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Abstract—This paper investigates the fuzzy optimal control
problem of the twin-roll inclined casting system (TRICS).
Firstly, the nonaffine function is decoupled based on the mean
value theorem, thereby simplifying the design difficulty of the
controller. Secondly, the nonlinear function is approximated by
the fuzzy logic method, and combined with the backstepping
design framework and reinforcement learning technology, a
fuzzy optimal controller based on the actor-critic architecture
is proposed. The proposed control strategy not only ensures the
boundedness of all signals in the closed-loop system, but also
achieves the optimization goal of the control signal. Finally, the
effectiveness and feasibility of the method are verified through
a simulation example.

Index Terms—Twin-roll inclined casting, Optimal
backstepping control, Actor-critic architecture, Reinforcement
learning

I. INTRODUCTION

THE two-roll inclined continuous casting and rolling
process holds significant application value in modern

industrial production [1, 2]. Compared with traditional
rolling processes, this process eliminates intermediate steps
such as initial rolling and heating, significantly simplifying
the production process, enhancing production efficiency,
and effectively reducing equipment investment, energy
consumption, and environmental pollution [3, 4]. It also
notably improves the mechanical properties and surface
quality of the plates. Therefore, this process has been
widely applied in the steel production field where higher
requirements are placed on strength, toughness, and precision
[5]. However, due to the complex influence of multiple
coupled parameters on the rolling effect, precise control of
the two-roll inclined continuous casting and rolling process
faces considerable challenges. To address these issues, it
is necessary to conduct in-depth research and optimization
on the control methods of this process and take effective
measures to ensure the controllability and stability of the
rolling process.

In recent years, with the rapid development of adaptive
control theory, new design ideas have been provided for
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the optimization of many practical engineering systems.
To address the impact of parameter uncertainties and
unmeasurable states on the control performance of certain
nonlinear systems, some control strategies based on neural
networks or fuzzy output feedback have been proposed
in [6–10], which have significantly advanced the progress
of adaptive control theory. However, it is worth noting
that in the current control field, how to effectively save
control resources and further improve system performance
has become one of the key issues to be solved urgently. For
this purpose, optimal control theory has been introduced to
provide solutions. Its core objective is to design an optimized
control strategy for dynamic systems or motion processes,
which not only meets the requirements of control tasks
but also minimizes predefined performance indicators and
reduces the consumption of control resources.

Optimal control for nonlinear systems is one of the core
aspects of modern control theory, aiming to optimize the
performance indicators of control systems [11]. It integrates
the fundamental conditions and methods distilled from
practical problems, with the research object being controlled
dynamic systems or motion processes. It seeks the best
control scheme among the allowable ones to ensure the
system achieves the optimal performance when transitioning
from the initial state to the target state [12]. With the
rapid development of digital technology and electronic
computers, optimal control has been widely applied in
production, military, and economic activities, playing a
significant role in the national economy and national defense.
The optimal problem is theoretically equivalent to solving
the Hamilton-Jacobi-Bellman (HJB) equation [13], but due
to its strong nonlinearity and dynamic uncertainty, it is
difficult to solve directly through analysis. To overcome this
challenge, reinforcement learning (RL) and adaptive dynamic
programming (ADP) have been proven to be effective
solutions. RL and ADP were initially proposed by Werbos
for discrete systems [14] and later extended to continuous
systems [15, 16], but they are only applicable to affine
nonlinear systems. For the control problem of nonlinear
mismatched systems, in [17] proposed an optimal control
method based on the backstepping framework, ensuring the
optimization of each subsystem. To simplify complexity
and alleviate the continuous excitation condition, in [18–21]
further simplified the optimal backstepping control strategy.

Based on the above research, this paper takes the two-roll
inclined casting system as the control object, and combines
the reinforcement learning algorithm under the actor-critic
architecture with the backstepping control theory to design a
fuzzy optimal controller. This controller aims to optimize the
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melt pool liquid level height, roll gap and multiple coupled
control parameters of the system, thereby enhancing the
stability and robustness of the overall system.

II. MODEL DESCRIPTION AND PRELIMINARIES

In this section, the schematic diagram of the entire
twin-roll inclined casting process is shown in Figure 1.
Subsequently, based on the mathematical model of the
molten steel liquid level during the twin-roll inclined
continuous casting and rolling process, it can be concluded
that:

dy

dt
=
Qin −Qout − LΦ(y, xg, β)

LF (y, xg, β)
(1)

where y is the height of molten metal, L is the surface
width of the casting mill roll, xg is the roll gap, and β is
the inclination angle. The metal inflow quantity Qin is a
nonlinear function of the ladle stopper rod height hs, that is,
Qin = ahs(b− chs), where a = 0.2466π, b = 0.01585, and
c = 0.2165. The metal outflow quantity Qout = LxgωR,
where ω represents the angular velocity of the roll’s rotation
and R is the radius of roll.

Meanwhile, F (y, xg, β) and Φ(y, xg, β) are defined as the
following two nonlinear functions:

F (y, xg, β) =(2R+ xg) cosβ −
√
R2 − y2

−
√
R2 −

(
y − (2R+ xg) sinβ

)2 (2)

Φ(y, xg, β) =

(
y cosβ + sinβ

√
R2 − (R+

xg
2
)2 sinβ2

− (2R+ xg) cosβ sinβ

)
dxg
dt

(3)
Overall, dynamic equation (1) can be rewritten as

dy

dt
=
ahs(b− chs)− LxgωR− LΦ(y, xg, β)

LF (y, xg, β)
(4)

Fig. 1: Schematic view of the twin-roll inclined casting.

To develop the control scheme for the subsequent phase,
we need to incorporate the coordinate transformations ξ1 =
y, ξ2 = dy

dt , and u = hs, which allow us to convert

the dynamic equation (4) of the molten steel level into a
nonaffine nonlinear system in the following format:

ξ̇1 = ξ2

ξ̇2 = f(ξ, u)

y = ξ1

(5)

where ξ = [ξ1, ξ2]
T is the state vector, symbols u and

y represent the control input and output of the system,
respectively. f(ξ, u) is an nonaffine nonlinear function.

Taking the derivative of the molten pool liquid level
equation (4) with respect to time t yields a strongly coupled
smooth non-affine nonlinear function f(ξ, u). This function
f(ξ, u) includes several important time-varying parameters
such as the molten pool liquid level height y and the
gap opening of the rolls xg , as well as several adjustable
parameters such as the height of the cast-rolling bar hs,
the angular velocity of the rolls ω, and the tilt angle β.
Subsequently, in order to simplify the design difficulty of
the subsequent controller, the non-affine nonlinear function
f(ξ, u) in (5) can be decoupled as follows by means of the
mean value theorem:

f(ξ, u) = f(ξ, 0) + u
∂f(ξ, v)

∂v
|v=uϱ

= u+H(ξ, u)
(6)

where 0 < ϱ < 1, and H(ξ, u) = u∂f(ξ,v)
∂v |v=uϱ + f(ξ, 0).

By using (6), (5) can be rewritten in the following form:
ξ̇1 = ξ2

ξ̇2 = u+H(ξ, u)

y = ξ1

(7)

Lemma 1 [22] Let H(ξ) be a continuous function defined
on a compact set Ωξ. Then for ∀ε > 0, there exist the FLS
ζTΨ(ξ) such that

sup
ξ∈Ωξ

|H(ξ)− ζTΨ(ξ)| ≤ ε (8)

where ζ = [ζ1, ζ2, . . . , ζm]T ∈ Rm is the weight vector
and Ψ(ξ) = [ψ1(ξ), ψ2(ξ), . . . , ψm(ξ)]T is the FLS basis
function with m > 1 is the number of FLS rules.
ψi(ξ) = exp[−∥ξ−ξi∥2/ϑ2i ], i = 1, 2, . . . ,m is the Gaussian
function, where ϑi and ξi = [ξi1, ξi2, . . . , ξim]T represent the
width and center, respectively. The optimal parameter vector
ζ∗ of FLS is defined as

ζ∗ = arg min
ζ∈Rm

{ sup
ξ∈Ωξ

|H(ξ)− ζTΨ(ξ)|} (9)

Therefore, the continuous function H(ξ) can be expressed
as

H(ξ) = ζ∗TΨ(ξ) + ε(ξ) (10)

where ε(ξ) is the FLS approximation error, which can be
bounded by |ε(ξ)| ≤ ε, where ε is a positive constant. It
should be pointed out that since ζ∗ is an analytical quantity,
it needs to be estimated later for practical use.

In order to achieve the desired tracking control objectives,
we adopt the following assumptions

Assumption 1: The reference signal yr and its first-order
derivative ẏr satisfy |yr| ≤ r and |ẏr| ≤ ṙ where r and ṙ are
unknown positive constants.

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 4135-4141

 
______________________________________________________________________________________ 



Assumption 2: For the nonaffine nonlinear term in (6),
there exist unknown positive constants f and f such that

0 < f ≤ ∂f(ξ, u)

∂u
≤ f (11)

III. MAIN RESULT

In this section, we combine the reinforcement learning
algorithm with the optimal backstepping control method to
design a backstepping control strategy under the critic-actor
architecture, thereby constructing an optimal controller.

A. Optimized backstepping design

First, consider the following tracking error coordinate
transformation:

z1 = ξ1 − yr

z2 = ξ2 − α̂∗
1

(12)

where yr is selected as the reference signal and set to
0.2 sin(t). α1 and α̂∗

1 represent the virtual control and actual
optimal virtual control correspondingly.

Step 1: From (4) and (12), the derivative of z1 can be
calculated

ż1 = ξ2 − ẏr (13)

The optimal performance index function is chosen as

J1(z1) =

∫ ∞

t

h1

(
z1(v), α1

(
z1(v)

))
dv (14)

where h1(z1, α1) = z21 +α2
1 is the cost function, and let the

optimal virtual control α∗
1 replace α1 in (13), the optimal

performance index function can be obtained

J∗
1 (z1) =

∫ ∞

t

h1(z1(v), α
∗
1(z1(v)))dv

= min
α1∈Ωz1

{
∫ ∞

t

h1

(
z1(v), α1

(
z1(v)

))
dv}

(15)

Replace ξ2 in (12) with the optimal virtual control α∗
1, and

subsequently define the HJB equation associated with (12)
and (14) as

H1(z1, α
∗
1,

dJ∗
1

dz1
) = z21 + α∗

1
2 +

dJ∗
1

dz1
(α∗

1 − ẏr) = 0 (16)

The optimal virtual control α∗
1 can be computed by solving

∂H1/∂α
∗
1 = 0 as

α∗
1 = −1

2

dJ∗
1 (z1)

dz1
(17)

Then, dJ∗
1 (z1)
dz1

is decomposed into

dJ∗
1 (z1)

dz1
= 2χ1z1 + Jo

1 (ξ1, z1) (18)

where χ1 >
5
4 is design parameter. Jo

1 (ξ1, z1) = −χ1z1 +
dJ∗

1 (z1)
dz1

∈ R is a continuous function, and substituting (18)
into (17) has

α∗
1 = −χ1z1 −

1

2
Jo
1 (ξ1, z1) (19)

Since Jo
1 (ξ1, z1) is continuous unknown function, it can

be approximated by FLS as follows:

Jo
1 (ξ1, z1) = ζ∗TJ1ΨJ1(ξ1, z1) + εJ1(ξ1, z1) (20)

where ζ∗J1 represents the ideal weight vector, ΨJ1(ξ1, z1)
is the basis function vector, and εJ1(ξ1, z1) represents the
approximation error bounded by |εJ1(ξ1, z1)| ≤ εJ1 as
arbitrarily small. Then, (18) and (19) can be reorganized as

dJ∗
1 (z1)

dz1
= 2χ1z1 + ζ∗TJ1ΨJ1 + εJ1 (21)

α∗
1 = −χ1z1 −

1

2
ζ∗TJ1ΨJ1 −

1

2
εJ1 (22)

Since ζ∗J1 is unknown constant vector, the optimal virtual
control (22) is not available for the controlled system. To
derive the effective optimized virtual control, the following
RL algorithm with critic and actor is performed.

dĴ∗
1 (z1)

dz1
= 2χ1z1 + ζ̂Tc1ΨJ1 (23)

α̂∗
1 = −χ1z1 −

1

2
ζ̂Ta1ΨJ1 (24)

where dĴ∗
1 (z1)
dz1

and α̂∗
1 are the estimates of dJ∗

1 (z1)
dz1

and α∗
1,

respectively. ζ̂Tc1ΨJ1 and ζ̂Ta1ΨJ1 are the FLS weight vectors
of critic and actor, respectively.

Following this, the weight vectors of the neural networks
for both the critic and actor are trained according to the
respective adaptive laws outlined below.

˙̂
ζc1 = −κc1ΨJ1Ψ

T
J1ζ̂c1 (25)

˙̂
ζa1 = −ΨJ1Ψ

T
J1

(
κa1(ζ̂a1 − ζ̂c1) + κc1ζ̂c1

)
(26)

where κc1 > 0 and κa1 > 0 represent critic and actor design
parameters, while κc1 and κa1 satisfy κa1 > 1

2 , κa1 > κc1

2 .
Using (24), (13) can be rewritten as

ż1 = z2 − χ1z1 −
1

2
ζ̂Ta1ΨJ1 − ẏr (27)

For the first backstepping step, the Lyapunov function V1
is designed as follows:

V1 =
1

2
z21 +

1

2
ζ̃Tc1ζ̃c1 +

1

2
ζ̃Ta1ζ̃a1 (28)

where ζ̃c1 = ζ∗J1− ζ̂c1 and ζ̃a1 = ζ∗J1− ζ̂a1 are the estimation
errors of the critic and the actor, respectively.

Then, the derivative of V1 is

V̇1 =z1
(
z2 − χ1z1 −

1

2
ζ̂Ta1ΨJ1 − ẏr

)
+ κc1ζ̃

T
c1ΨJ1Ψ

T
J1ζ̂c1

+ ζ̃Ta1ΨJ1Ψ
T
J1

(
κa1(ζ̂a1 − ζ̂c1) + κc1ζ̂c1

)
(29)

The Young’s inequality yields the following results

z1z2 ≤ 1

2
z21 +

1

2
z22

−z1ẏr ≤ 1

2
z21 +

1

2
ẏ2r

−1

2
z1ζ̂

T
a1ΨJ1 ≤ 1

4
z21 +

1

4
ζ̂Ta1ΨJ1Ψ

T
J1ζ̂a1

(30)

Along with (29) and (30), we can calculate:

V̇1 ≤− (χ1 −
5

4
)z21+ κc1ζ̃

T
c1ΨJ1Ψ

T
J1ζ̂c1

+ κa1ζ̃
T
a1ΨJ1Ψ

T
J1ζ̂a1 +

1

2
z22 +

1

2
ẏ2r

+ (κc1 − κa1)ζ̃
T
a1ΨJ1Ψ

T
J1ζ̂c1

+
1

4
ζ̂Ta1ΨJ1Ψ

T
J1ζ̂a1

(31)
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Based on ζ̃c1 = ζ∗J1 − ζ̂c1, ζ̃a1 = ζ∗J1 − ζ̂a1 and Young’s
inequality, we have

ζ̃Tc1ΨJ1Ψ
T
J1ζ̂c1 =

1

2
ζ∗TJ1ΨJ1Ψ

T
J1ζ

∗
J1 −

1

2
ζ̃Tc1ΨJ1

×ΨT
J1ζ̃c1 −

1

2
ζ̂Tc1ΨJ1Ψ

T
J1ζ̂c1

ζ̃Ta1ΨJ1Ψ
T
J1ζ̂a1 =

1

2
ζ∗TJ1ΨJ1Ψ

T
J1ζ

∗
J1 −

1

2
ζ̃Ta1ΨJ1

×ΨT
J1ζ̃a1 −

1

2
ζ̂Ta1ΨJ1Ψ

T
J1ζ̂a1

ζ̃Ta1ΨJ1Ψ
T
J1ζ̂c1 ≤− 1

2
ζ̃Ta1ΨJ1Ψ

T
J1ζ̃a1

− 1

2
ζ̂Tc1ΨJ1Ψ

T
J1ζ̂c1

(32)

Subsequently, we can acquire

V̇1 ≤− (χ1 −
5

4
)z21 − κc1

2
ζ̃Tc1ΨJ1Ψ

T
J1ζ̃c1

− (κa1 −
κc1
2

)ζ̃Ta1ΨJ1Ψ
T
J1ζ̃a1

− κa1
2
ζ̂Tc1ΨJ1Ψ

T
J1ζ̂c1 − (

κa1
2

− 1

4
)

× ζ̂Ta1ΨJ1Ψ
T
J1ζ̂a1 +

1

2
z22 +

1

2
ẏ2r

+
κc1 + κa1

2
ζ∗TJ1ΨJ1Ψ

T
J1ζ

∗
J1

(33)

The following inequality holds when λmin
ΨJ1

is the minimum
eigenvalue of ΨJ1Ψ

T
J1.

− ζ̃Tc1ΨJ1Ψ
T
J1ζ̃c1 ≤ −λmin

ΨJ1
ζ̃Tc1ζ̃c1

− ζ̃Ta1ΨJ1Ψ
T
J1ζ̃a1 ≤ −λmin

ΨJ1
ζ̃Ta1ζ̃a1

(34)

According to the design parameters κa1 > κc1

2 and κa1 >
1
2 , as well as (34), it can yield

V̇1 ≤− (χ1 −
5

4
)z21 − κc1

2
λmin
ΨJ1

ζ̃Tc1ζ̃c1

− (κa1 −
κc1
2

)λmin
ΨJ1

ζ̃Ta1ζ̃a1 +
1

2
z22 + σ1

(35)

where σ1 = 1
2 ẏ

2
r + κc1+κa1

2 ζ∗TJ1ΨJ1Ψ
T
J1ζ

∗
J1. Since all the

terms in σ1 are bounded, there exists a positive constant σ1

such that |σ1| ≤ σ1.
Step 2 : The derivative of z2 is calculated in a similar

manner.
ż2 = u+H(ξ, u)− ˙̂α∗

1 (36)

Among them, H(ξ, u) can be approximated by FLS as
ζ∗Tf2 Ψf2 + εf2, there exists a positive constant εf2 such that
|εf2| ≤ εf2. Then, the selection of the most suitable integral
cost function is detailed as follows:

J∗
2 (z2) =

∫ ∞

t

h2

(
z2(v), u

∗(z2(v)))dv
= min

u∈Ωz2

{
∫ ∞

t

h2

(
z2(v), u

(
z2(v)

))
dv}

(37)

where h2(z2, u) = z22+u
2 is the cost function, u∗ represents

the optimal controller.
Based on (37), the HJB equation is constructed as

H2(z2, u
∗,

dJ∗
2

dz2
) =z22 + u∗2 +

dJ∗
2

dz2

(
u∗ + ζ∗Tf2 Ψf2(ξ)

+ εf (ξ)− ˙̂α∗
1

)
= 0

(38)

The same as before, we can solve for ∂H2/∂u
∗ = 0 as

u∗ = −1

2

dJ∗
2 (z2)

dz2
(39)

Then, dJ∗
2 (z2)
dz2

can be factored as

dJ∗
2 (z2)

dz2
= 2χ2z2 + 2ζ∗Tf2 Ψf2 + 2εf2 + Jo

2 (ξ2, z2) (40)

where χ2 > 0 is design parameter. Jo
2 (ξ2, z2) = −2χ2z2 −

2ζ∗Tf2 Ψf2 − 2εf2 +
dJ∗

2 (z2)
dz2

is a continuous function, and the
u∗ can be expressed as

u∗ = −χ2z2 − ζ∗Tf2 Ψf2 − εf2 −
1

2
Jo
2 (ξ2, z2) (41)

Since Jo
2 (ξ2, z2) is unknown continuous term, it can also

be approximated using FLS as follows:

Jo
2 (ξ2, z2) = ζ∗TJ2ΨJ2 + εJ2 (42)

where ζ∗J2 is the ideal weight vector, ΨJ2 is the FLS basis
function vector, and the FLS approximation error εJ2 is
bounded.

Similarly, we can derive the following conclusion

dJ∗
2 (z2)

dz2
= 2χ2z2 + 2ζ∗Tf2 Ψf2 + ζ∗TJ2ΨJ2 + ε2 (43)

u∗ = −χ2z2 − ζ∗Tf2 Ψf2 −
1

2
ζ∗TJ2ΨJ2 −

1

2
ε2 (44)

where ε2 = 2εf2 + εJ2.
The optimal control (44), however, remains unattainable,

necessitating the execution of an RL algorithm featuring both
a critic and an actor to acquire viable control signal.

dĴ∗
2 (z2)

dz2
= 2χ2z2 + 2ζ̂Tf2Ψf2 + ζ̂Tc2ΨJ2 (45)

û∗ = −χ2z2 − ζ̂Tf2ΨJ2 −
1

2
ζ̂Ta2ΨJ2 (46)

where dĴ∗
2 (z2)
dz2

and α̂∗
2 are the estimate of dJ∗

2 (z2)
dz2

and u∗,
respectively. ζ̂Tc2ΨJ2 and ζ̂Ta2ΨJ2 are the FLS weight vectors
of critic and actor, respectively.

Same as the first step, the corresponding three adaptive
update laws are designed as follows:

˙̂
ζf2 = Γf2ΨJ2z2 − κf2ζ̂f2 (47)

˙̂
ζc2 = −κc2ΨJ2Ψ

T
J2ζ̂c2 (48)

˙̂
ζa2 = −ΨJ2Ψ

T
J2

(
κa2(ζ̂a2 − ζ̂c2) + κc2ζ̂c2

)
(49)

where Γf2 > 0, κf2 > 0, κc2 > 0 and κa2 > 0 are design
parameters, while κc2 and κa2 satisfy κa2 > 1

2 , κa2 > κc2

2 .
According to (46), the ż2 can be expressed as follows

ż2 = −χ2z2 −
1

2
ζ̂Ta2ΨJ2 + ζ̃Tf2Ψf2 + εf2 − ˙̂α∗

1 (50)

Subsequently, the Lyapunov function V2 is established as

V2 =
1

2
z22 +

1

2Γf2
ζ̃Tf2ζ̃f2 +

1

2
ζ̃Tc2ζ̃c2 +

1

2
ζ̃Ta2ζ̃a2 (51)

where ζ̃f2 = ζ∗f2− ζ̂f2, ζ̃c2 = ζ∗J2− ζ̂c2 and ζ̃a2 = ζ∗J2− ζ̂a2.
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Then, the V̇2 can be calculated as

V̇2 =z2
(
− χ2z2 −

1

2
ζ̂Ta2ΨJ2 + ζ̃Tf2Ψf2 + εf2 − ˙̂α∗

1

)
+ ζ̃Ta2ΨJ2Ψ

T
J2

(
κa2(ζ̂a2 − ζ̂c2) + κc2ζ̂c2

)
+
κf2
Γf2

ζ̃Tf2ζ̂f2 + κc2ζ̃
T
c2ΨJ2Ψ

T
J2ζ̂c2

(52)

Using the Young’s inequality, we have

z2εf2 ≤ 1

2
z22 +

1

2
ε2f2

−z2 ˙̂α∗
1 ≤ 1

2
z22 +

1

2
˙̂α∗2
1

−1

2
z2ζ̂

T
a2ΨJ2 ≤ 1

4
z22 +

1

4
ζ̂Ta2ΨJ2Ψ

T
J2ζ̂a2

(53)

Substituting (53) into (52) yields

V̇2 ≤− (χ2−
5

4
)z22 − κf2

2Γf2
ζ̃Tf2ζ̃f2−

κc2
2
ζ̃Tc2ΨJ2Ψ

T
J2ζ̃c2

−(κa2−
κc2
2
)ζ̃Ta2ΨJ2Ψ

T
J2ζ̃a2−

κa2
2
ζ̂Tc2ΨJ2Ψ

T
J2ζ̂c2

− (
κa2
2

− 1

4
)ζ̂Ta2ΨJ2Ψ

T
J2ζ̂a2 +

κc2 + κa2
2

ζ∗TJ2ΨJ2

×ΨT
J2ζ

∗
J2 +

1

2
ε2f2 +

1

2
˙̂α∗2
1 +

κf2
2
ζ∗Tf2 ζ

∗
f2 +

1

2
z23

≤− (χ2−
5

4
)z22 − κf2

2Γf2
ζ̃Tf2ζ̃f2 −

κc2
2
λmin
ΨJ2

ζ̃Tc2ζ̃c2

− (κa2 −
κc2
2

)λmin
ΨJ2

ζ̃Ta2ζ̃a2 −
1

2
z22 +

1

2
z23 + σ2

(54)
where σ2 = 1

2ε
2
f2 +

κc2+κa2

2 ζ∗TJ2ΨJ2Ψ
T
J2ζ

∗
J2 +

κf2

2 ζ∗Tf2 ζ
∗
f2 +

1
2
˙̂α∗2
1 is bounded, and there exists a positive constant σ2

that ensures the existence of |σ2| ≤ σ2. Additionally, λmin
ΨJ2

represents the minimum eigenvalue of ΨJ2Ψ
T
J2.

B. Stability analysis

Theorem 1 The optimal backstepping control strategy
proposed in this paper is applied to TRICS, where the
adaptive laws of the fuzzy parameters, the critic and the
actor are respectively (47) and (25), (48) and (26), (49),
and the optimal virtual control and the optimal controller are
respectively (24) and (46). Based on this, it can be concluded
that this optimal control strategy can ensure that all signals
in the closed-loop system remain bounded, and achieve the
precise decoupling and performance optimization between
the molten pool liquid level height and the roll gap of TRICS.

Proof: Construct a Lyapunov function V =
2∑

i=1

Vi, we

can compute

V̇ ≤−
2∑

i=1

(χi−
5

4
)z2i −

κf2
2Γf2

ζ̃Tfiζ̃fi −
2∑

i=1

κci
2
λmin
ΨJi

ζ̃Tciζ̃ci

−
2∑

i=1

(κai−
κci
2

)λmin
ΨJi

ζ̃Taiζ̃ai+
2∑

i=1

σi

≤−ΘV +∆
(55)

where Θ=min{2χi−5
2 ,

κf2

Γf2
,κci,(κai−κci

2 )λmin
ΨJi

, i=1, 2},∆ =
2∑

i=0

σi.

The proof of Theorem 1 is completed.
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Fig. 2: State ξ1 and reference signal yr.
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Fig. 3: Tracking error z1.
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Fig. 4: The norm of the ζ̂f2.
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Fig. 5: The norms of the ζ̂c1 and ζ̂c2.
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Fig. 6: The norms of the ζ̂a1 and ζ̂a2.
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Fig. 8: Cost functions h1 and h2.

IV. SIMULATION EXAMPLE

The effectiveness of the control algorithm proposed in
this paper was verified through simulation examples. The
parameters used in the simulation process are summarized
as follows:

The corresponding process parameters in the TRICS are
R = 150 mm, L = 200 mm, ω = 170 mm/s and β =
5◦. The reference signal is selected as yr = 0.2 sin(t). The
control parameters are designed as χ1 = 8, χ2 = 12, κf2 =
15, κc1 = κc2 = 10, κa1 = κa2 = 12. Furthermore, the
initial values are set as ξ1(0) = 0.2, ξ2(0) = 0.2, ζ̂f2(0) =
[0.4, . . . , 0.4]T ∈ R6×1, ζ̂c1(0) = ζ̂a1(0) = [0.5, . . . , 0.5]T ∈
R6×1, ζ̂c2(0) = ζ̂a2(0) = [0.4, . . . , 0.4]T ∈ R6×1.

The simulation results show that the dual neural network
structure based on the critic-actor framework proposed in
this paper can efficiently evaluate the value function of
the current control strategy, generate adaptive compensation
terms to optimize the control law, and ensure that the output
error of the TRICS is always within the preset range by
dynamically adjusting the system control gain online. Figures
2 and 3 verify the excellent tracking performance of the
system under this strategy. Figures 4-8 further demonstrate
that the critic adaptive law, the actor adaptive law, and the
optimal controller designed in this paper all exhibit fast
convergence characteristics and maintain stability, thereby
effectively achieving the optimal control state of the system.

V. CONCLUSION

This study demonstrates that the fuzzy optimal control
framework based on the actor-critic architecture established
for TRICS has significant advantages in terms of theoretical
innovation and method integration. This approach achieves
a deep integration of nonlinear dynamic characteristics
and multi-objective optimization through an adaptive
mechanism. The internal stability analysis and the
accessibility demonstration of performance indicators
provide a new theoretical perspective for the control of
complex industrial processes. Future research can further
explore the deployment of the algorithm to physical entity
systems in the context of intelligent manufacturing, verify its
multi-condition robustness and real-time performance, and
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explore the extended application of multi-agent coordination
mechanisms in the group control of heterogeneous
equipment, providing technical support for the full-process
intelligent casting.
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