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Abstract—Although existing methods utilize knowledge
graphs and comparative learning to improve recommendation
performance, they are still deficient in negative sample selection
and information aggregation and are difficult to effectively
deal with data sparsity and noise problems. In this paper, we
propose a knowledge-aware recommendation algorithm based
on comparative learning and negative sample optimization
(CLNSO). The model is based on a user-item interaction matrix
and knowledge graph and realizes the fusion of multi-level
knowledge information by constructing local and non-local
graphs. The model adopts an adaptive negative sample selection
strategy (combining hard negative sample mining and dynamic
negative sample pool updating) to generate more challenging
negative samples in the comparison learning process, thus
improving the model’s discriminative ability; at the same time,
it introduces a negative attention mechanism in the graph
encoding stage, which combines dynamically screened difficult
negative samples, and by dynamically adjusting the weight of
the negative samples in the attention aggregation, it further
suppresses the noise interference and strengthens the key
information extraction. The experimental results show that
CLNSO significantly outperforms the existing methods in terms
of AUC, F1, and Recall@ on two public datasets, Book-Crossing
and MovieLens-1M, which verifies its effectiveness in dealing
with the problem of data sparsity and noise.

Index Terms—Recommendation, Negative sample optimiza-
tion, Contrastive learning, Knowledge graphs

I. INTRODUCTION

S a core technology in the field of information filtering,
recommender systems play an irreplaceable role in e-
commerce, social media, and content distribution platforms.
Its core objective is to filter personalized content from
massive information by analyzing users’ historical behaviors
and preferences, so as to improve user experience and
enhance the commercial value of the platform. However,
with the exponential growth of data size, traditional recom-
mendation methods gradually expose two major bottlenecks:
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first, the data sparsity problem is prevalent, especially
in the long-tail user and cold item scenarios, where more
than 90% of the entries in the user-item interaction ma-
trix are missing, which makes it difficult for traditional
methods, such as Collaborative Filtering (CF), to capture
effective association signals; second, the cold start problem
severely restricts the utility of the system, as the embedded
representations of new users or items cannot be accurately
initialized due to the lack of historical interaction data,
which in turn affects the reliability of the recommendation
results. To address the above challenges, researchers have
turned to Knowledge Graph (KG) to introduce rich seman-
tic information. Knowledge graphs construct multidimen-
sional associations between entities (e.g., “movie-director-
Spielberg,” “user-purchase-merchandise”) through structured
triples (head entity-relationship-tail entity), which are capa-
ble of revealing the underlying patterns of users’ interests
at the semantic level. However, traditional knowledge graph
embedding methods (e.g., TransE [2] and TransH can
only model simple first-order linear relationships (e.g., pairs
of directly connected entities), ignoring the higher-order
interaction semantics among entities (e.g., users indirectly
associate movie genres or production companies through
their favorite directors). This limitation leads to the diversity
and accuracy of recommendation results that are difficult
to meet the practical needs, especially when dealing with
complex long-tail distribution.

In recent years, Knowledge-aware Recommendation (KGR
has gradually become a research hotspot in academia and
industry, and its core idea is to build a more discriminative
recommendation model by fusing the structured semantics
of knowledge graphs and user behavior data. The current
research on knowledge-aware recommender systems mainly
focuses on three directions: knowledge-aware recommenda-
tion methods, comparative learning, and attention mechanism
optimization. Embedding-based approaches (e.g., PGACKG
and SAID map entities to low-dimensional vectors
through knowledge graph embedding techniques, but their
linear assumptions and static processing make it difficult
to capture dynamic user preferences. MetaKG |[7]| utilizes a
meta-learning framework to address cold-start problems in
knowledge graphs; the RecDCL [[8]framework optimizes user
and item representations through batch comparison learning
and feature comparison learning. Graph Neural Networks
(GNN) based methods (e.g., KGAT and KGIN
enhance the representation through multi-hop neighbor ag-
gregation but fail to effectively distinguish between local in-
teractions and global associations; the AKUPP ramework
proposed by Ma et al. combines user preference propagation
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and knowledge graph learning to solve the problem of higher-
order relationship mining and data sparsity by reinforcing
important relationships through multi-layer propagation and
attention mechanisms. Contrastive learning methods (e.g.,
KGCL MCCLK utilize self-supervised signals to
alleviate the data sparsity problem but generally suffer from
insufficient quality of negative samples, and randomized
or regularized negative sampling strategies are difficult to
provide consistently effective training signals. The KGSL
[(t4]framework introduces knowledge graphs for enriching
the item representations and devises cross-view contrastive
learning mechanisms to deal with noisy data. In terms
of the attention mechanism, although the existing models
(e.g., MBGCN and SMIN can dynamically allocate
aggregation weights, they lack the effective use of negative
sample information and are unable to achieve the synergistic
optimization of noise suppression and comparative learn-
ing objectives; KGNN-LS [17]adjusts the attention weights
through label smoothing techniques, but it relies on manually
setting the smoothing parameters. These limitations lead to
the existing methods still having significant deficiencies in
negative sample quality, dynamic noise suppression, etc.,
which restricts the performance improvement of recom-
mender systems.

In order to break through the above bottleneck, this
paper proposes a knowledge-aware recommendation algo-
rithm based on comparative learning and negative sam-
ple optimization (CLNSO). The core contributions of the
model are reflected in the following three aspects: 1) An
innovative dynamic negative sample selection strategy is
proposed, which effectively solves the problem of insuffi-
cient quality of negative samples in traditional comparative
learning by filtering the high-difficulty negative samples that
are semantically similar to the positive samples but have
not interacted with them through the hard-negative sample
mining technique and combining with the adaptive updating
mechanism to continually optimize the pool of negative
samples. 2) A negative attention mechanism is designed,
which combines the difficult negative samples of dynamic
screening in the process of graph encoding and adjusts the
attention weights through the similarity of negative samples,
which significantly improves the model’s suppression ability
of noise interference and the extraction effect of key features.
3) Extensive experiments on two baseline datasets, Book-
Crossing and MovieLens-1M, show that the proposed method
significantly outperforms the existing baseline methods in
key metrics such as accuracy, recall, and F1 value, verifying
the effectiveness and superiority of the model.

The paper is organized as follows: Section 2 outlines the
related work. Section 3 identifies the problem to be addressed
by the study. Section 4 describes in detail the model proposed
in this paper. Section 5 describes the experimental design and
evaluation. Section 6 summarizes the work of this paper and
discusses future research directions.

II. RELATED WORK

This chapter introduces the core theoretical and techno-
logical foundations on which the methodology of this paper
relies, including knowledge graph representation learning,
graph neural networks, comparative learning frameworks,

and their applications in recommender systems, to provide
theoretical support for subsequent model design.

A. Knowledge Graph Representation Learning

Knowledge graphs represent semantic relationships be-
tween entities through the ternary (h,r,¢) where h is the
head entity, 7 is the relationship, and ¢ is the tail entity.
Knowledge graph representation learning aims to map en-
tities and relations to a low-dimensional continuous vec-
tor space, preserving their semantic associations. Classical
approaches include:1) translational models (e.g., TransE):
assuming that the relation vector r is approximated as the
difference between the head and tail entity vectors, i.e.,
h + r =~ t, which is suitable for modeling simple first-
order relations; and 2) rotational models (e.g., RotatE :
mapping entity embeddings into a complex vector space
and modeling complex relations (e.g., symmetry, inverse
relations) by complex multiplications.

Although KGE can effectively capture direct associations
between entities, its ability to model higher-order semantics
(e.g., multi-hop paths) and nonlinear relationships is limited
and needs to be further optimized in conjunction with graph
neural networks.

B. Graph Neural Networks (GNNs)

The GNN iteratively updates the node representation by
aggregating the local neighborhood information of the nodes
through a message-passing mechanism. The formal expres-
sion of its core operation is shown in Equation (1).

MY = AGGREGATE ({h{! ™ [ue N(w)}). (1)

where N (v) denotes the set of neighbors of node v and
AGGREGATE is the aggregation function (e.g., mean
pooling, attention weighting). In knowledge-aware recom-
mendation, GNN is used to fuse user-item interaction graphs
with knowledge graphs, but traditional methods (e.g., KGAT)
are prone to introducing noise because they do not distin-
guish between local and global semantics.

C. Contrastive Learning Framework

Contrastive learning drives the model to learn discrimina-
tive representations by maximizing the similarity of positive
sample pairs and minimizing the similarity of negative sam-
ple pairs. Its objective function is usually based on InfoNCE
loss, which takes the form shown in Equation (2).

exp(s(zi, 2)/T) '
Sl exp(s(zi, 21)/7)

where s(-) is the similarity function (e.g., cosine similarity)
and 7 is the temperature coefficient. In recommender sys-
tems, contrastive learning is used to mitigate data sparsity
(e.g., KGCL), but its negative sample selection strategy
(e.g., random sampling) is prone to introducing low-quality
training signals and limiting model performance.

2

Lcontrast =—lo
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D. Knowledge-aware Recommender Systems

Knowledge-aware recommender systems improve recom-
mendation performance by integrating user behavior data and
knowledge graph semantic information. According to the
different ways of knowledge fusion, the existing methods
can be mainly classified into two categories: embedding
fusion and graph structure modeling. Embedding fusion
methods such as CKE enrich the representation by
splicing or weighted combinations of knowledge graph en-
tity embeddings and user-item embeddings; graph structure
modeling methods such as KGIN construct user-item-entity
heterogeneous information networks and utilize graph neural
networks for end-to-end semantic propagation and learning.
Although these methods have achieved good results in spe-
cific scenarios, they generally ignore the critical impact of
negative sample quality on model performance and do not
make full use of negative sample information to optimize
the attention mechanism, and these shortcomings provide
important improvement directions for the research work in
this paper.

Although existing methods (e.g., KGIC improve rec-
ommendation performance by fusing knowledge graphs and
user behavior, their limitations in negative sample selection
and noise suppression remain unresolved; the traditional
negative sampling strategy is difficult to provide highly
discriminative training signals, and the attention mechanism
lacks dynamic utilization of negative sample information. To
address these issues, this paper proposes a novel knowledge-
aware recommendation framework in Chapter 3, which
achieves more robust semantic representation learning by
co-optimizing the negative sample selection and attention
aggregation mechanisms.

I1I. METHODOLOGY
A. Definition Of The Problem

Two core types of structured data are first defined: user-
item interaction data and knowledge graphs, and knowledge-
enhanced recommendation tasks are formally described.

In a recommender system, let u = {uj,ug, - ,up}
denote the set containing M users and v = {v1, v, - , N}
denote the set containing N items. The interaction between
a user and an item is represented by the user-item interaction
matrix Y € RM*N_ where 4, = 1 denotes that there is an
interaction between user v and item v, and ¥,, = 0 denotes
that there is no record of interaction between the two.

In order to incorporate more external information in the
recommender system, a knowledge graph G, represented by
the set of triples G = {(h,r,t) | h € e,7 € R,t € ¢},
is introduced, where h and ¢ are the head entity and the tail
entity, respectively; r denotes the relationship between them,
and € and R are the set of entities and the set of relationships,
respectively. In the recommendation task, some of the items
v € V are mapped to entities e € ¢ in the knowledge graph.
For this purpose, the model constructs the set of item-entity
alignments A = {(v,e) | v € V, e € €}, where (v, e) denotes
the item v corresponding to the entity e in the knowledge
graph. With this alignment relation, the recommender system
is able to combine user-item interaction data with knowledge
graph information to generate more accurate and semanti-
cally rich recommendation representations.

B. Overview Of The CLNSO Model

Among the existing knowledge-aware recommender sys-
tems, the KGIC [20]model has made significant progress
in improving recommendation performance by combining
knowledge graph and contrast learning techniques. The core
innovation of the model lies in the construction of a dual
graph structure of local and non-local graphs and and the
adoption of a multilevel comparative learning framework
within and between graphs. Specifically, KGIC first captures
the direct interaction information between users and items
through local graphs while mining cross-domain higher-
order semantic relationships using non-local graphs; then it
realizes the alignment of collaborative filtering signals with
knowledge graph information in intra-graph comparative
learning and establishes the association between local and
non-local graphs in inter-graph comparative learning. This
design effectively mitigates the data sparsity problem and
enhances the representation capability of the model.

However, after in-depth analysis, it is found that there are
still two key deficiencies in the KGIC model: firstly, in terms
of negative sample selection, KGIC adopts a static negative
sample pool and a fixed-rule sampling strategy, which is
unable to dynamically identify the “difficult negative sam-
ples” that are semantically similar to the positive samples,
resulting in a lack of sufficient discriminative training signals
during the comparative learning process; secondly, in the
stage of information aggregation, the attention mechanism
in the Secondly, in the information aggregation stage, the
attention mechanism of KGIC fails to fully consider the
interference effect of negative samples, which makes the
noise information in the knowledge graph over-amplified in
the propagation process and affects the extraction effect of
key features.

To address the above problems, this paper proposes the
CLNSO model shown in Fig. 1, which is systematically
improved on the basis of the KGIC framework. In terms of
negative sample optimization, CLNSO innovatively designs
a dynamic negative sample selection strategy (shown in the
blue dashed box in Fig. 1), which significantly improves
the training effect of comparison learning through the hard
negative sample mining and adaptive updating mechanism;
in terms of graph coding, CLNSO proposes a negative
attention mechanism (shown in the purple dashed box in
Fig. 2), which combines the dynamically screened difficult
negative samples with negative sample similarity to adjust the
attention weights, effectively suppressing noise interference
and enhancing the extraction of key features. These improve-
ments allow CLNSO to further enhance the robustness of the
model in data sparse and noisy interference scenarios while
maintaining the original advantages of KGIC.

Specifically, the improvement of CLNSO is mainly re-
flected in the following three aspects: first, the negative
sample quality problem caused by static sampling of KGIC
is solved by the dynamic negative sample selection strategy;
second, the negative attention mechanism is introduced to
optimize the noise filtering ability of KGIC in the process
of information aggregation; and third, the semantic consis-
tency between the local graphs and the non-local graphs is
enhanced by the joint optimization framework.

Volume 33, Issue 10, October 2025, Pages 4108-4118



Engineering Letters

Selection

- »{ Local - User
Embeddings
KGR Graph Multi-level interactive r_aFa?)E_ ] I?e:]cdzrp:;e
Topoology Construct comparative learning |_E_n_cgd_irlg_,' !
»{ Local —> ltem
Embeddings

Negative Sample

Mining

Hard Negative Sample ]

Adaptive Negative
Sample Selection

Dynamic Negative
Sample Pool

]

Fig. 1. CLNSO modeling framework

C. Map Encoding

KGIC uses an ordinary attention mechanism for graph
encoding, aggregating tail entity embeddings by computing
the attention weights 7(ey, r) of head entities and relations.
However, KGIC does not consider negative sample inter-
ference, which results in noisy nodes (e.g., irrelevant enti-
ties) being given higher weights in information propagation,
affecting key feature extraction. For this reason, CLNSO
proposes the negative attention mechanism (Egs. 7, 22, 25),
which introduces a negative similarity penalty term in the
attention weight computation, which dynamically reduces the
weights of the neighbors that are semantically unrelated to
the current node, thus suppressing noise propagation.

The graph encoding phase maps the multi-level informa-
tion in the local and non-local graphs into low-dimensional
embeddings to generate the final representation of the user
and the project, which consists of the following four main
modules, as shown in Figure 2.

(1) Mapping user IDs, item IDs and entities and rela-
tions in KG are mapped as low-dimensional dense vectors
to generate the user/item initial embedding and KG en-
tity/relationship embedding. The embedding representation
is calculated as shown in Egs. (3)-(6).

E, = Embedding,,, (id,), 3)
E; = Embedding,,,, (id;), @)
E. = Embedding,,,;, (ide), ®)
E, = Embedding,.,+ion (id:)- (6)

where F,, and F; represent the embedding representations of
users and items, respectively, and F. and E, represent the
entity and relationship embeddings in the knowledge graph.
Since simple embedding is not enough to capture complex
inter-entity relationships, to further enhance the information
aggregation effect, the model introduces a negative attention

mechanism in the attention aggregation layer.
(2) Calculate the attention weights of the target node and
neighbor nodes as shown in equation (7).

a(eyel) = a(€7€/) —A- NegAtt(Ee7 Ee/)7 (7)

where )\ is the moderating parameter for negative attention
and NegAtt(-) is used as a function to measure negative affect
(based on similarity).

After obtaining the adjusted attentional weights, the in-
formation of all neighboring nodes is then weighted and
summed using Eq. (8).

E¥E = > aqeEe, ®)
e’€N(e)

where E. denotes the embedded representation of the neigh-
boring entity €', (. . is the attention weight adjusted by
the negative attention mechanism, and N (e) denotes the set
of neighbors of the target entity e. The process generates an
aggregation vector Fg.

The original embedding of the target entity is combined
with the neighbor information obtained through the aggre-
gation of Eq. (8) to generate the final entity embedding
representation shown in Eq. (9).

Eéﬁnal) = MLP(E, + E%¢). 9)

where F:¢ is the neighbor information aggregation vector,
E. denotes the original embedding of the target entity e,
MLP(-) denotes the multilayer perceptron, and E. is the
vector spliced with the neighbor information E:®¢ obtained
from the aggregation as an input to generate the final
representation £ through a nonlinear transformation.

(3) The model splices the original embedding F,, of the
target node with the aggregated neighbor context vector Efinal
as shown in Equation (10).

B — concat(E, + Efinl), (10)
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where E,, denotes the original embedding of the target node
and Enl jg the neighbor information obtained through the
aggregation of Eq. (9).

Subsequently, in order to further extract the higher-order
features in the joint vectors and map them to the final rep-
resentation space, the model inputs EfM into a multilayer
perceptron M LP and performs a nonlinear transformation
to obtain the final fused representation shown in Eq. (11).

Eg‘usion) — MLP(E,(LﬁnaD); (1 1)

where E{"°" combines the embedded information of the
user itself and the higher-order information learned from the
knowledge graph.

(4) In the prediction stage, the model firstly utilizes Eq.
(12) to compute the inner product of F, and E; to obtain
the matching score Scu,i) between the user and the item,
which reflects the similarity between the user and the item
in the embedding space, i.e., the higher the similarity, the
larger the matching score.

Stusy = BL"" . E;, (12)

Plusi) = 0 (S(uyi))- (13)

Next, the model uses the sigmoid function in Eq. (13) to
normalize the matching scores by mapping them to the 0,1
interval, which yields the final recommendation probability

P(U,1).

D. Negative Sample Selection Strategy

KGIC uses a static pool of negative samples, which
is generated by random sampling. This strategy does not
dynamically adapt to the training process, resulting in a large
number of “simple negative samples” (which are significantly
different from the positive samples) being selected, weaken-
ing the discriminative power of comparative learning. To this

end, a dynamic negative sample selection strategy is designed
in the CLNSO framework to optimize the training signals for
contrast learning through hard negative samples and adaptive
updating.

(1) The model screens the negative samples that are most
similar to the positive samples based on cosine similarity
in each training cycle. Let the positive sample embedding be
E,, the candidate negative sample embedding be F,,, and the
set of candidate negative samples be N; the cosine similarity
is calculated as shown in equation (14).

_ Ep By
[ EpllllEnll”

where I, and E,, are vector representations of positive and
negative samples, respectively. The higher S(E,, E,,) is, the
closer the semantics of the negative sample are to the positive
sample.

Based on the cosine similarity score, the k negative
samples with the highest similarity are selected as the hardest
negative samples. The specific process is shown in Egs. (15)
and (16).

S(Ey, En) (14)

Nha'r‘d = arg’rEn:,léNS(Ep7En)a (15)
”Nhard” =k, (16)

Since the parameters of the model are constantly updated
during training, the difficulty of the negative samples will
also change. Therefore, we recalculate and update the pool
of negative samples at the end of each training, as shown in
Eq. (17).

Npool — Update(Npoola Nhard)- (17)

At the end of each training, the currently selected set of
hardest negative samples Np4-q is dynamically updated to
the pool of negative samples N, through the Update(-)
function.

(2) To further enhance the effect of contrast learning,
the model uses InfoNCE loss to measure the differentiation
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between positive and negative samples, as shown in Equation
(18).

exp(s(Ep, £} ))
ZEneN exp(s(Ep, En))’

where E; is the true pairwise term (positive example) for the
positive sample, S(E,, Ez‘f ) represents the similarity of the
positive sample pair, and S(E,, E,,) represents the similarity
of the positive sample to the negative sample.

Next, in order to adjust the pool of negative samples based
on the contrast loss feedback, the loss value of each candidate
negative sample L, is calculated as shown in Equation (19).

exp(s(Ep, En))
ZEkGN exp(s(Ep, Ey))’

where L,, is used to measure the “difficulty” of comparison
learning for each negative sample E,,, the larger the loss
value L,,, the more similar F,, is to the positive sample F,,.
Subsequently, as shown in Eq. (20), £ negative samples
with higher losses are selected from the candidate negative
samples to form the set of adaptive negative samples.

(18)

Lcontrastive = - IOg

L, =—log

19)

‘Nadaptive| =k. (20)

This ensures that the model always learns the most chal-
lenging negative samples throughout the training process.

E. Comparative Learning

KGIC learns to align local and non-local graph represen-
tations through inter-graph comparison, but its comparison
objective relies only on ordinary similarity computation and
does not jointly optimize negative sample selection and
attention mechanisms. In addition, KGIC’s non-local graphs
are susceptible to higher-order noise (e.g., irrelevant cross-
domain entities), resulting in limited semantic alignment ef-
fects. To this end, the joint optimization framework CLNSO
is proposed to combine the negative attention mechanism
with dynamic negative sample selection for inter-graph com-
parison: 1) Cross-graph negative attention (Eq. 25): the neg-
ative similarity penalty is reused in the attention aggregation
of non-local graphs to suppress the noise node interference.
2) Dynamic negative sample support: negative samples used
in the inter-graph comparison are also from the dynamic
pool, ensuring that the comparison task focuses on difficult
samples.

Based on graph coding, a dual optimization framework for
local and non-local contrast learning is further proposed, and
the model is able to extract more discriminative user-item
representations from local direct interaction information and
non-local latent knowledge.

(1) Local contrast learning uses a negative attention mech-
anism to filter hard negative samples in the local graph
and optimize the user embedding representation. During the
training process, the model needs to maximize the similarity
S(E., E,) between the user embedding F,, and the positive
sample embedding F,, while suppressing the similarity with

the hard negative sample E,,, as shown in Equation (21).
S(Equv) > S(Eu,En),VTL S Nhard7 (21)

where Npqrq 1S the set of hardest negative samples.

The negative attention mechanism is introduced in the at-
tention aggregation layer to dynamically adjust the neighbor
node weights as shown in Equation (22).

local

Qeery = Ae,er) — A - NegAtt(Ee, E./), (22)
where ¢’ is a neighboring entity in the local graph and
NegAtt(E,, E.r) = S(FE., E.) measures negative sample
similarity.

To achieve this goal, InfoNCE-based contrast loss function
is used as shown in Eq. (23).

exp(s(Eu, E)/T)

Loca =—1 .
o O S e, D (5(Eu, B )/7)

(23)

where El‘f represents all localized positive sample pairs
(user-items), N; is the set of negative samples, selected
from the pool of negative samples, and 7 is the temperature
parameter, used to adjust the smoothing of the loss.

(2) Non-local contrast learning utilizes non-local graphs to
capture latent interest and cross-layer semantic consistency
in order to compensate for the inadequacy of local graphs in
long-range dependency modeling. To maintain consistency
of information across layers, it is assumed that the represen-
tation of the same entity in successive layers should be as
similar as possible, as shown in Equation (24).

EW ~ gD, (24)

In the attentional aggregation of nonlocal graphs, Eq. (7)
is reused, but the range of the adjustment weight calculation
is shown in Eq. (25).

A = e,y — A - NegAtt(Ee, Eer), (25)
where ¢’ is the higher - order neighboring entities in the
nonlocal graph, while NegAtt computes the adaptation cross
- domain similarity.

Based on the above adjustments, the non-localized contrast
loss is defined as shown in Eq. (26).

() @U+1)
exp(s(BY, B r
Lnon-local = - E log p( ( (l;; >/ ) , (26)
Grep 2k exP(s(Eu’, Ey)/T)

where Eq(f) is the entity embedding in layer [ and E,(,H_l) is
the embedding in layer [ + 1.

In addition, in order to keep the negative sample pool in the
nonlocal graph always contains the most indistinguishable
samples, this study prioritizes the negative samples that
contribute the most to L, —i0oca; Dased on the contrast loss
feedback and updates the negative sample pool as shown in
Egs. (27) and (28).

1o exp(S(Ey, E;)))
o S 1)

non-local max
Nhard A argE;EN (

Ltolal = Llocal + Lnon—local- (28)

Combining the localized contrast loss and the non-
localized contrast loss gives the final contrast learning loss
Ltotal-
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TABLE 1
DATA SET STATISTICS AND HYPERPARAMETER SETTINGS

Component Variant Book-Crossing MovieLens-1M
User - item # users 17,860 6,036
Interaction

# items 14,967 2,445

# interactions 139,746 753,772
knowledge # entities 77,903 182,011
Graph

# relations 25 12

# triplets 151,500 1,241,996
Hyperparameter 0.001 0.001
Settings

# 1 1x 106 1x 106

#d 16 16

#t 0.2 0.2

# Ao 1x107% 1x107%

(Ir: Tearning rate, A1: weight of loss, d: Embedding dimensions, ¢: temp, A2:
regularization)

IV. EXPERIMENTS

To answer the following research questions, we conducted

extensive experiments on two public datasets.

Question 1 (RQ1): What is the performance of the CLNSO
model compared to existing models under different datasets?

Question 2 (RQ2): Do the main components (e.g., negative
attention mechanisms, negative sample selection strategies)
actually work well?

Question 3 (RQ3): How do different hyperparameter set-
tings affect the CLNSO model?

A. Experimental Setup

1) Description Of The Data Set: Two publicly available
data sets were used to evaluate the effectiveness of CLNSO:
Book-Crossing and MovieLens-1M. They vary in size and
sparsity to make the model more convincing. The basic
statistics of the two datasets are shown in Table 1.

Book-Crossing: a book dataset from the Book-Crossing

community, containing user ratings of books (ranging from
0 to 10), covering a wide range of book genres and user

behavior data, providing a rich resource for book recom-
mendations.

MovieLens-1M: contains about 1 million movie ratings
data, which are in the range of 0 to 5, reflecting users’
intuitive evaluation of movies.

To ensure data consistency, RippleNet was followed

to convert explicit feedback to implicit feedback in both
datasets, where Table 1 represents the positive samples. In
order to determine the optimal number of negative samples
K, this study used a grid search (candidate range: 5, 10,
20, 50) to select the value K with the highest AUC on the
validation set to ensure the validity of negative sample se-
lection. Ultimately, each positive sample matches /K negative
samples, i.e., a 1 : K sampling strategy is used.

In the construction process of subknowledge graphs,
the methods of RippleNet and KGCN are referred to
and constructed using Microsoft Satori knowledge graphs.
Specifically, each subknowledge graph is stored in the form

of a ternary, and a subset with a confidence level higher
than 0.9 is filtered from the whole knowledge graph. After

construction, all valid movie/book IDs are collected by

matching the entity names at the end of the triples and further

matching the heads of the triples corresponding to these IDs

so as to filter out the compliant triples and finally construct
the sub-knowledge graphs. Table 1 shows the basic statistical
information of the two datasets.

In this study, the dataset is divided according to the ratio
of 6:2:2, in which 60% is used as the training set for model
training, 20% as the validation set for hyperparameter tuning,
and 20% as the test set for final performance evaluation.
The data are divided by random sampling, i.e., 20% of the
data are randomly selected as the validation set, 20% of the
remaining data are selected as the test set, and the remaining
60% are used as the training set, in order to ensure a balanced
distribution of the data and the stability of the experimental
results.

2) Evaluation Indicators: In order to fully evaluate the
performance of this model, this study validates it in two
experimental scenarios:

(1) In the click-through rate prediction (CTR) task, AUC
and F1 scores are used as evaluation metrics to measure
the discriminative ability and predictive effectiveness of the
model, as shown in Egs. (29) and (30).

1
AUC = PN Z Z 1(sp > Sn).

peEP neN

(29)

whereP and N denote the set of positive and negative
samples, respectively; S, and S,, are the predicted scores of
the positive and negative samples, respectively; while 1(-) is
the indicator function (taking 1 if the condition in parentheses
holds, 0 otherwise).

(2) In the Top-K recommendation task, Recall@K is used
as an evaluation criterion, where K is set to 5, 10, 20, 50,
and 100 to measure the recall of recommendation results.

Flo 2 x Precision x Recall

30
Precision + Recall '’ (30)

In this case, the precision and recall rates are calculated
as shown in equations (31) and (32).

Precision = L a3
IO = o T Fp
TP
Recall = TP+ FN’ (32)

TP, FP, and FN represent the number of true, false
positive, and false negative cases, respectively.

In the Top-K recommendation task, Recall@K is used as
an evaluation criterion to measure the proportion of the first
K results of the recommendation list that contain positive
samples, as shown in Equation (33).

|RﬂTK‘

Recall e K =
IR

(33)

|[RNTg| denotes the number of correctly recommended
items in the intersection of the set of the user’s real relevant
items R and the first K items 7T}, of the recommendation list;
|R| denotes the total number of all real related items of the
user.
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3) Comparison of Methods: In order to demonstrate the
effectiveness of the proposed CLNSO, CLNSO is compared
with state-of-the-art methods, including traditional recom-
mendation algorithms based on LibFM, SVD, and BPRMF;
embedding-based methods (CKE, RippleNet, SHINE); path-
based methods (PER); and GNN-based methods (CG-KGR,
KGIN, MCCLK, KGIC, LightGCN, DKN, KGCN, KGNN-
LS, CKAN) as follows:

LibFM Combining feature engineering with decom-
position modeling for learning via stochastic gradient descent
with Markov Chain Monte Carlo inference.

SVD Fusion of neighborhood and latent factor mod-
els, integration of explicit and implicit feedback.

BPRMF Optimizing personalized ranking by stochas-
tic gradient descent with a self-sampling algorithm based on
Bayesian optimization criterion.

CKE Combining collaborative filtering with struc-
tural, textual, and visual knowledge representations in knowl-
edge graphs for joint learning of multimodal information.

RippleNet Iteratively expands user interests through
ripple propagation generates a preference distribution of
candidate items.

SHINE A multi-view self-encoder embedding model
is used to fuse emotional, social, and user profile information
to effectively deal with cold start problems.

PER [127]} Diffuses user preferences in heterogeneous infor-
mation networks using meta-paths and achieves high-quality
recommendations through Bayesian ranking optimization.

CG-KGR A personalized recommendation model
based on a knowledge graph that extracts user and external
knowledge information through a co-guidance mechanism.

KGIN Modeling user intent and relationship path per-
ception to capture fine-grained relationships between users
and items.

MCCLK Multi-view comparison learning model to
enhance semantic feature extraction by comparing local and
global graph views.

KGIC It is a knowledge graph-based recommendation
model that unifies collaborative filtering and knowledge
graph information by constructing local and non-local maps
and learning from multi-level interactive comparisons within
and between graphs.

LightGCN Simplified version of graphical convo-
lutional networks, retaining only the core components of
neighborhood aggregation for efficient propagation of user-
item embeddings.

DKN Combining knowledge graph with CNN for se-
mantic representation in news recommendation and capturing
user interests through attention mechanism.

KGCN Based on graph convolutional networks,
higher-order structural and semantic features are captured by
aggregating entity neighborhood information.

KGNN-LS The model transforms the knowledge
graph into an exclusively weighted graph via a user-specific
relational scoring function, and combines it with label
smoothing regularization for the end-to-end learning of per-
sonalized item embeddings for recommendation.

CKAN The model is a recommender system that
fuses collaborative filtering with knowledge graphs to capture
knowledge associations in user-item interactions through an
attention mechanism.

4) Parameter Setting: In this study, the Adam optimizer
is used for model training. In order to improve the model’s
performance, a grid search is conducted for the key hyper-
parameter of negative sampling size. The candidate values
are [5, 10, 20, 50], and the optimal negative sampling size
is finally determined to be 20. Meanwhile, the batch size
is set to be 64, and the sizes of the local ternary set and
the non-local ternary set are 40 and 128, respectively. In
addition, to adequately capture the higher-order neighbor
information, the depth of the graph neural network is set to
be 2 layers. The model CLNSO framework is implemented
using PyTorch, and the specific configurations of other hy-
perparameters are detailed in Table 1, and these settings are
referred to as the empirical values from related literature and
previous studies.

B. Comparative Test (RQI)

The model CLNSO is experimentally compared with a
variety of baseline models on two public datasets, Book-
Crossing and MovieLens-1M. The results of the experiments
are shown in Tables 2 and 3, with the best results in bold and
the second-best results underlined. In terms of overall per-
formance, this model shows strong competitiveness in both
AUC and F1 evaluation metrics, which fully demonstrates
its effectiveness in knowledge-aware recommendation tasks.

TABLE II
COMPARATIVE EXPERIMENTAL RESULTS UNDER THE BOOK-CROSSING
DATASET
AUC F1
0.691 0.618
0.672 0.635
0.6759 0.6235
0.7211 0.6472
0.7578 0.6714
0.7273 0.6614
0.7625 0.6777
0.7464 0.6676
0.6134 0.6469
0.7420 0.6671
0.6762 0.6314
0.6841 0.6313
0.7725 0.6818
TABLE III

COMPARISON EXPERIMENT RESULTS UNDER MOVIELENS-1M DATASET

AUC Fl1
0.8920 0.7921
0.9065 0.8024
0.778 -
0.7124 0.6670
0.8834 0.8056
0.8880 0.8091
0.655 -
0.8918 0.8166
0.8880 0.8171

On the Book-Crossing dataset, this model achieves 0.7725
and 0.6818 on the AUC and F1 metrics, respectively, and
shows a significant advantage over other baseline models.
Specifically, the performance of traditional matrix decom-
position methods (e.g., SVD) is relatively limited, and both
AUC and F1 are at a low level, making it difficult to effec-
tively capture the complex relationship between users and
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items. In contrast, the knowledge graph enhancement models
(e.g., CKE, SHINE, PER, KGIC, LightGCN) outperform the
traditional methods as a whole, among which the AUC and
F1 of MCCLK are already close to the optimal. However,
compared with these models, the present model further
improves the differentiation ability of representation learning
after introducing dynamic negative sample selection and a
negative attention mechanism and ultimately outperforms the
other methods in both AUC and F1 metrics, reflecting a more
accurate portrayal of users’ implicit preferences.

In the MovieLens-1M dataset, this model also shows
good performance: the AUC metric reaches 0.8880, which is
comparable to excellent baseline models (e.g., LightGCN);
and the F1 metric achieves 0.8171, which exceeds a variety
of knowledge-graph-augmented or GNN models, including
KGIC, KGCN, etc., which indicates that this model performs
excellently in both recommendation accuracy and robustness,
indicating that this model has excellent performance in rec-
ommendation accuracy and robustness. Other models, such
as BPRMF, PER, etc., have significantly lower metrics on this
dataset, showing the limitations of traditional recommenda-
tion models in large-scale data and high sparsity scenarios.

C. Ablation Studies (RQ2)

In order to validate the roles of the negative sample
selection strategy and the negative attention mechanism in the
overall performance of the model, this study designs ablation
experiments that assess their impact by removing these two
modules separately and comparing them with the full model
CLNSO.

First, to verify the role of the dynamic negative sample
selection strategy in the model, version CLNSO,; /o Non-local
is constructed, i.e., dynamic negative sample selection is
removed and replaced by random negative sample sampling.
In this version, the model no longer uses the hard sample
mining with adaptive negative sample selection mechanism
in the negative sample generation process but uses the
traditional random sampling method. This approach cannot
guarantee the quality of negative samples, and it is difficult
to generate difficult negative samples with high similarity to
positive samples, thus weakening the differentiation ability
of the model.

Secondly, in order to verify the role of the negative
attention mechanism in the model, version CLNSO,, /o iner
is constructed, i.e., the negative attention mechanism is
removed and is replaced by normal attention aggregation.
In this version, the model no longer suppresses irrelevant or
noisy information during neighbor information aggregation
but gives the same weight to all neighbors, thus weaken-
ing the model’s ability in information filtering and feature
extraction, and the experimental results are shown in Table
3.

Model CLNSO,; /6 Non-loca: Due to random negative sam-
pling, it is not possible to generate more challenging, high-
quality negative samples, and the model’s representational
learning ability is reduced and differentiation is weakened.

Model CLNSO,, /o iner: Due to the lack of a negative
attention mechanism, the model is susceptible to irrelevant
or noisy feature interference when aggregating neighbor
information, leading to the weakened expression of useful
features and ultimately affecting the overall performance.

Book - Crossing
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Fig. 3. Comparative experimental results of Book-Crossing
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Fig. 4. Comparative experimental results of MovieLens-1M

The experimental results show that the dynamic nega-
tive sample selection strategy can effectively generate more
challenging negative samples and enhance the differentiation
ability of the model. Meanwhile, the negative attention mech-
anism can effectively suppress irrelevant or noisy information
and strengthen the representation ability of the model. The
two complement each other and jointly enhance the overall
performance of the model.

D. Parameterization Experiment (RQ3)

Finally, we investigated the effect of aggregation layers
on the model performance. Experiments were conducted to
adjust the number of network layers in the range of 1, 2,
3 and the results are shown in Figures 3 and 4. On the
Book-Crossing and MovieLens-1 datasets, the AUC and F1
scores are optimized when the model depth is two layers.
As the model depth increases, the model is able to capture
higher-order neighborhood information, which enhances the
representation learning capability. However, too many graph
propagation layers may lead to an oversmoothing problem
that converges the node embeddings and weakens the dis-
criminative ability of the model.

V. CONCLUSION

Aiming at the shortcomings of existing recommendation
models in dealing with data sparsity and noise interference,
this study proposes the CLNSO model, which effectively im-
proves the discriminative ability and robustness of the model
by introducing a dynamic negative sample selection strategy
and a negative attention mechanism. On the MovieLens-1M
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TABLE IV
RESULTS OF ABLATION EXPERIMENTS.

MovieLens-1M

Book-Crossing

Method AUC Fl AUC FI
CLNSO,, /5 Non-local 0.7464 0.6676 0.8834 0.8056
CLNSOy, /0 inter 0.7560 0.6708 0.8864 0.8159
CLNSO 0.7725 0.6818 0.8880 0.8171

dataset, the improved model improves the AUC by about
0.5% and the F1 score by 1.4%, while on the Book-Crossing
dataset, the AUC and F1 are improved by about 3.5% and
2.1%, respectively. These results show that CLNSO has
significant advantages in capturing users’ potential interests
and fusing higher-order knowledge information. Overall, the
method in this paper not only optimizes the integration of
knowledge graph and collaborative filtering information but
also effectively mitigates the data sparsity and noise prob-
lems through the dual optimization of comparative learning,
providing new ideas and strong support for the development
of knowledge-aware recommender systems.
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