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Abstract—The article introduces a delayed hematopoiesis
model incorporating feedback control. By utilizing the differ-
ential inequality technique from functional analysis, several
sufficient conditions for model permanence are demonstrated.
Furthermore, by employing the Banach fixed-point theorem, the
existence of the unique almost periodic solutions of the model
were established. Additionally, by constructing appropriate
Lyapunov functions and applying analysis techniques, sufficient
criteria for the global asymptotic stability of the considered
the almost periodic model have been presented. Finally, the
feasibility of the consequence was confirmed through analog
simulation.

Index Terms—Hematopoiesis model, feedback control, per-
manence, almost periodic solutions, global asymptotic stability.

I. INTRODUCTION

TO characterize red blood cells dynamics, Mackey and
Glass proposed a nonlinear delayed differential equation

in 1977 [1]:

N ′1(t) = −αN1(t) +
β

1 +Nn
1 (t− d)

, α, β, d, n > 0, (1)

where n is a normal number, N1(t) represents the amount of
mature cells present in the bloodstream, α means the death
rate of circulating cells, and d stands for the maturation delay
from the production of immature cells in the bone marrow to
their entry into the circulatory system; the term β

1+Nn
1 (t−d)

characterizes the influx of cells from the stem cell compart-
ment into the circulation, which depends on the cell count
N1(t−d) at the time t−d. Subsequently, the rich dynamics of
model (1) and its modified versions have garnered extensive
scholarly interest, as evidenced by numerous studies (refer
to [2]–[6] and the associated literature).

In real-world ecosystems, unforeseen external forces fre-
quently affect ecosystems, such as survival rates, causing
these parameters to change. Ecology places a greater em-
phasis on examining the capacity of ecosystems to endure
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ongoing, unforeseen disruptions within a constrained tem-
poral context. In control theory, this type of disturbance
is defined as control variable. In 1993, the Logistic model
was introduced to incorporate feedback control variables
by Gopalsamy and Weng. The asymptotic behavior of the
solutions of the Logistic model with feedback control was
discussed in [7]. In [8], Fan, Yu and Wang extended the
half-cycle concept to the time scale, established differential
inequalities on the time scale, and studied the applications
in the feedback control systems. Besides, a discrete N-
species cooperative system with time delay and feedback
control was proposed by Chen in [9], sufficient conditions
for the system’s permanence were obtained by applying the
comparison theorem of the differential equation. In addition,
references [10]–[19] and further research on feedback control
systems in the cited literature are also consulted.

On the other hand, due to the multiple impacts of en-
vironmental factors in real life environment, environmental
changes such as weather, reproduction, food supply, resource
availability and other seasonal factors play an important
role in ecosystem dynamics [20], [21]. Moreover, because
ecosystem selectivity varies between fluctuating and stable
environments. In particular, the periodically fluctuating envi-
ronment significantly influences the dynamics of the model
[22]–[25]. Therefore, incorporating the periodicity of biolog-
ical parameters into the population model is both rational
and significant. Additionally, investigating the stability of
the hematopoiesis model incorporating feedback control and
time-varying delay holds equal theoretical and practical sig-
nificance . The system’s permanence is critical for predicting
long-term population dynamics, numerous authors in [8], [9],
[26]–[28] have studied the persistence of biological systems.
Hematopoiesis model is a kind of differential dynamic model
whose coefficients depend on the state. The model often has
discontinuous phenomenon, so it is easy to produce complex
nonlinear behavior, and often has a certain uncertainty of
state switching. Therefore, investigating the stability of the
hematopoiesis model with feedback control and time-varying
delay holds equal theoretical and practical significance [29]–
[31]. However, to the authors’ knowledge, very little work
has been done to date on the persistence and global asymp-
totic stability of the almost periodic hematopoiesis model
with feedback control and time-varying delays.

Motivated by the aforementioned discussions, in this pa-
per, we consider the following delayed hematopoiesis model
with feedback control:

N ′1(t) = −α(t)N1(t) + β(t)
1

1 +Nn
1 (t− d(t))

− c(t)N1(t)N2(t− η(t)),

N ′2(t) = −λ(t)N2(t) + b(t)N1(t− δ(t)),

(2)

where N2(t) means an indirect control variable at time t, c(t)
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quantifies its inhibitory effect on the circulating mature cell
density N1(t), the parameter λ(t) measures the inhibition
rate of N2(t) at time t, whereas b(t) determines its con-
trollability, the system incorporates two distinct delays: η(t)
for feedback regulation and δ(t) for maturation processes.
Respectively, all other time-dependent parameters maintain
the same biological interpretations as specified in (1). Our
investigation focuses on analyzing the dynamic properties of
model (2), specifically addressing three fundamental proper-
ties: (1) system permanence, (2) existence of almost periodic
solutions, and (3) global asymptotic stability.

This paper is structured as follows: Section 2 outlines
essential preliminaries. Section 3 elaborates on the primary
findings along with their proofs. A numerical example is
provided in Section 4 to verify the theoretical results.

II. PRELIMINARIES

In this section, we deliver the key notations, definitions,
and lemmas that will be needed for carrying out the subse-
quent analysis.

For a bounded continuous function k defined on the real
numbers R, we denote its infimum and supremum as

k− = inf
t∈R

k(t), k+ = sup
t∈R

k(t).

Assume that

min{α−, β−, d−, c−, η−, λ−, b−, δ−} > 0,

w = max{d+, η+, δ+} > 0.

Let R(R+) represent the set of all real numbers (resp. non-
negative real numbers). We work with the Banach space C =
C([−w, 0],R) of continuous functions supplimented with the
supremum norm ‖·‖, and set C+ = C([−w, 0],R+). For any
continuous functions N1(t) and N2(t) defined on the interval
[t0 − w, σ), where t0, σ ∈ R, we define

Nt = (N1
t , N

2
t ) ∈ C × C,

N1
t (h) = N1(t+ h),

N2
t (h) = N2(t+ h) ∀h ∈ [−w, 0].

At the same time, let Nt(t0, χ)(N(t; t0, χ)) denote an
admissible solution that satisfies the admissible Cauchy
problem (2), with [t0, η(χ)) representing the maximal right-
interval of existence for Nt(t0, χ) starting at t0. Furthermore,
from a biological perspective, only positive-valued solutions
of the model (2) are biologically significant, we impose the
following initial conditions:

Nt0 = χ, χ = (χ1, χ2) ∈ C+ × C+,

χ1(0) > 0, χ2(0) > 0. (3)

Definition 1. Model (2) is termed permanent if there exist
positive constants ai and Ai such that

ai ≤ lim inf
t→+∞

Ni(t) ≤ lim sup
t→+∞

Ni(t) ≤ Ai, for i = 1, 2.

Lemma 1. (see [32]) If a∗ > 0, q > 0 and dN
dt ≥ q− a

∗N .
Then, for t ≥ t′ with N(t′) > 0, it holds that

lim inf
t→+∞

N(t) ≥ q

a∗
.

Similarly, assume that a∗ > 0, q > 0 and dN
dt ≤ q − a∗N ,

then for t ≥ t′ with N(t′) > 0, we have

lim sup
t→+∞

N(t) ≤ q

a∗
.

Definition 2 (see [33]). Suppose that the function φ(s) :
R→ R is continuous for s ∈ R. The function φ(s) is termed
almost periodic on R if, for every ε > 0, the set P (φ, ε) =
{ξ : |φ(s+ ξ)−φ(s)| < ε, for all s ∈ R} is relatively dense,
this means that for any ε > 0, there exists a positive real
number m = m(ε) > 0, such that in any interval of length
m(ε), there is a number ξ = ξ(ε) in this interval satisfying
|φ(s+ ξ)− φ(s)| < ε, for all s ∈ R.

Definition 3 (see [33]). Suppose that l ∈ Rn and A(t) is
an n × n continuous matrix defined on R. Considering the
linear system

l′(t) = A(t)l(t), (4)

this systemis possess an exponential dichotomy on R if there
exist positive constants i, j, a projection matrix P , and the
fundamental solution matrix L(t) of (3) satisfying∥∥L(t)PL−1(µ)

∥∥ ≤ ie−j(t−µ), for t ≥ µ,∥∥L(t)(I − P )L−1(µ)
∥∥ ≤ ie−j(µ−t), for t ≤ µ,

where I denotes the identity matrix.

Lemma 2 (see [33]). Assume the linear system (3) possesses
an exponential dichotomy. Then for any almost periodic
forcing term k(t), the nonhomogeneous system

l′(t) = A(t)l(t) + k(t)

possesses a uniquely almost periodic solution l(t), which can
be expressed as

l(t) =

∫ t

−∞
L(t)PL−1(µ)g(µ) dµ

−
∫ +∞

t

L(t)(I − P )L−1(µ)g(µ) dµ,

where L(t) is the fundamental solution matrix and P is the
dichotomy projection.

Lemma 3 (see [33]). Suppose that πi(t) is an almost
periodic function on R and satisfies

A[πi] = lim
K→+∞

1

K

∫ t+K

t

πi(µ)dµ > 0 i = 1, 2, . . . , n.

Then , the diagonal linear system

l′(t) = diag(−π1(t),−π2(t), . . . ,−πn(t))l(t)

has an exponential dichotomy on R.

Lemma 4. The solution Nt(t0, χ) ∈ C+ for all t ∈
[t0, η(χ)), the set of {Nt(t0, χ) : t ∈ [t0, η(χ))} is bounded,
and η(χ) = +∞. Moreover, Ni(t; t0, χ) > 0 for all t ≥ t0,
i = 1, 2.

Proof: Since χ ∈ C+, according to Theorem 5.2.1 in
[35], it follows that Nt(t0, χ) ∈ C+ for all t ∈ [t0, η(χ)).
Set N(t) = (N1(t), N2(t)) = N(t; t0, χ). By integrating the
second equation of (2) from t0 to t, one has

N2(t) =e
−

∫ t
t0
λ(u) du

N2(t0)

+ e
−

∫ t
t0
λ(u) du

∫ t

t0

e
∫ s
t0
λ(v) dv

b(s)N1(s− δ(s)) ds,
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for all t ∈ [t0, η(χ)). Since N2(t0) = χ2(0) > 0, it shows
that N2(t) > 0 for all t ∈ [t0, η(χ)). Again, according to (2)
and the fact that sup

N1≥0

1
1+Nn

1 (t−d(t)) = 1 ,we can deduce

N ′1(t) =− (α(t) + c(t)N2(t− η(t)))N1(t)

+ β(t)
1

1 +Nn
1 (t− d(t))

≤− α(t)N1(t) + β(t)
1

1 +Nn
1 (t− d(t))

≤− α(t)N1(t) + β(t)

≤− α−N1(t) + β+.

Integrating both sides of the first equation of (2) over the
interval [t0, t] yields the following formula

N1(t) =e
−

∫ t
t0
o(u) du

N1(t0)

+ e
−

∫ t
t0
o(u) du

∫ t

t0

e
∫ s
t0
o(v) dv

β(s)

× 1

1 +Nn
1 (s− d(s))

ds,

in which

o(u) = α(u) + c(u)N2(u− η(u)).

Consequently, since N1(t0) = χ1(0) > 0, it follows that
N1(t) > 0. Furthermore, it can be easily derived that

N1(t) ≤ N1(t0)e−α
−(t−t0) +

β+

α−
(1− e−α

−(t−t0)),

N2(t) ≤ N2(t0)e−λ
+(t−t0) +

b+β+

λ+α−
(1− e−λ

+(t−t0)).

Thus, N1(t) and N2(t) are bounded on [t0, η(χ)). According
to Theorem 2.3.1 in [35], we can conclude that η(χ) = +∞.
The proof is complete.

(H1) α(t), β(t), d(t), c(t), η(t), λ(t), b(t), δ(t) : R →
(0,+∞) are almost periodic functions.

III. MAIN RESULTS

This section develops the principal findings along with
their mathematical proofs. We begin with the following
symbols, which streamline subsequent analysis.

Denote

A1 =
β+

α−
, A2 =

b+A1

λ−
,

a1 =
β−

(α+ + c+A2)(1 +An1 )
, a2 =

b−a1
λ+

,

g(n) =

{
nan−1

1

(1+an1 )
2 , if 0 < n ≤ 1,

n, if n > 1

Theorem 1. Assume (H1) holds, the model (2) is persistent.

Proof: Consider an arbitrary positive solution
(N1(t), N2(t)) for the dynamical system defined by
equations (2) and (3). Given the solution’s boundedness
and positivity in model (2), it is easy to establish that
sup
N1≥0

1
1+Nn

1 (t−d(t)) = 1. By examining the first dynamical

equation of model (2), it immediately obtain the inequality

N ′1(t) ≤ −α(t)N1(t) + β(t)
1

1 +Nn
1 (t− d(t))

≤ −α−N1(t) + β+.

According to Lemma 1, we can get

lim sup
t→+∞

N1(t) ≤ β+

α−
:= A1. (5)

Subsequently, for any constant ε > 0 that is sufficiently
small, there exists T1 > t0 such that

N1(t) < A1 + ε, t ∈ (T1,+∞).

Consequently, combining the above inequality with the sec-
ond equation of model (2), we derive

N ′2(t) < −λ−N2(t) + b+(A1 + ε), t ∈ (T1 + w,+∞).

Applying Lemma 1 again, it can be deduced that

lim sup
t→+∞

N2(t) ≤ b+(A1 + ε)

λ−
.

The above inequality suggests that when ε → 0, the result
inferred from the inequality implies

lim sup
t→+∞

N2(t) ≤ b+A1

λ−
:= A2. (6)

For any sufficiently small positive constants ε, from equation
(6), there exists a specific T2 > T1 + w such that

N2(t) ≤ A2 + ε, t ∈ [T2,+∞). (7)

Subsequently, we proceed to prove

lim inf
t→+∞

N1(t) > 0. (8)

By contradiction, suppose that lim inf
t→+∞

N1(t) = 0. For every
t ≥ t0, define

A(t) = max

{
ι : ι ≤ t,N1(ι) = min

t0≤s≤t
N1(s)

}
.

Note that A(t)→ +∞, as t→ +∞ and

lim
t→+∞

N1(A(t)) = 0. (9)

By the concept of A(t), one gets N1(A(t)) = min
t0≤s≤t

N1(s)

and N ′1(A(t)) ≤ 0. Subsequently, By analyzing the first
governing equation in model (2) and (7), we derive the
following key dynamical relationship:

0 ≥N ′1(A(t))

=− α(A(t))N1(A(t))

+ β(A(t))
1

1 +Nn
1 (A(t)− τ(A(t)))

− c(A(t))N1(A(t))N2(A(t)− η(A(t)))

≥− α+N1(A(t)) + β−

− c+(A2 + ε)N1(A(t)), t ≥ max{A(t), T2 + w}.

A direct calculation yields

(α+ + c+(A2 + ε))N1(A(t)) ≥ β−,

Considering the positivity and boundedness of the solution,
combined with (9), we deduce

β− ≤ 0.

Which contradicts with β− > 0. Therefore, (8) holds.
Given A1 = lim sup

t→+∞
N1(t), we have An1 ≥ Nn

1 (t − d(t)),
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and it easily obtains that 1
1+Nn

1 (t−d(t)) ≥
1

1+An
1

. From the
first equation of (2) and (7), one leads to

N ′1(t) ≥− α+N1(t) + β−
1

1 +An1
− c+N1(t)(A2 + ε)

=−
(
α+ + c+(A2 + ε)

)
N1(t)

+ β−
1

1 +An1
, for t ∈ [T2 + w,+∞).

By Lemma 1, and setting ε→ 0, this inequality implies

lim inf
t→+∞

N1(t) ≥
β− 1

1+An
1

α+ + c+A2
=

β−

(α+ + c+A2)(1 +An1 )

:=a1.
(10)

For a sufficiently small positive number ε, (10) implies that
there exists T3 > T2 + w such that

N1(t) > a1 − ε, t ∈ [T3,+∞).

Combining this with the second equation of (2), one follows

N ′2(t) > −λ+N2(t) + b−(a1 − ε), t ∈ [T3 + w,+∞).

By Lemma 1 again, one obtains

lim inf
t→+∞

N2(t) ≥ b−(a1 − ε)
λ+

.

Set ε→ 0, this inequality entails

lim inf
t→+∞

N2(t) ≥ b−a1
λ+

:= a2. (11)

Finally, (5), (6), (10), and (11) imply that the system (2)
is persistent. With these arguments, we have successfully
proven the result.

Theorem 2. Under hypothesis (H1) and the additional
assumption that

(H2) 0 < a1 ≤ 1
α+

(
β− 1

1+An
1
− c+A1A2

)
;

(H3) max
{

1
α− (β+g(n) + c+(A1 +A2)) , b

+

λ−

}
< 1

hold, the system (2) admits a unique positive almost periodic
solution within the region

H∗ =

{
N |N ∈ AP (R;R)×AP (R;R),

ai ≤ Ni(t) ≤ Ai, t ∈ R, i = 1, 2

}
.

Proof: For arbitrary initial conditions χi ∈ AP (R;R),
we investigate the almost periodic dynamical system de-
scribed by:

N ′1(t) =− α(t)N1(t) + β(t)
1

1 + χn1 (t− d(t))

− c(t)χ1(t)χ2(t− η(t)),

N ′2(t) =− λ(t)N2(t) + b(t)χ1(t− δ(t)).

(12)

Given that A[α] > 0 and A[λ] > 0, by applying Lemma 3,
the linear system{

N ′1(t) = −α(t)N1(t),
N ′2(t) = −λ(t)N2(t),

exhibits an exponential dichotomy on R. Consequently, by
Lemma 2, the system (12) possesses a unique almost periodic
solution Nχ(t) = (Nχ1(t), Nχ2(t)) expressed by

Nχ1(t) =

∫ t

−∞
e−

∫ t
s
α(u) du

(
β(s)

1

1 + χn1 (s− d(s))

−c(s)χ1(s)χ2(s− η(s))

)
ds,

Nχ2(t) =

∫ t

−∞
e−

∫ t
s
λ(u) du

(
b(s)χ1(s− δ(s))

)
ds.

(13)
Now, define a mapping Γ : H∗ → H∗

Γ(χ(t)) = Nχ(t), ∀φ ∈ H∗.

The set H∗ is clearly closed in AP (R;R) × AP (R;R).
Regarding any χ ∈ H∗, since m1 ≤ χ1(t) ≤M1, it follows
that sup

χ1≥0

1
1+χn

1 (t−τ(t))
= 1. Combining this with (13), we

get

Nχ1(t) ≤
∫ t

−∞
e−

∫ t
s
α(u) duβ(s)

1

1 + χn1 (t− d(t))
ds

≤
∫ t

−∞
e−

∫ t
s
α(u) duβ+ ds

≤ β+

α−
= A1,

Nχ2(t) ≤
∫ t

−∞
e−

∫ t
s
λ(u) dub+A1 ds

≤ b+A1

λ−
= A2.

(14)
Since χ1 ∈ H∗ and χ1 ≤ A1, we have 1

1+χn
1 (s−d(s))

≥
1

1+An
1

. According to (H2) and combining with (12), we get

Nχ1(t) ≥
∫ t

−∞
e−

∫ t
s
α(u) du

(
β(s)

1

1 +An1

−c(s)χ1(s)χ2(s− η(s))

)
ds

≥
∫ t

−∞
e−

∫ t
s
α(u) du

(
β−

1 +An1
− c+A1A2

)
ds

≥ 1

α+

(
β−

1 +An1
− c+A1A2

)
≥ a1,

Nχ2(t) ≥
∫ t

−∞
e−

∫ t
s
λ(u) dub−a1 ds

≥ b−a1
λ+

= a2.

(15)
Equations (14) and (15) imply that Γ maps H∗ into H∗.

Now, we verify the contraction condition of the Banach
fixed-point theorem. It is easy to calculate that nθn−1

(1+θn)2
is

decreasing on (0,+∞) for 0 < n ≤ 1. Therefore, for any
a1 < x < y < A1, employing the mean value theorem, we
can observe that∣∣∣∣ 1

1 + xn
− 1

1 + yn

∣∣∣∣ =

∣∣∣∣ −nθn−1(1 + θn)2

∣∣∣∣ |x− y|
≤ g(n)|x− y|,
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where θ ∈ (x, y). For any ξ, ζ ∈ H∗, we can infer

sup
t∈R
|Γ(ξ1(t))− Γ(ζ1(t))|

= sup
t∈R

∣∣∣∣∣
∫ t

−∞
e−

∫ t
s
α(u) du

{
β(s)

(
1

1 + ξn1 (s− d(s))

− 1

1 + ζn1 (s− d(s))

)
− c(s)

(
ξ1(s)ξ2(s− η(s))

− ζ1(s)ζ2(s− η(s))

)}
ds

∣∣∣∣∣
≤β

+g(n)

α−
‖ξ − ζ‖+ sup

t∈R

∫ t

−∞
e−

∫ t
s
α(u) du

{

c(s)

[
|ξ1(s)|

∣∣∣∣∣ξ2(s− η(s))− ζ2(s− η(s))

∣∣∣∣∣
+ |ζ2(s− η(s))|

∣∣∣∣∣ξ1(s)− ζ1(s)

∣∣∣∣∣
]}

ds

≤β
+g(n)

α−
‖ξ − ζ‖+

c+

α−
(A1 +A2) ‖ξ − ζ‖

=
1

α−
(
β+g(n) + c+ (A1 +A2)

)
‖ξ − ζ‖,

and
sup
t∈R
|Γ(ξ2(t))− Γ(ζ2(t))|

= sup
t∈R

∣∣∣∣∫ t

−∞
e−

∫ t
s
λ(u) dub(s)

(
ξ1(s− δ(s))

−ζ1(s− δ(s))
)
ds

∣∣∣∣
≤ sup
t∈R

∫ t

−∞
e−

∫ t
s
λ(u) dub+

∣∣∣∣ξ1(s− δ(s))− ζ1(s− δ(s))
∣∣∣∣ ds

≤ b
+

λ−
‖ξ − ζ‖.

Thus,

‖Γξ − Γζ‖ ≤max

{
1

α−

(
β+g(n) + c+(A1 +A2)

)
,

b+

λ−

}
‖ξ − ζ‖.

This, together with (H3), demonstrates that the operator Γ
is a contraction mapping on the space H∗. According to the
Banach fixed-point theorem, there exists a unique fixed point
φ∗ ∈ H∗ satisfying Γχ∗ = χ∗. Consequently, χ∗ represents
the unique almost periodic solution of (2) and (3) within the
function space H∗. Thus, this completes the proof of the
theorem.

We now analyze the asymptotic stability of the almost
periodic solution z∗(t) = (N∗1 (t), N∗2 (t)) for the dynamical
system described by equations (2).

Theorem 3. Assuming the conditions of Theorem 2 are
fulfilled and further suppose

(H4) The delay functions d(t), δ(t), η(t) are continuously
differentiable, and there exist non-negative constants
d∗, δ∗, η∗ such that

0 ≤ d′(t) ≤ τ∗ < 1, 0 ≤ δ′(t) ≤ δ∗ < 1,

0 ≤ η′(t) ≤ η∗ < 1.

(H5)

K1 ,2α− − β+g(n)− c+A1 − 2c+A2

− β+ 1

1− d∗
g(n)− b+

1− δ∗
> 0,

K2 ,2λ− − b+ − c+A1

1− η∗
> 0.

Then, the almost periodic solution of model (2) is global
asymptotic stability.

Proof: Let z∗(t) = (N∗1 (t), N∗2 (t)) be the posi-
tive almost periodic solution of model (2), and z(t) =
(N1(t), N2(t)) be any other solution to model (2). Define

p1(t) = N1(t)−N∗1 (t), p2(t) = N2(t)−N∗2 (t).

For convenience, denote

r(t) =β(t)

(
1

1 +Nn
1 (t− d(t))

− 1

1 + (N∗1 )n(t− d(t))

)
− c(t) (N1(t)N2(t− η(t))−N∗1 (t)N∗2 (t− η(t))) .

Then, model (2) simplifies to{
p′1(t) = −α(t)p1(t) + r(t),

p′2(t) = −λ(t)p2(t) + b(t)p1(t− δ(t)).
(16)

Employing the mean value theorem, we can infer∣∣∣∣ 1

1 + xn
− 1

1 + yn

∣∣∣∣ =

∣∣∣∣ −nθn−1(1 + θn)2

∣∣∣∣ |x− y|
≤ g(n)|x− y|,

where θ ∈ (x, y), thus,

|r(t)| ≤β(t)

∣∣∣∣ 1

1 +Nn
1 (t− d(t))

− 1

1 + (N∗1 )n(t− τ(t))

∣∣∣∣
+ c(t)

(
|N1(t)| |N2(t− η(t))−N∗2 (t− d(t))|

+ |N∗2 (t− η(t))| |N1(t)−N∗1 (t)|
)

≤β+g(n) |p1(t− d(t))|+ c+
(
A1 |p2(t− η(t))|

+A2 |p1(t)|
)
. (17)

Consider the following Lyapunov function:

V (t) = V1(t) + V2(t),

where

V1(t) = p21(t) + p22(t).

and

V2(t) =β+g(n)
1

1− d∗

∫ t

t−d(t)
p21(s) ds

+
b+

1− δ∗

∫ t

t−δ(t)
p21(s) ds

+
c+A1

1− η∗

∫ t

t−η(t)
p22(s) ds.
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According to (16) and (H5), compute the derivatives of V1(t)
and V2(t) respectively,

dV1(t)

dt
=2p1(t)p′1(t) + 2p2(t)p′2(t)

=2p1(t)
[
− α(t)p1(t) + y(t)

]
+ 2p2(t)

[
− λ(t)p2(t) + b(t)p1(t− δ(t))

]
≤− 2α−p21(t) + 2|p1(t)||y(t)|
− 2λ−p22(t) + 2b+|p2(t)||p1(t− δ(t))|

≤ − 2α−p21(t) + β+g(n)
(
p21(t) + p21(t− τ(t))

)
+ c+A1

(
p21(t) + p22(t− η(t))

)
+ 2c+A2p

2
1(t)− 2λ−p22(t)

+ b+
(
p22(t) + p21(t− δ(t))

)
=
(
−2α− + β+g(n) + c+A1 + 2c+A2

)
p21(t)

+ β+g(n)p21(t− τ(t)) + b+p21(t− δ(t))
+
(
−2λ− + b+

)
p22(t) + c+A1p

2
2(t− η(t)),

(18)
and

dV2(t)

dt
=β+g(n)

1

1− d∗
[
p21(t)− p21(t− d(t))(1− d′(t))

]
+

b+

1− δ∗
[
p21(t)− p21(t− δ(t))(1− δ′(t))

]
+
c+M1

1− η∗
[
p22(t)− p22(t− η(t))(1− η′(t))

]
=β+g(n)

1

1− d∗
p21(t)

− β+g(n)
1− d′(t)
1− τ∗

p21(t− d(t))

+
b+

1− δ∗
p21(t)− b+ 1− δ′(t)

1− δ∗
p21(t− δ(t))

+
c+A1

1− η∗
p22(t)− c+A1

1− η′(t)
1− η∗

p22(t− η(t))

≤β+g(n)
1

1− d∗
p21(t)− β+g(n)p21(t− d(t))

+
b+

1− δ∗
p21(t)− b+p21(t− δ(t))

+
c+A1

1− η∗
p22(t)− c+A1p

2
2(t− η(t)).

(19)
According to (18) and (19), we get

dV (t)

dt
=

dV1(t)

dt
+

dV2(t)

dt
≤
(
−2α− + β+g(n) + c+M1 + 2c+M2

+β+g(n)
1

1− d∗
+

b+

1− δ∗

)
p21(t)

+

(
−2λ− + b+ +

c+A1

1− η∗

)
p22(t)

=−K1p
2
1(t)−K2p

2
2(t)

<0.

Correspondingly,

V (t) +K1

∫ t

0

p21(s)ds+K2

∫ t

0

p22(s)ds

≤ V (0), t ≥ 0. (20)

According to Lemma 4, the solutions of model (2) remain
bounded on the interval [0,+∞). Consequently, this implies
that dp1(t)

dt and dp2(t)
dt are bounded on [0,+∞), which

guarantees the uniform continuity of p1(t) and p2(t) on
[0,+∞). Furthermore, equation (20) also implies that pi ∈
L1[0,+∞). Applying Barbalat’s lemma [37], we therefore
conclude that

lim
t→+∞

p1(t) = 0, lim
t→+∞

p2(t) = 0.

This leads to the conclusion that the solution z∗(t) is globally
asymptotically stable. The demonstration is accomplished.

IV. A NUMERICAL EXAMPLE

This section provides a numerical example to validate the
validity of our theoretical results.
Example 1. We examine a delayed hematopoiesis model
with feedback regulation, described by the following system:

N ′1(t) = −α(t)N1(t) + β(t)
1

1 +Nn
1 (t− d(t))

− c(t)N1(t)N2(t− η(t)),

N ′2(t) = −λ(t)N2(t) + b(t)N1(t− δ(t)),

(21)

where

d(t) = 0.5, η(t) = 0.3, δ(t) = 0.4, n = 2,

α(t) = 1 + 0.5| cos(
√

2t)|, β(t) = 0.2 + 0.1| sin(
√

3t)|,
c(t) = 0.01 + 0.005 sin(t), λ(t) = 1 + 0.2 cos(2t),

b(t) = 0.5 + 0.1 sin(
√

2t).

Clearly, we have α− = 1, α+ = 1.5, β− = 0.2, β+ =
0.3, c− = 0.005, c+ = 0.015, λ− = 0.8, λ+ = 1.2, b− =
0.4, b+ = 0.6. By calculation, we obtain

A1 =
β+

α−
= 0.3, A2 =

b+A1

λ−
= 0.225,

a1 =
β−

(α+ + c+A2)(1 +An1 )
= 0.122,

a2 =
b−a1
λ+

= 0.041,

0 < a1 =
1

α+

(
β−

1

1 +An1
− c+A1A2

)
= 0.122,

1

α−
(
β+g(n) + c+(A1 +A2)

)
= 0.61 < 1,

b+

λ−
= 0.75 < 1,

K1 = 0.202 > 0, K2 = 0.997 > 0.

This demonstrates that the criteria stated in Theorem 2 and
Theorem 3 hold. Consequently, it is concluded that model
(21) maintains persistent and possesses a unique almost
periodic solution that exhibits global asymptotic stability.
Different initial values have been selected for numerical
simulation (see Figure 1), which effectively substantiates the
feasibility of the obtained theoretical results.

REFERENCES

[1] M. C. Mackey and L. Glass, “Oscillation and chaos in physiological
control systems,” Sci., vol. 197, pp. 287-289, 1977.

[2] Y. Tan and M. Zhang, “Global exponential stability of periodic
solutions in a nonsmooth model of hematopoiesis with time-varying
delays,” Math. Meth. Appl. Sci., vol. 40, pp. 5986-5995, 2017.

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 4119-4125

 
______________________________________________________________________________________ 



Fig. 1. Simulated trajectories of model (21) with different initial values.

[3] C. Aouiti, F. Dridi, and F. Kong, “Pseudo almost automorphic solutions
of hematopoiesis model with mixed delays,” Comput. Appl. Math., vol.
39, pp. 1-20, 2020.

[4] F. Kong and J. J. Nieto, “Almost periodic dynamical behaviors of
the hematopoiesis model with mixed discontinuous harvesting terms,”
Discrete Contin. Dyn. Syst.-B., vol. 24, pp. 5803-5830, 2019.

[5] B. Liu, “New results on the positive almost periodic solutions for a
model of hematopoiesis,” Nonlinear Anal.: Real World Appl., vol. 17,
pp. 252-264, 2014.

[6] F. H. Ben and F. Cherif, “Positive pseudo almost periodic solutions to
a class of hematopoiesis model: oscillations and dynamics,” J. Appl.
Math. Comput., vol. 63, pp. 479-500, 2020.

[7] K. Gopalsamy and X. P. Weng, “Feedback regulation of logistic
growth,” Int. J. Math. Sci., vol. 16, pp. 177-192, 1993.

[8] Y. Fan, Y. Yu, and L. Wang, “Some differential inequalities on time
scales and their applications to feedback control systems,” Discrete
Dyn. Nat. Soc., vol. 2017, Article ID 9195613, 2017.

[9] F. D. Chen, “Permanence of a discrete N-species cooperation system
with time delays and feedback controls,” Appl. Math. Comput., vol.
186, pp. 23-29, 2007.

[10] Y. K. Li and T. W. Zhang, “Global asymptotical stability of a unique
almost periodic solution for enterprise clusters based on ecology theory
with time-varying delays and feedback controls,” Commun. Nonlinear
Sci. Numer. Simul., vol. 17, pp. 904-913, 2012.

[11] F. D. Chen, J. H. Yang, and L. J. Chen, “On a mutualism model with
feedback controls,” Appl. Math. Comput., vol. 214, pp. 581-587, 2009.

[12] F. D. Chen, J. H. Yang, and L. J. Chen, “Note on the persistent
property of a feedback control system with delays,” Nonlinear Anal.,
Real World Appl., vol. 11, pp. 1061-1066, 2010.

[13] L. J. Chen and X. D. Xie, “Permanence of a n-species cooperation
system with continuous time delays and feedback controls,” Nonlinear
Anal., Real World Appl., vol. 12, pp. 34-38, 2011.

[14] X. Y. Chen, C. L. Shi, and Y. Q. Wang, “Almost periodic solution
of a discrete Nicholson’s blowflies model with delay and feedback
control,” Adv. Differ. Equ., vol. 2016, pp. 185, 2016.

[15] Z. Li, M. A. Han, and F. D. Chen, “Influence of feedback controls
on an autonomous Lotka-Volterra competitive system with infinite

delays,” Nonlinear Anal., Real World Appl., vol. 14, pp. 402-413,
2013.

[16] X. Y. Chen, “Almost periodic solution of a delayed Nicholson’s
blowflies model with feedback control,” Commun. Math. Biol. Neu-
rosci., vol. 2015, pp. Article ID 10, 2015.

[17] L. Shi, H. Liu, Y. M. Wei, et al., “The permanence and periodic
solution of a competitive system with infinite delay, feedback control,
and Allee effect,” Adv. Differ. Equ., vol. 2018, pp. 400, 2018.

[18] S. Yu, “Effect of predator mutual interference on an autonomous
Leslie-Gower predator-prey model,” IAENG International Journal of
Applied Mathematics, vol. 49, no. 2, pp. 229-233, 2019.

[19] H. Alfi and T. Marchant, “Feedback control for a diffusive delay
Logistic equation: semi-analytical solutions,” IAENG International
Journal of Applied Mathematics, vol. 48, no. 3, pp. 317-323, 2018.

[20] L. Wang, Y. Xiong, Z. Wang, et al., “Towards Good Practices for Very
Deep Two-Stream ConvNets,” Comput. Sci., 2015.

[21] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” arXiv preprint arXiv:1406.2199,
2014.

[22] W. T. Li and L. L. Wang, “Existence and global attractivity of positive
periodic solutions of functional differential equations with feedback
control,” J. Comput. Appl. Math., vol. 180, pp. 293-309, 2005.

[23] Z. B. Chen, “Global exponential stability of positive almost periodic
solutions for a model of hematopoiesis,” Kodai Math. J., vol. 37, pp.
260-273, 2014.

[24] A. Younsi, “Exponential stability of periodic solutions for a
hematopoiesis model with two time delays,”Stud. Eng. Exact Sci., vol.
5, pp. 1-28, 2024.

[25] A. Gorbenko, “On the Approximate Period Problem,” IAENG Interna-
tional Journal of Applied Mathematics, vol. 44, no. 1, pp. 1-9, 2014.

[26] L. Zhao, B. Qin, and F. D. Chen, “Permanence and global stability of
a may cooperative system with strong and weak cooperative partners,”
Adv. Differ. Equ., vol. 2018, pp. 172, 2018.

[27] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An
Introduction with Applications. Birkhauser, Boston, 2001.

[28] Y. Wang, “Permanence and Stability for a Competition and Coop-
eration Model of Two Enterprises with Feedback Controls on Time
Scales,” IAENG International Journal of Applied Mathematics, vol.
51, no. 3, pp. 630-636, 2021.

[29] C. Marquet and M. Adimy, “On the stability of hematopoietic model
with feedback control,” C. R. Acad. Sci. Paris, Ser. I, vol. 350, pp.
173-176, 2012.

[30] Y. Yan and J. Sugie, “Global asymptotic stability of a unique positive
periodic solution for a discrete hematopoiesis model with unimodal
production functions,” Monatsh. Math., vol. 191, pp. 325-348, 2020.

[31] Y. L. Guo , “Existence and Exponential Stability of Pseudo Almost
Periodic Solutions for Mackey-Glass Equation With Time-Varying
Delay,” IAENG International Journal of Applied Mathematics, vol.
46, no. 1, pp. 71-75, 2016.

[32] F. Chen, Z. Li, and Y. Huang, “Note on the permanence of a com-
petitive system with infinite delay and feedback controls,” Nonlinear
Anal. Real World Appl., vol. 8, no. 2, pp. 680-687, 2007.

[33] A. Fink, Almost Periodic Differential Equations. Berlin: Springer,
1974.

[34] C. Zhao and L. Wang, “Convergence and permanence of a delayed
Nicholson’s Blowflies model with feedback control,” J. Appl. Math.
Comput., vol. 38, pp. 407-415, 2012.

[35] H. L. Smith, Monotone Dynamical Systems. Math. Surveys Monogr.
Amer. Math. Soc, Providence, 1995.

[36] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional
Differential Equations. Springer, New York, 1993.

[37] K. Gopalsamy, Stability and Oscillations in Delay Differential Equa-
tions of Population Dynamics. Dordrecht: Kluwer, 1992.

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 4119-4125

 
______________________________________________________________________________________ 




