R     (15) 

In equation (15),   represents the range of the 

independent variable x . The SMOPSO/D algorithm is 

displayed in Figure 6. 

From Figure 6, the first step of the SMOPSO/D 

algorithm is initialization. The second step is to calculate 

the predicted the particle’s objective function value. The 

third step is to store the new solution in reserve set 1. The 

fourth step is to update reserve set 1. The fifth step is to 

determine whether to update the proxy model. If updates 

are necessary, the size of the newly added samples is 

calculated. Otherwise, all optimal endpoints are stored in 

reserve set 2. The sixth step is to update the individual and 

global extreme points of the particles. The seventh is to 

update the particle position. Finally, whether the 

termination conditions are met is determined. If it is 

satisfied, the Pareto optimal solution is output and the 

process is ended. Otherwise, it will be returned to the 

second step. 

IV. ANALYSIS OF GREEN BUILDING ENERGY-SAVING 

DESIGN BASED ON MOPSO 

In this chapter, the performance of the BBMOPSO-A 

and the SMOPSO/D algorithm is verified. Comparison 

algorithms and indicators are selected for comparison. The 

experimental environment and parameters are set. The 

selected comparison indicators include hypervolume 

measure and SC measure [24]. 
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Fig.5 Specific steps of a new sample selection strategy guided by dual 

reserve sets 
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Fig.6 The specific process of SMOPSO/D algorithm 
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A. Result analysis of BBMOPSO-A for green building 

energy-saving design 

To validate the BBMOPSO-A, three other methods are 

selected for comparison, namely Non-dominated Sorting 

Genetic Algorithm II (NSGA-II), Multi-Objective Artificial 

Bee Colony (MOABC), and MOPSO. The evaluation 

indicators are the hypervolume measurement and the SC 

measurement. The initial population size of different 

algorithms is 60. The maximum iterations are 25. The 

experiment selects energy-saving design of single room and 

three bedroom buildings in Tianjin as examples. EnergyPlus 

v9.5.0 software and MATLAB R2020a software are used. 

The central processing unit applied in the experiment is 

Intel Core i5-12600K. The operating system is Windows 10 

with 16 threads. The memory is 128GB. A total of 5 

experiments are conducted. The hypervolume 

measurements using different algorithms on single room 

and three bedroom buildings are shown in Figure 7. 

From Figure 7 (a), in single room buildings, the 

maximum hypervolume measurement of the NSGA-II was 

29765, the minimum was 15226, and the average was 

21677. The maximum hypervolume measurement of the 

MOABC was 29040, the minimum was 27461, and the 

average was 27899. The maximum hypervolume 

measurement of the MOPSO hypervolume measurement 

was 30041, the minimum was 23194, and the average value 

was 27277. For the BBMOPSO algorithm, the maximum of 

the hypervolume measurement was 28489, the minimum 

was 25554, and the average was 27974. For the 

BBMOPSO-A algorithm, the maximum of the hypervolume 

measurement was 31264, the minimum was 28197, and the 

average was 29311. From Figure 7 (b), in the three bedroom 

building, for the NSGA-II algorithm, the maximum of the 

hypervolume measurement was 10632, the minimum was 

4611, and the average was 6169.5. For the MOABC 

algorithm, the maximum of the hypervolume measurement 

was 12784, the minimum was 9087, and the average was 

9251.9. For the MOPSO algorithm, the maximum of the 

hypervolume measurement was 9998, the minimum was 

5808, and the average was 7075.3. For the BBMOPSO 

algorithm, the maximum of the hypervolume measurement 

was 15985, the minimum was 14097, and the average was 

14322. For the BBMOPSO-A algorithm, the maximum of 

the hypervolume measurement was 50243, the minimum 

was 48907, and the average was 49504. The BBMOPSO-A 

algorithm performed better. The SC measurements in single 

room and three bedroom buildings are shown in Figure 8. 

In Figure 8 (a), in a single room building, the 

maximum, minimum, and average SC measurements of the 

NSGA-II algorithm were all 1. For the MOABC algorithm, 

they were 0.3376, 0.2968, and 0.3172. For the MOPSO 

algorithm, they were 0.4611, 0.3367, and 0.3807. For the 

BBMOPSO, they were 0.3213, 0.1722, and 0.2246. From 

Figure 8 (b), in the three bedroom building, the maximum, 

minimum, and average SC measures of the NSGA-II 

algorithm were all 1. For the MOABC algorithm, they were 

0.4312, 0.3127, and 0.3931. For the MOPSO, they were 

0.5842, 0.3314, and 0.4546. For the BBMOPSO algorithm, 

they were 0.3817, 0.3284, and 0.3553. The Pareto frontiers 

in different algorithms in single room and three bedroom 

buildings were shown in Figure 9. 
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Fig.7 Comparison of hypervolume measurements using different algorithms in single room and three bedroom buildings 
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Fig.8 Comparison of SC measures using different algorithms in single room and three bedroom buildings 
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In Figure 9, the horizontal axis represents total energy 

consumption, and the vertical axis represents uncomfortable 

time. From Figure 9(a), in the single room building, the 

maximum uncomfortable time obtained by the NSGA-II 

algorithm was 2632 and the minimum value was 487. For 

the MOABC algorithm, they were 3314 and 13. For the 

MOPSO algorithm, they were 3448 and 0. The maximum 

uncomfortable time obtained by the BBMOPSO-A 

algorithm was 3601, and the minimum value was 0. In 

Figure 9(b), in the three bedroom building, the maximum 

uncomfortable time obtained by the NSGA-II algorithm 

was 3253, and the minimum value was 2947. For the 

MOABC algorithm, they were 2889 and 2283. For the 

MOPSO algorithm, they were 2900 and 2671. The 

maximum uncomfortable time obtained by the 

BBMOPSO-A algorithm was 2901, and the minimum value 

was 2450. From this, the BBMOPSO-A algorithm had 

better performance. The comparison of solution time and 

CPU utilization of different algorithms is shown in Table I. 

From Table I, the average time consumption of 

BBMOPSO-A was 68.6ms, which was 336.8ms, 191.0ms, 

and 183.6ms lower than the average values of NSGA-II, 

MOABC, and MOPSO, respectively. This indicates that the 

BBMOPSO-A algorithm can solve multi-objective 

functions faster. In addition, the average CPU utilization of 

the four algorithms was 27.532%, 16.404%, 14.974%, and 

5.736%, respectively. The BBMOPSO-A algorithm has 

lower CPU utilization when solving multi-objective 

functions. Overall, the BBMOPSO-A algorithm performs 

better. 

B. Analysis of SMOPSO/D algorithm for green building 

energy-saving design 

To verify the SMOPSO/D algorithm, the 

BBMOPSO-A algorithm is selected for comparison. The 

comparison indicators include the hypervolume 

measurement, SC measurement, Coefficient of Variation 

(CV) of root mean square deviation, and Mean Absolute 

Percent Error (MAPE). The number of iterations was 30. 

The software used in the experiment is consistent with the 

software used for performance verification of the 

BBMOPSO-A algorithm. The hypervolume measurements 

between BBMOPSO-A algorithm and SMOPSO/D 

algorithm in energy-saving design of single room and three 

bedroom buildings are shown in Figure 10. 

In Figure 10(a), in a single room building, as the 

maximum number of iterations increased, the hypervolume 

measurement value also increased. For the hypervolume 

measurement of the BBMOPSO-A, the maximum, 

minimum, and average values were 34726, 9171, and 24892. 

For the SMOPSO/D, the maximum, minimum, and average 

values were 33491, 8611 and 21153. In addition, the total 

running time of the BBMOPSO-A was 1.5 hours. The 

SMOPSO/D was 0.8 hours. From 10 (b), in the three 

bedroom building, for the BBMOPSO-A algorithm, the 

maximum of the hypervolume measurement was 57096, the 

minimum was 19191, and the average value was 40230. For 

the SMOPSO/D algorithm, the maximum, minimum and 

average values were 58624, 20564, and 40092. In addition, 

the total running time of the BBMOPSO-A was 3.8 hours. 

The SMOPSO/D was 1.1 hours. The performance of 

SMOPSO/D algorithm was superior to BBMOPSO-A 

algorithm. The SC measurements between BBMOPSO-A 

algorithm and SMOPSO/D algorithm in energy-saving 

design of single room and three bedroom buildings are 

shown in Figure 11. 
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Fig.9 Comparison of Pareto frontiers of different algorithms in single room and three bedroom buildings 

 
TABLE I 

COMPARISON OF SOLVING TIME AND CPU UTILIZATION OF DIFFERENT ALGORITHMS 
 

Algorithm 

Time consuming/ms CPU utilization/% 

Number of experiments Number of experiments 

1 2 3 4 5 1 2 3 4 5 

NSGA-II 378 391 412 437 409 25.98 26.77 27.51 28.94 28.46 

MOABC 264 249 258 286 241 15.84 16.73 15.22 17.95 16.28 
MOPSO 237 254 263 277 230 16.27 15.72 13.24 15.21 14.43 

BBMOPSO-A 95 72 63 47 66 3.71 5.82 7.59 6.42 5.14 
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From Figure 11 (a), at different maximum iterations, 

the BBMOPSO-A was dominated by the SMOPSO/D 

algorithm at a proportion of 0.617, 0.463, 0.527, 0.598, and 

0.539, respectively. The proportion of SMOPSO/D 

algorithm being dominated by BBMOPSO-A algorithm was 

0.533, 0.654, 0.554, 0.557, and 0.536, respectively. From 

Figure 11 (b), at different maximum iterations, the 

proportion of BBMOPSO-A algorithm being dominated by 

SMOPSO/D algorithm was 0.709, 0.655, 0.594, 0.646, and 

0.639, respectively. The proportion of SMOPSO/D 

algorithm being dominated by BBMOPSO-A algorithm was 

0.514, 0.723, 0.664, 0.631, and 0.623, respectively. From 

this, the SMOPSO/D has better performance. The CV and 

MAPE values between BBMOPSO-A algorithm and 

SMOPSO/D algorithm in energy-saving design of single 

room and three bedroom buildings are shown in Table II. 
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Fig.10 Comparison of overvolume measurement between BBMOPSO-A algorithm and SMOPSO/D algorithm in energy efficiency design of 

single-room and three-room buildings 
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Fig.11 Comparison of SC measures between BBMOPSO-A algorithm and SMOPSO/D algorithm in energy-saving design of single room and three 

bedroom buildings 

TABLE II 
COMPARISON OF CV AND MAPE VALUES BETWEEN BBMOPSO-A ALGORITHM AND SMOPSO/D ALGORITHM IN ENERGY-SAVING DESIGN OF SINGLE ROOM 

AND THREE BEDROOM BUILDINGS 

Algorithm Situation 

CV MAPE 

Number of experiments Number of experiments 

1 2 3 1 2 3 

BBMOPSO-A 
Energy consumption objective 

function 
0.017 0.019 0.016 0.013 0.017 0.009 

 
TABLE III 

COMPARISON OF GD AND IGD WITH DIFFERENT ALGORITHMS 

Algorithm 

GD IGD 

Number of experiments Number of experiments 

1 2 3 4 5 1 2 3 4 5 

PSO 0.71 0.62 0.65 0.70 0.71 7.44 6.23 7.32 6.82 7.95 

GA 0.66 0.58 0.62 0.63 0.53 5.03 5.67 4.70 4.35 4.33 
NSGA-II 0.47 0.53 0.42 0.48 0.54 3.46 3.32 4.09 3.84 3.88 

LS-AW-PSO 0.41 0.37 0.35 0.33 0.36 2.49 2.77 2.44 3.05 2.90 

BBMOPSO-A 0.23 0.18 0.15 0.17 0.20 1.11 1.10 1.30 1.39 1.72 
SMOPSO/D 0.17 0.20 0.13 0.11 0.16 1.07 0.84 0.53 0.64 1.54 
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From Table II, the maximum CV of the BBMOPSO-A 

algorithm was 0.019 and the minimum CV was 0.016 on 

the energy consumption objective function. For the MAPE, 

they were 0.017 and 0.013. The maximum of CV for the 

SMOPSO/D algorithm was 0.014, and the minimum was 

0.011. For the MAPE, they were 0.009 and 0.006. In terms 

of uncomfortable hours, the maximum CV value of 

BBMOPSO-A algorithm was 0.026 and the minimum was 

0.022. The maximum of MAPE was 0.031 and the 

minimum was 0.024. The maximum of CV for the 

SMOPSO/D algorithm was 0.021, and the minimum was 

0.019. The maximum of MAPE was 0.013 and the 

minimum was 0.009. From this, the SMOPSO/D algorithm 

had better performance and higher prediction accuracy. In 

order to further demonstrate the performance of the 

SMOPSO/D algorithm, other algorithms are selected for 

comparative verification in the study. The comparison 

algorithms include PSO, Genetic Algorithm (GA), 

NSGA-II, and PSO combining Least Square (LS) and 

Adaptive Weight PSO (LS-AW-PSO). The comparison of 

the Generic Distance (GD) and Inverted Generic Distance 

(IGD) of different algorithms is shown in Table III. 

From Table III, the average values of the six 

algorithms on GD were 0.678, 0.604, 0.488, 0.364, 0.186, 

and 0.154, respectively. The SMOPSO/D algorithm had the 

smallest average GD value. This indicates that the 

SMOPSO/D algorithm had better convergence, and the 

approximate Pareto front solved by the algorithm was 

closer to the true Pareto front. Meanwhile, as for IGD, the 

average value of SMOPSO/D algorithm was 0.924, which 

was 6.228, 3.892, 2.794, 1.806, and 0.400 lower than the 

average values of PSO, GA, NSGA-II, LS-AW-PSO, and 

BBMOPSO-A, respectively. This indicates that the 

comprehensive performance of SMOPSO/D algorithm 

includes better convergence and distribution performance, 

and strong robustness. 

V. CONCLUSION 

To optimize the green building design, an improved 

BBMOPSO-A and a decomposition-based proxy model 

assisted MOPSO were designed. In single room and three 

bedroom buildings, the average values of hypervolume 

measurements for the NSGA-II algorithm were 21677 and 

6169.5, respectively. For the MOABC algorithm, the 

average hypervolume measurements were 27899 and 

9251.9, respectively. For the MOPSO algorithm, the 

average hypervolume measurements were 27277 and 

7075.3, respectively. For the BBMOPSO algorithm, the 

average hypervolume measurements were 27974 and 

14322, respectively. For the BBMOPSO-A algorithm, the 

average hypervolume measurements were 29311 and 49504, 

respectively. The hypervolume measurements of the 

BBMOPSO-A in single room and three bedroom buildings 

were significantly higher than those of the comparison 

algorithms. In single room buildings, the average ratios of 

NSGA-II algorithm, MOABC algorithm, MOPSO 

algorithm, and BBMOPSO algorithm dominated by 

BBMOPSO-A were 1, 0.3172, 0.3807, and 0.2246, 

respectively. In three bedroom buildings, the average ratios 

of NSGA-II algorithm, MOABC algorithm, MOPSO 

algorithm, and BBMOPSO algorithm dominated by 

BBMOPSO-A algorithm were 1, 0.3931, 0.4546, and 

0.3553, respectively. The BBMOPSO-A algorithm had 

superior performance. In single room and three bedroom 

buildings, the total running time of the BBMOPSO-A 

algorithm was 1.5 hours and 3.8 hours, respectively. The 

total running time of the SMOPSO/D algorithm was 0.8 

hours and 1.1 hours, respectively. The SMOPSO/D 

algorithm has less runtime and better performance. There 

are also certain shortcomings in the research. The 

optimization model for green building energy-saving 

design is relatively simple. Future research can incorporate 

more modules into the model. 
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