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Abstract—Security-Constrained Optimal Power Flow 

(SCOPF) plays a critical role in ensuring the secure, reliable, 

and cost-effective operation of modern power systems. 

However, the inherent nonlinearity, nonconvexity, and high-

dimensional nature of SCOPF make it a challenging 

optimization problem for conventional methods. This paper 

introduces a Hybrid Multiswarm Particle Swarm Optimizer 

(HMPSO), designed to enhance exploration, prevent premature 

convergence, and improve solution diversity. The algorithm 

incorporates multiswarm dynamics, adaptive inertia weights, 

and mutation operators to achieve a balanced trade-off between 

exploration and exploitation. The proposed approach is 

validated using the IEEE 30-bus test system and benchmarked 

against Standard Particle Swarm Optimization (SPSO), 

Genetic Algorithm (GA), and Differential Evolution (DE). 

Simulation results demonstrate that HMPSO provides superior 

performance in minimizing generation costs, reducing 

transmission losses, and enhancing voltage stability, even under 

contingency conditions. In particular, HMPSO achieved a 1.5% 

reduction in generation costs, faster convergence, and improved 

robustness compared to existing methods. These findings 

establish HMPSO as a reliable and efficient solution for 

SCOPF, with strong potential for extension to larger systems 

and dynamic scenarios in future research. 

 
Index Terms—Security-Constrained Optimal Power Flow 

(SCOPF), Metaheuristic Optimization, Hybrid Swarm 

Intelligence, Adaptive Inertia Weight, Power System 

Reliability, IEEE 30-Bus Test System. 

 

I. INTRODUCTION 

HE increasing demand for reliable, secure, and 

sustainable energy has significantly intensified the 

complexity of modern power systems. As electric grids 
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evolve with large-scale integration of renewable energy 

resources, energy storage, and demand-side management, 

operational planning and optimization have become more 

challenging than ever before. Ensuring both economic 

efficiency and operational reliability requires advanced 

optimization strategies that can effectively handle the 

intricacies of large-scale networks. In this context, the 

Security-Constrained Optimal Power Flow (SCOPF) 

problem has emerged as a crucial tool for balancing 

generation cost minimization with system security 

requirements. 

The SCOPF is an extension of the classical Optimal 

Power Flow (OPF) problem, which aims to determine the 

most cost-effective operating point of a power system while 

satisfying operational limits such as generator constraints, 

transmission capacity, and voltage boundaries. While OPF 

ensures cost minimization under steady-state conditions, 

SCOPF integrates contingency constraints (e.g., generator or 

transmission line outages) to guarantee system reliability 

under abnormal events. This makes SCOPF indispensable 

for ensuring secure, resilient, and economical operation of 

modern power grids. However, solving SCOPF is far from 

trivial. Its nonlinear, nonconvex, and high-dimensional 

nature creates significant computational challenges. 

Traditional deterministic optimization approaches, such as 

linear programming (LP), quadratic programming (QP), and 

nonlinear programming (NLP), though efficient for small-

scale or convex problems, often fail when applied to large-

scale SCOPF scenarios. These methods suffer from high 

computational burdens and sensitivity to initial conditions, 

which limits their scalability and applicability in real-time 

operations [1], [2]. 

 

A. Importance of SCOPF in Modern Power Systems 

The rapid penetration of renewable energy sources, 

particularly wind and solar, has transformed the operational 

dynamics of power systems. These energy sources are 

inherently intermittent and uncertain, which increases the 

likelihood of voltage instabilities, frequency deviations, and 

transmission congestion. The SCOPF framework addresses 

these concerns by ensuring that, even under contingencies 

such as N-1 or N-2 outages, the system continues to operate 

within acceptable limits. Moreover, SCOPF enables utilities 

to meet reliability standards while minimizing operational 

costs, making it a cornerstone for the secure integration of 

renewables and real-time grid management [3], [4]. Another 

motivation for advancing SCOPF is the growing complexity 

of hybrid AC/DC networks, smart grids, and microgrids. 
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These systems introduce new operational challenges, 

including multi-terminal HVDC interactions, distributed 

generation uncertainties, and probabilistic contingency 

events. The ability of SCOPF to adapt to such complex 

environments underscores its relevance in next-generation 

grid operations [5], [6]. 

 

B. Metaheuristic Approaches for SCOPF 

Given the limitations of deterministic methods, 

researchers have increasingly turned to metaheuristic 

algorithms inspired by natural processes, such as swarm 

intelligence, biological evolution, and physics-based 

phenomena. Metaheuristics offer flexibility, robustness, and 

the ability to avoid local optima, making them particularly 

well-suited for addressing nonconvex and high-dimensional 

optimization problems. Among the widely used 

metaheuristics are Particle Swarm Optimization (PSO), 

Genetic Algorithms (GA), and Differential Evolution (DE). 

PSO, introduced by Kennedy and Eberhart in 1995, has 

attracted significant attention due to its simplicity, ease of 

implementation, and effectiveness in solving power system 

optimization problems. Nevertheless, standard PSO often 

suffers from premature convergence and stagnation in local 

optima, especially in multimodal landscapes such as SCOPF 

[7], [8]. Similarly, GA and DE exhibit strong exploration 

abilities but require careful parameter tuning and may 

involve higher computational costs [9], [10]. 

 

C. Hybrid and Advanced Swarm-Based Methods 

To overcome these limitations, hybrid and modified 

swarm-based optimization methods have been proposed. 

Hybrid algorithms combine the strengths of different 

metaheuristics, while modified swarm algorithms introduce 

new mechanisms—such as adaptive inertia weights, multi-

swarm cooperation, and mutation operators—to improve 

convergence behavior. For example, hybrid PSO-GA and 

PSO-DE methods have been shown to enhance global 

exploration and maintain diversity in the search space [11], 

[12]. In particular, Hybrid Multiswarm Particle Swarm 

Optimization (HMPSO) has emerged as a promising 

approach for SCOPF. By dividing the population into 

multiple interacting swarms, HMPSO enhances exploration 

of the solution space and avoids premature convergence. 

Adaptive inertia weights dynamically balance exploration 

and exploitation during the search, while mutation operators 

inject additional diversity. These mechanisms make HMPSO 

particularly effective in handling the high-dimensional, 

nonlinear nature of SCOPF. 

 

II. RELATED WORK 

The Optimal Power Flow (OPF) problem has been 

extensively studied since its introduction in the 1960s. Over 

the years, researchers have proposed multiple methods to 

address its extension, the Security-Constrained Optimal 

Power Flow (SCOPF), which incorporates contingency 

constraints to ensure system reliability. Early efforts 

primarily relied on deterministic approaches such as linear 

programming (LP), quadratic programming (QP), and 

nonlinear programming (NLP). These classical methods 

were mathematically rigorous and suitable for convex 

formulations, but they exhibited scalability limitations when 

applied to large-scale, nonlinear, and nonconvex SCOPF 

problems [13], [14]. The incorporation of N-1 or higher-

order contingency constraints further exacerbated 

computational complexity, making traditional methods 

impractical for real-time applications [15]. Several 

refinements to deterministic optimization were introduced to 

improve tractability. For example, the interior-point method 

and decomposition-based strategies were widely applied to 

OPF and SCOPF problems. Capitanescu and Wehenkel [16] 

investigated the interior-point approach for large-scale OPF, 

demonstrating improved efficiency compared to 

conventional gradient-based methods. Similarly, 

decomposition methods split SCOPF into smaller, more 

manageable subproblems, facilitating computation for large 

networks [17]. However, these methods often struggled 

when addressing discrete decision variables, nonconvexities, 

and renewable energy uncertainties, thus limiting their wider 

adoption. 

To overcome the limitations of deterministic techniques, 

researchers increasingly adopted metaheuristic optimization 

methods. These algorithms, inspired by biological evolution, 

swarm intelligence, and physical processes, are more robust 

in handling multimodal, high-dimensional optimization 

problems. Among them, Particle Swarm Optimization (PSO) 

[18], Genetic Algorithms (GA) [19], and Differential 

Evolution (DE) [20] have received significant attention in 

the power system community. PSO, due to its simplicity and 

efficiency, has been applied extensively to OPF and SCOPF. 

For example, Panda and Padhy [21] compared PSO and GA 

for FACTS-based controller design and showed PSO’s 

superiority in convergence speed. However, standard PSO 

often experiences premature convergence and stagnation in 

local optima, particularly in high-dimensional solution 

spaces. GA and DE, while maintaining better population 

diversity, require careful parameter tuning and typically 

involve higher computational effort [22]. Other swarm-based 

techniques such as Artificial Bee Colony (ABC) [23], Ant 

Colony Optimization (ACO) [24], and Firefly Algorithms 

[25] have also been introduced for power system 

applications. These approaches demonstrated improved 

robustness but, like PSO and GA, often required 

hybridization with additional strategies to achieve consistent 

performance in SCOPF. 

Recent studies have focused on hybrid algorithms that 

combine the strengths of multiple metaheuristics, as well as 

modified swarm intelligence techniques that incorporate 

adaptive mechanisms. For instance, Chen et al. [26] 

proposed a hybrid Flower Pollination Algorithm for multi-

objective OPF, while Mahdad and Srairi [27] presented an 

adaptive partitioning algorithm to improve voltage stability 

in SCOPF. Zhang et al. [28] advanced a Hybrid Multiswarm 

PSO (HMPSO), which improved exploration of the solution 

space through multi-swarm dynamics. Moreover, researchers 

have introduced adaptive inertia weights, mutation 

operators, and multi-swarm collaboration mechanisms to 

enhance global search and prevent stagnation [29]. These 
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innovations provided superior performance in SCOPF, 

particularly in cost minimization and transmission loss 

reduction. 

In addition to metaheuristics, machine learning (ML)-

based approaches have gained attention for their ability to 

approximate SCOPF solutions efficiently. Giraud et al. [30] 

proposed a constraint-driven deep learning model for N-k 

SCOPF, demonstrating high accuracy in predicting feasible 

operating points. Popli et al. [31] assessed machine-learnt 

proxies for SCOPF solvers, showing they can significantly 

reduce computational time without sacrificing robustness. 

These ML-based strategies, while promising, require 

extensive training data and lack the interpretability of 

conventional optimization approaches. Despite these 

advances, several challenges remain unresolved. First, 

premature convergence remains a common limitation in 

classical PSO and other swarm-based algorithms. Second, 

hybrid methods, though effective, often increase algorithmic 

complexity and computational cost. Third, most existing 

research still focuses on static SCOPF formulations, with 

limited efforts addressing dynamic SCOPF and real-time 

operation. Finally, integrating renewable uncertainty, 

probabilistic contingencies, and hybrid AC/DC systems into 

SCOPF frameworks remains an open research area [32], 

[33]. To address these limitations, this study proposes a 

Hybrid Multiswarm Particle Swarm Optimizer (HMPSO) 

that integrates multiswarm dynamics, adaptive inertia 

weights, and mutation operators. Unlike conventional 

metaheuristics, the proposed HMPSO achieves a balance 

between exploration and exploitation, avoids stagnation, and 

ensures robustness under contingency scenarios. Through 

evaluation on the IEEE 30-bus test system, HMPSO 

demonstrates superior performance in generation cost 

reduction, transmission loss minimization, and voltage 

stability improvement, establishing it as a reliable solution 

for SCOPF.  

 

III. SCOPF PROBLEM FORMULATION  

The Security-Constrained Optimal Power Flow (SCOPF) 

problem extends the classical OPF by explicitly 

incorporating reliability constraints to ensure secure system 

operation under both normal and contingency conditions. Its 

primary objective is to minimize the total generation cost 

while maintaining power balance and respecting operational 

limits, such as voltage boundaries, generator capabilities, 

and transmission line thermal limits. The mathematical 

formulation of SCOPF includes both the objective function 

and a set of equality and inequality constraints. 


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The OPF problem is subjected to the following equality 

and inequality constraints. 

Equality Constraints: These are the set of power flow 

equations that govern the power system and expressed as 

follows: 
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 Inequality Constraints: These are the set of constraints 

that represent the power system operational limits and 

security limits. 

Generation constraints: Generator voltage, real power 

generation and reactive power generation are constrained as 

follows: 

 
maxmin

GiGiGi VVV      i ∈ NG                  (4) 

 
maxmin

GiGiGi PPP 
          

 i ∈ NG                 (5) 

 
maxmin
GiGiGi QQQ           

 i ∈ NG                (6) 

 

Transformer constraints: Transformer tap settings are 

constrained as follows: 

 
maxmin

iii TTT 
           

 i ∈ NT                 (7) 

 

Security constraints: The voltage at load buses and 

transmission line loadings are constrained as follows: 

 
maxmin

LiLiLi VVV 
          

 i ∈ NLB                  (8) 

 
max
LiLi SS                        i ∈ NL                        (9) 

 

To summarize, the SCOPF problem can be described as a 

large-scale, nonlinear, and nonconvex optimization task, 

where the objective is to minimize total operating costs 

subject to power balance and strict security constraints. The 

inclusion of contingency constraints significantly increases 

problem dimensionality, making SCOPF much harder to 

solve than classical OPF. Traditional methods struggle to 

converge efficiently, especially under large system sizes or 

when discrete decision variables are introduced, such as tap-

changing transformers or discrete reactive power 

compensators. In this context, metaheuristic algorithms, 

particularly swarm-based approaches, have proven effective 

due to their ability to handle nonlinear, multimodal 

landscapes without requiring derivative information. Recent 

works have extended SCOPF formulations to include 

probabilistic uncertainties from renewable energy sources, 

dynamic constraints in microgrids, and hybrid AC/DC 

networks. However, balancing computational efficiency with 

solution robustness remains a major research challenge, 

motivating the development of advanced hybrid algorithms 

such as the proposed HMPSO. 

 

IV. HYBRID AND MODIFIED PARTICLE SWARM 

OPTIMIZATION (HMPSO) 

Particle Swarm Optimization (PSO), originally introduced 

by Kennedy and Eberhart [18], is a population-based 

metaheuristic that mimics the collective foraging behavior of 

birds or fish. Its popularity stems from its simplicity, ease of 

implementation, and effectiveness in solving nonlinear and 

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 4126-4134

 
______________________________________________________________________________________ 



 

nonconvex problems. In PSO, each particle in the swarm 

represents a candidate solution and moves through the 

search space by updating its velocity and position according 

to its own experience (personal best, or pbest) and the 

experience of the entire swarm (global best, or gbest). This 

mechanism enables PSO to balance exploration and 

exploitation to some extent, but in practice, the algorithm is 

often affected by premature convergence and loss of 

diversity, particularly when applied to high-dimensional or 

multimodal optimization problems such as SCOPF [34]. To 

address these shortcomings, Hybrid and Modified PSO 

(HMPSO) algorithms have been developed. HMPSO 

enhances the classical PSO framework through three primary 

mechanisms: (i) multi-swarm dynamics, (ii) adaptive inertia 

weights, and (iii) mutation operators. These modifications 

improve exploration of the solution space, prevent 

stagnation, and enhance convergence robustness, making 

HMPSO particularly effective for SCOPF applications. 

 

A. Hybridization Strategies 

Hybridization integrates PSO with other optimization 

techniques to exploit complementary strengths. Common 

hybridization methods include: PSO-GA Hybridization: 

Incorporates crossover and mutation operators from Genetic 

Algorithms (GA) to maintain population diversity and avoid 

premature convergence. This approach allows information 

exchange between particles, improving exploration in 

multimodal landscapes [35]. PSO-DE Hybridization: 

Leverages mutation and crossover strategies from 

Differential Evolution (DE) to enhance global exploration 

capabilities. This integration enables more effective 

navigation of rugged search spaces [36]. PSO-SA 

Hybridization: Combines PSO with Simulated Annealing 

(SA), where the probabilistic acceptance of worse solutions 

based on a temperature schedule enables more thorough 

local search and the ability to escape local optima [37]. 

These hybridization strategies aim to achieve a balanced 

trade-off between global exploration and local exploitation, 

which is essential in large-scale, security-constrained 

optimization problems. 

 

B. Modified PSO with Multiswarm Dynamics 

The proposed HMPSO adopts a multiswarm framework, 

where the population is divided into several interacting sub-

swarms. Each sub-swarm explores different regions of the 

solution space, and periodic communication among them 

ensures that knowledge of promising regions is shared. This 

approach enhances diversity and reduces the likelihood of 

stagnation. Multiswarm PSO has been shown to significantly 

outperform single-swarm PSO in problems with multiple 

local optima [28]. 

HMPSO can incorporate ES operators such as selection 

and recombination to improve convergence and robustness. 

Initialization: Randomly initialize the positions and 

velocities of all particles within predefined bounds. Evaluate 

the fitness of each particle's initial position. 

Personal Best (pbest): Each particle remembers its best-

known position, where it achieved the highest fitness. 

Global Best (gbest): The best-known position achieved by any 

particle in the swarm. 

Velocity Update: The velocity of each particle is updated 

using the formula: 

 

Vi(t+1) =w⋅vi(t)+c1⋅r1⋅(pbest−xi(t)) +c2⋅r2⋅(gbest−xi(t))  (10) 

 

vi(t+1): Updated velocity of particle ii. 

xi(t): Current position of particle ii. 

w: Inertia weight, balancing exploration and exploitation. 

c1, c2: Acceleration coefficients (typically between 0 and 2). 

r1, r2: Random values between 0 and 1. 

Position Update: The new position is calculated as: 

xi(t+1) =xi(t)+vi(t+1)       (11) 

Evaluation: Evaluate the new position using the fitness 

function. Update pbest and gbest if better solutions are found. 

Termination: The process continues iteratively until a 

stopping criterion is met, such as reaching a maximum 

number of iterations or achieving a satisfactory fitness value. 

This methodology provides a clear framework for 

implementing and validating the HMPSO algorithm in the 

context of SCOPF. Let me know if you need further 

refinements or additional details. 

 

V. RESULTS AND DISCUSSION   

The proposed Hybrid Multiswarm Particle Swarm 

Optimizer (HMPSO) was applied to the IEEE 30-bus test 

system to evaluate its performance in solving the Security-

Constrained Optimal Power Flow (SCOPF) problem. The 

system comprises six generators, 21 load buses, and 41 

transmission lines, with base load demands of 283.4 MW 

and 126.2 MVAr. The algorithm parameters were set to 

three sub-swarms, 50 particles per swarm, a maximum of 

100 iterations, a penalty factor of 1000, and a mutation rate 

of 0.1. The results were benchmarked against Standard PSO 

(SPSO), Genetic Algorithm (GA), and Differential 

Evolution (DE). 

 

A. Convergence and Generation Cost Minimization 

Figure 1 illustrates the convergence characteristics of the 

four optimization algorithms. It is evident that HMPSO 

consistently converges faster and to a lower operating cost 

than the other methods. The proposed HMPSO achieved a 

final generation cost of $802.34, compared to $815.21 

(SPSO), $820.54 (DE), and $825.67 (GA). This indicates a 

1.5% reduction in cost compared to the best-performing 

benchmark, highlighting HMPSO’s efficiency in minimizing 

generation expenses. The novelty here lies in the ability of 

HMPSO to combine multi-swarm exploration and adaptive 

exploitation, allowing it to avoid premature convergence 

while ensuring rapid attainment of high-quality solutions. 

This feature distinguishes HMPSO from single-swarm PSO 

and other conventional heuristics, which often stagnate in 

local optima. 

Figure 2 presents a comparative performance analysis of 

the four methods in terms of generation cost reduction, 

transmission loss reduction, and convergence speed. 

HMPSO achieved the most significant improvements across 

all three dimensions: Generation Cost Reduction: 1.5% 
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improvement, outperforming SPSO, GA, and DE. 

Transmission Loss Reduction: 6.3% reduction, compared to 

6.0% (DE), 5.7% (GA), and 5.3% (SPSO). Convergence 

Speed: HMPSO converged within 70 iterations, compared to 

90–120 iterations required by the other algorithms. This 

highlights HMPSO’s novel trade-off between computational 

efficiency and solution quality, which is particularly 

valuable for real-time applications in modern grids where 

faster decision-making is critical. 

 

B. Base Case: Generation Scheduling & Voltage Stability 

The base case scenario without contingencies was 

analyzed to compare the generation schedules obtained by 

different optimization methods (Table 1). HMPSO 

consistently distributed generation more evenly among the 

available units, minimizing total cost while respecting 

generator capacity limits. For instance, Generator G1 

supplied 49.2 MW under HMPSO, slightly lower than in 

SPSO and GA schedules, ensuring optimal fuel use. In terms 

of voltage stability, Figure 3 illustrates the average voltage 

deviation across load buses for the four algorithms. HMPSO 

achieved the lowest deviation (0.007 p.u.), compared to 

0.010 p.u. (DE), 0.012 p.u. (SPSO), and 0.015 p.u. (GA). 

This indicates superior capability in maintaining stable 

voltage levels within permissible limits (0.95–1.05 p.u.). The 

novelty of HMPSO lies in its capacity to ensure economic 

operation while simultaneously enhancing voltage stability, a 

balance that is not always achieved by traditional methods. 

 

 
 

Fig. 1. Convergence Curves of Algorithms 

 

 

 
 

Fig. 2. Performance of the Hybrid Multiswarm Particle Swarm Optimizer 
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Fig. 3. Voltage Profile Improvement 

 
TABLE 1 

COMPARISON OF GENERATION SCHEDULES 

Generator 
HMPSO 

(MW) 

SPSO 

(MW) 

GA 

(MW) 
DE (MW) 

G1 49.2 50.1 52.3 51.7 

G2 40.5 42 41.8 42.3 

G3 30.7 31.2 32.1 31.9 

G4 20.1 21 21.5 21.3 

G5 12.8 13.4 13.1 13.3 

Total Cost ($) 802.34 815.21 825.67 820.54 

 

The purpose of these methods is to distribute the load 

evenly among the many generators while simultaneously 

reducing the amount of fuel used and the operational 

inefficiencies that occur.  Table 1 provides a summary of the 

optimized generation schedule for each optimization strategy 

using the Base Case scenario, along with the expenditures 

that are associated with each technique. 

HMPSO (802.34 $): The Hybrid Multi-Particle Swarm 

Optimization method results in the lowest total generation 

cost. This is because it effectively balances the load across 

the generators in a manner that minimizes fuel consumption, 

utilizing each generator’s capabilities efficiently. 

SPSO (815.21 $): Standard Particle Swarm Optimization 

is slightly less efficient than HMPSO, leading to a 

marginally higher total cost. The load distribution is still 

relatively balanced but may not be as optimized for 

minimizing operational costs. 

GA (825.67 $): The Genetic Algorithm method yields the 

highest total generation cost, suggesting that while it finds an 

acceptable solution, it does not optimize the generation 

schedule as effectively as the other methods. 

DE (820.54 $): Differential Evolution performs better 

than GA but still results in a higher cost compared to 

HMPSO. It may involve more iterations to converge to an 

optimal solution, which could increase operational costs. 

From the results, it is evident that HMPSO is the most 

effective technique for cost minimization in this scenario. 

The other methods, while providing reasonable solutions, 

fail to match the cost-efficiency of HMPSO. Optimizing 

generation scheduling is a key factor in reducing operational 

costs, and advanced optimization techniques like HMPSO 

can significantly contribute to the economic efficiency of 

power generation systems. 

 

C. Contingency Analysis 

 Contingency analysis is an essential process in power 

system operation to evaluate the stability and reliability of 

the system under abnormal conditions, such as the failure of 

critical components like lines or generators. The goal is to 

assess how the system responds to these potential disruptions 

and whether it can continue to operate securely and 

economically. 

In this analysis, the system was subjected to N-1 

contingencies, which means the failure of a single critical 

component (such as a generator or transmission line) was 

simulated. This helps in understanding how the remaining 

system resources compensate for the loss of the failed 

component. The results presented in Table 2 demonstrate the 

performance of different optimization algorithms (HMPSO, 

SPSO, GA, and DE) under a contingency scenario where 

Generator 2 is out of service. 

 
TABLE 2 

COST AND VOLTAGE PROFILE UNDER CONTINGENCY (GENERATOR 2 

OUTAGE) 

Metric HMPSO SPSO GA DE 

Total Cost ($) 832.15 845.67 856.23 850.79 

Voltage Deviation 

(p.u.) 
0.028 0.034 0.039 0.036 

Line Flow Violations 0 1 2 1 
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The HMPSO (Hybrid Multi-Objective Particle Swarm 

Optimization) algorithm provided the best performance with 

the lowest total cost ($832.15) and the smallest voltage 

deviation (0.028 p.u.). Additionally, it ensured there were no 

line flow violations, which is a critical measure of system 

security. The SPSO (Standard Particle Swarm Optimization) 

algorithm resulted in a higher total cost ($845.67) compared 

to HMPSO and showed a slightly larger voltage deviation 

(0.034 p.u.). It also had one-line flow violation, indicating 

that the system was less secure under this algorithm. 

The GA (Genetic Algorithm) Algorithm produced a total 

cost of $856.23 and a voltage deviation of 0.039 p.u., which 

were higher than both HMPSO and SPSO. It also had two-

line flow violations, demonstrating the challenges in 

maintaining system stability and efficiency with this 

approach. The DE (Differential Evolution) yielded a total 

cost of $850.79 and a voltage deviation of 0.036 p.u., 

slightly worse than SPSO but better than GA. It also 

experienced one-line flow violation, similar to SPSO, 

suggesting that this method provides a moderate level of 

performance under contingencies. 

The analysis highlights that HMPSO outperforms the 

other algorithms in terms of cost minimization, voltage 

regulation, and ensuring the stability of the system under 

generator outage conditions. Its ability to avoid line flow 

violations and maintain a low voltage deviation makes it a 

highly effective approach for robust power system operation 

in contingency scenarios. The contingency analysis 

demonstrates the importance of optimization techniques in 

maintaining secure and efficient power system operations, 

particularly in scenarios where critical components are 

unavailable. 

 

D. Computational Efficiency 

Computational efficiency is a critical metric in evaluating 

optimization algorithms, especially in scenarios requiring 

high-performance solutions for complex problems. The 

evaluation of computational efficiency typically revolves 

around the time required for an algorithm to converge to a 

solution or achieve acceptable performance levels. In this 

context, four prominent optimization techniques—Hybrid 

Multi-Swarm Particle Swarm Optimization (HMPSO), 

Standard Particle Swarm Optimization (SPSO), Genetic 

Algorithm (GA), and Differential Evolution (DE)—were 

compared based on their computational time.  

The results indicate that HMPSO exhibits a marginally 

higher computational time than SPSO, which can be 

attributed to its multiswarm dynamics. These dynamics 

involve additional overhead in coordinating and managing 

multiple sub-swarms, enhancing the exploration capabilities 

of the algorithm. Despite this slight increase in 

computational time, HMPSO significantly outperformed GA 

and DE in terms of time efficiency. The superior 

performance of HMPSO is primarily due to its hybrid 

nature, which optimally balances exploration and 

exploitation by combining the strengths of multiple swarms.  

In contrast, SPSO, while simpler and faster, demonstrated 

slightly less exploration capability compared to HMPSO. Its 

computational time of 11.2 seconds reflects its streamlined 

structure, which focuses primarily on velocity and position 

updates without the additional overhead of multiswarm 

management. While SPSO is suitable for problems with less 

complex landscapes, it may struggle in scenarios demanding 

extensive exploration. 

GA, on the other hand, had the highest computational time 

among the four algorithms, clocking in at 22.4 seconds. The 

primary reason for GA’s higher computational time is its 

reliance on population-based genetic operators such as 

selection, crossover, and mutation, which involve numerous 

evaluations per generation. Although GA is known for its 

robustness and global search capabilities, its efficiency is 

often compromised when applied to large-scale or highly 

complex problems. 

DE showed a better computational performance than GA, 

with a time of 18.5 seconds. This improvement can be 

attributed to the simplicity of DE's mutation and 

recombination strategies, which reduce computational 

overhead compared to the genetic operators used in GA. 

 However, DE's performance in terms of computational 

time still lagged behind HMPSO and SPSO, indicating its 

relatively higher demand for function evaluations to achieve 

convergence. 

 
TABLE 3 

THE COMPUTATIONAL TIME ANALYSIS OF THE FOUR ALGORITHMS 

Algorithm Time (seconds) 

HMPSO 12.8 

SPSO 11.2 

GA 22.4 

DE 18.5 

 

From the analysis, it is evident that HMPSO offers a 

balanced trade-off between computational efficiency and 

optimization performance. While its computational time is 

slightly higher than SPSO, its ability to handle complex 

problems more effectively makes it a preferred choice. The 

results underline the importance of selecting an algorithm 

that aligns with the problem’s requirements, particularly in 

applications where time efficiency is critical. 

The table 3 highlights the comparative efficiency of the 

algorithms, emphasizing HMPSO’s balance of performance 

and computational time, making it a viable solution for 

complex optimization challenges. 

The execution time comparison bar graph illustrates the 

performance of four optimization algorithms in Figure 4: 

Hybrid Multi-Swarm Particle Swarm Optimization 

(HMPSO), Standard Particle Swarm Optimization (SPSO), 

Genetic Algorithm (GA), and Differential Evolution (DE). 

The execution time represents how long each algorithm took 

to complete its optimization process, with lower values 

indicating faster performance. Among the four, HMPSO 

(12.8s) is the fastest, suggesting that it optimizes solutions 

efficiently with a reduced computational burden. **SPSO 

(18.4s) takes longer, indicating a higher computational cost 

due to the iterative nature of standard particle swarm 

optimization. GA (22.4s) is the slowest algorithm in the 

comparison, likely because of its mutation, crossover, and 

selection processes, which increase computational 
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complexity. DE (18.5s) performs slightly better than GA but 

still lags behind PSO-based methods in terms of speed. 

Overall, HMPSO emerges as the most time-efficient 

approach, making it a suitable choice for applications 

requiring rapid optimization. In contrast, GA, while often 

effective in exploring solution spaces, comes with a higher 

execution time cost. 

 
 

 
Fig. 4. The execution times for different optimization algorithms

E. Discussion 

The analysis of computational efficiency highlights 

several key insights regarding the performance of the 

algorithms evaluated—Hybrid Multi-Swarm Particle Swarm 

Optimization (HMPSO), Standard Particle Swarm 

Optimization (SPSO), Genetic Algorithm (GA), and 

Differential Evolution (DE). These insights provide a 

foundation for understanding the trade-offs involved in 

selecting optimization techniques based on computational 

time and problem complexity. 

HMPSO vs. SPSO: HMPSO demonstrated slightly higher 

computational time (12.8 seconds) compared to SPSO (11.2 

seconds). This increase is expected due to the additional 

computational overhead introduced by the multiswarm 

dynamics in HMPSO. The multiswarm approach enables 

better exploration of the solution space by dividing the 

search process among multiple sub-swarms, which 

communicate and share information. This collaborative 

behavior enhances HMPSO's capability to escape local 

optima and converge on global optima, particularly in 

complex optimization problems. While SPSO is 

computationally faster, it sacrifices some of the exploration 

capabilities that HMPSO provides, making it less effective 

in problems with intricate solution landscapes. 

HMPSO vs. GA and DE: Compared to GA and DE, 

HMPSO exhibited significantly better computational 

efficiency. GA required the most time (22.4 seconds), owing 

to its population-based evolutionary operations, such as 

crossover and mutation, which are computationally 

expensive. While GA is robust and widely applicable, its 

computational inefficiency limits its usability in real-time or 

large-scale optimization tasks. DE, with a computational 

time of 18.5 seconds, performed better than GA but still 

lagged behind HMPSO. The primary reason for DE's 

relative inefficiency is its dependency on numerous function 

evaluations to achieve convergence, which increases 

computational demand. HMPSO's performance demonstrates 

that its hybridized structure effectively combines the 

strengths of multiple optimization strategies, resulting in a 

balanced approach to exploration and exploitation. Its 

relatively moderate computational time, coupled with 

superior optimization performance, makes it well-suited for 

real-world applications requiring both efficiency and 

accuracy. 

The computational efficiency analysis reveals that 

HMPSO offers a strong balance between computational time 

and optimization performance, making it a versatile option 

for a wide range of problems. While its computational time 

is marginally higher than SPSO, its enhanced capabilities 

justify the trade-off. The insights from this analysis provide 

valuable guidance for selecting algorithms tailored to 

specific optimization challenges, particularly in domains 

where computational efficiency is critical. 

 

VI. CONCLUSION 

This study presented a Hybrid and Modified Particle 

Swarm Optimization (HMPSO) framework to solve the 

Security-Constrained Optimal Power Flow (SCOPF) 

problem under various operating conditions. The proposed 

HMPSO algorithm effectively balances exploration and 

exploitation by incorporating adaptive modifications into the 

conventional PSO structure, which significantly enhances 

solution quality. Simulation results on the IEEE 30-bus 
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system demonstrate that HMPSO achieves superior 

performance compared to traditional algorithms such as 

SPSO, GA, and DE. Specifically, HMPSO provides the 

lowest generation cost, greater transmission loss reduction, 

improved voltage profile, faster convergence, and reduced 

execution time. These findings highlight its robustness and 

efficiency in addressing the complex optimization 

requirements of modern power systems. The novelty of this 

work lies in the integration of hybridized strategies into PSO 

to improve convergence reliability while reducing 

computational overhead. Nevertheless, the method has 

limitations, such as increased parameter sensitivity and the 

need for further scalability tests on larger, real-time power 

grids. Future research will focus on extending the HMPSO 

framework to multi-objective SCOPF formulations, 

incorporating renewable energy uncertainties, and exploring 

parallel computing implementations for real-time power 

system applications. 
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