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ADHSTGCN: Adaptive Dual Hypergraph
Spatiotemporal Convolutional Network for Traffic
Prediction
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Abstract—Spatio-temporal graph modeling is essential for
achieving accurate traffic flow prediction and enhancing the
efficiency of transportation systems. Traditional models often
rely on static, predefined graphs that fail to fully capture
the complexity of real-world road networks. Although global
semantic adjacency matrices have been introduced to enrich
proximity-based graphs and facilitate association modeling in
graph convolutional networks (GCNs), they overlook the dy-
namic spatiotemporal characteristics of traffic systems, thereby
limiting their effectiveness in capturing nuanced dependencies.
Moreover, many existing spatio-temporal graph neural net-
works (STGNNs) exhibit suboptimal performance during end-
to-end training due to their reliance on fixed graph structures.
To address this limitation, we propose a novel framework
named Adaptive Dual Hypergraph Spatio-Temporal Graph
Convolutional Network (ADHSTGCN).

In this framework, we design a Dual Hypergraph Con-
volutional Network (DHGC) as the core prediction module.
The DHGC integrates edge features into the learning process,
thereby enhancing the representation of edge-level interactions
and capturing more intricate spatiotemporal dependencies. Ad-
ditionally, inspired by the Expectation-Maximization (EM) algo-
rithm, we introduce an Adaptive Collaborative Graph Learning
(ACGL) module. By alternately optimizing the parameters of
the DHGC and ACGL modules, each module can iteratively
refine its estimates based on the latest updates from the other
module, leading to improved convergence and stability.

To validate the effectiveness of the proposed ADHSTGCN
model, extensive experiments were conducted on four public
traffic datasets. Compared with the best baseline models,
ADHSTGCN achieves average improvements of 1.87% in
MAPE for speed prediction tasks (METR-LA, PEMS-BAY) and
4.45% for flow prediction tasks (PEMS03, PEMS04). These
results highlight the model’s superior accuracy in both fine-
grained and long-term forecasting, as well as its capability to
capture complex spatiotemporal dependencies in urban traffic
systems.

Index Terms—Traffic prediction, expectation maximization,
hypergraph, graph convolution.

I. INTRODUCTION

ITH the rapid growth of urban populations and ve-
hicles, transportation systems have become increas-
ingly complex and face numerous challenges such as con-
gestion. Consequently, the development of modern intelligent
transportation systems (ITS) for cities has become impera-
tive. In this context, traffic prediction, as a crucial task in
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ITS, has garnered widespread attention and emerged as a re-
search hotspot. Accurately capturing the evolving spatiotem-
poral patterns within large-scale transportation networks
constitutes the fundamental difficulty in traffic forecasting.
Throughout the development of this field, researchers have
progressively established multiple methodological frame-
works. Initial solutions predominantly employed linear an-
alytical techniques, exemplified by Historical Average (HA)
[1] and Moving Average (MA) [2] algorithms that generate
traffic projections through systematic aggregation of past ob-
servations. The methodological evolution subsequently wit-
nessed the emergence of sophisticated statistical paradigms,
particularly clustering-based KNN techniques [3], [4], en-
hanced ARIMA formulations [5],[6] that integrate Autore-
gressive (AR) and MA components with differencing oper-
ations to handle non-stationary data, along with multivariate
VAR systems [7] extending traditional AR models. Although
these methodologies demonstrate computational efficiency
and straightforward implementation, their capability to model
complex traffic interactions remains constrained, ultimately
limiting predictive performance enhancements. Later ap-
proaches with better generalization capabilities and smaller
errors were proposed, including Support Vector Regression
(SVR) [9], Random Forest Regression (RFR) [11], Fuzzy
Logic Regression (FLR) [12], Kalman Filters (KFs)[8], as a
variant of Support Vector Machines (SVM) [10] and and their
variants such as Extended Kalman Filters (EKFs)[8], and
hybrid models [13]. However, their performance remained
suboptimal. Compared to these traditional methods, neural
network-based approaches have gained prominence due to
their superior ability to capture nonlinear relationships in
traffic data. Examples include neural networks [14], [15],
Bayesian networks [16], and Recurrent Neural Networks
(RNNs) [17]. With advancements in deep learning [18],
numerous deep learning-based traffic prediction methods
[19] have emerged, achieving state-of-the-art performance
by leveraging deep neural networks to capture complex data
features. Temporal neural networks like LSTM [20], [21] and
GRU [22] are commonly used to learn temporal features,
but sequential learning models face challenges in training
complexity and computational costs. For spatial feature
extraction, CNN-based methods like ST-ResNet [23] were
introduced, but these approaches treat road networks as grid-
like images, losing their inherent graph structure. Recently,
Graph Convolutional Networks (GCNs) [24] and Temporal
Convolutional Networks (TCNs) [25] have been integrated
into traffic prediction. GCNs preserve the graph structure of
transportation networks, while TCNs capture temporal dy-
namics. Their fusion has led to high-performance GCN-based
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Fig. 1: Simple framework based on em algorithms.

frameworks such as STGCN [26], Graph WaveNet [27], and
DGCNN [28]. These methods involve constructing graphs
or adjacency matrices where road segments (nodes) and their
relationships (edges) are explicitly defined. Early approaches
focused on creating graphs based solely on direct connec-
tivity between road segments [29]. To enhance precision,
subsequent studies incorporated distance-based [30] and ge-
ographic similarity-based [31] relationships. However, static
graphs fail to adequately capture the dynamic spatiotemporal
characteristics of traffic flow; for example, real-world events
such as accidents or congestion can significantly alter traffic
correlations between road segments. Recent advancements
address this limitation by leveraging real-time traffic data
to construct dynamic graphs [32], [33], thereby achieving
substantial improvements over static models [34].

Despite the insights provided by dynamic graph convo-
lutional network (GCN)-based methods in modeling traffic
flow dynamics, several challenges remain unresolved. Specif-
ically, edges, which represent relationships between nodes,
lack directly observable features beyond traffic direction and
structural connectivity, unlike nodes that possess measurable
traffic data. Consequently, enriching edge feature representa-
tion emerges as a critical issue. Moreover, contemporary end-
to-end frameworks exhibit inherent architectural limitations,
where predictive accuracy is constrained by the adequacy
of graph representation learning. Additionally, the mutually
dependent optimization of co-adaptive modules originates
from suboptimal initialization states, leading to coupled
optimization dynamics that propagate initial parameter biases
throughout the training process. More critically, the joint
optimization framework lacks explicit mechanisms for direc-
tional regularization, enabling uncontrolled error propagation
across interconnected network components during gradient-
based parameter updates.

To tackle these challenges, we propose ADHSTGCN, an
Adaptive Dual Hypergraph Spatiotemporal Graph Convolu-
tional Network based on the Expectation-Maximization (EM)
algorithm. As illustrated in Fig. 1, inspired by the EM frame-
work, our approach divides the traffic prediction task into

two key components: the Dual Hypergraph Convolutional
(DHGC) prediction module and the Adaptive Collaborative
Graph Learning (ACGL) module. The DHGC module inte-
grates traffic flow graphs with dual hypergraph associations
to more effectively capture edge features. Meanwhile, the
ACGL module optimizes graph structures via a carefully
designed loss function while ensuring sparsity. Instead of
traditional end-to-end training, we adopt an alternating opti-
mization strategy. In the DHGC training phase, a predefined
graph from the graph set is treated as the optimal structural
expectation and remains fixed. During the ACGL training
phase, the optimized DHGC module is frozen to generate
more effective adjacency matrices. These two processes
iteratively alternate, with a sparsity-enforcing loss function
ensuring that the generated graphs maintain conciseness.
This approach not only refines spatial dependencies but
also uncovers hidden node correlations, thereby enhancing
prediction accuracy and providing significant value for traffic
management and control. The main contributions of this
paper are summarized as follows:

1) Addressing the Limited Expressive Power of Predefined
Adjacency Matrix Graphs by Incorporating Edge Features
through Dual Hypergraphs: To overcome the limitations of
predefined adjacency matrix graphs, this paper proposes
leveraging dual hypergraphs to incorporate edge features into
the model learning process.

2) Proposing the DHGC Network Module to Enhance the
Adaptability of Graph Learning Models: To improve the
adaptability of graph learning models in capturing urban
traffic flow characteristics, this study introduces the DHGC
module. Within this network, both the predefined graph and
its dual hypergraph are fully utilized to effectively exploit
edge features for traffic flow prediction.

3) Developing an Adaptive Dual Hypergraph Neural Network
Framework Based on the EM Algorithm: This paper presents
the ACGL module and an innovative modeling framework
that employs a stepwise iterative training method. Through
two alternating steps, the framework progressively enhances
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the model’s explanatory power over the data.

II. RELATED WORK
A. Traffic Prediction Based on a Single Time Series Feature

In the field of traffic forecasting, utilizing single-variable
time series features has been a traditional methodology for
modeling and prediction. This approach involves an in-
depth analysis of time series data to identify key temporal
patterns such as trends, seasonality, and cyclic behaviors,
enabling a better understanding of passenger flow dynam-
ics. Among classical statistical models, the Autoregressive
Integrated Moving Average (ARIMA) model is particularly
recognized for its efficiency in handling stationary time
series. Li et al. [33] validated the effectiveness of ARIMA
in modeling passenger flow at Sanya Airport, highlighting
its practical applicability [34]. Furthermore, Ding et al. [35]
enhanced conventional forecasting techniques by integrating
Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) with ARIMA, which effectively improved the
accuracy of traffic flow predictions [36]. The empirical
validation of ARIMA’s efficacy in transportation modeling
was first demonstrated through Li et al’s seminal study
on passenger flow dynamics at Sanya Airport, establishing
its operational robustness in real-world scenarios. Build-
ing upon this foundation, Ding et al. [37] achieved supe-
rior forecasting precision through systematic integration of
Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) with ARIMA frameworks, marking a critical
methodological innovation in handling traffic flow volatil-
ity. However, the fundamental constraints of ARIMA in
addressing three critical challenges — nonlinear temporal
fluctuations, non-stationary data distributions, and multidi-
mensional temporal patterns — became increasingly apparent
with expanding dataset complexity and escalating precision
requirements. This recognition precipitated a methodolog-
ical shift toward deep learning architectures, particularly
recurrent neural networks (RNNs) equipped with specialized
memory gating mechanisms. Among these innovations, Long
Short-Term Memory (LSTM) networks and Gated Recurrent
Units (GRUs) emerged as paradigm-shifting solutions due to
their architectural capacity to model both long-range tem-
poral dependencies and nonlinear interaction mechanisms.
The evolutionary trajectory witnessed significant milestones
with the development of Temporal-Domain Enhanced LSTM
(T-LSTM) [37], a temporal feature preservation framework
for univariate traffic flow forecasting that demonstrated 12%
accuracy improvement through intrinsic data encoding. Con-
currently, the SVR-LSTM hybrid architecture proposed by
Guo et al. [38] effectively captured traffic flow anomalies by
synergistically combining kernel-based pattern recognition
with sequential modeling. To further refine the modeling
of temporal dependencies in traffic forecasting, Zhao et
al. adopted the Temporal Convolutional Network (TCN)
model. This architecture, based on a one-dimensional con-
volutional neural network (ID-CNN), effectively captures
long-range sequential dependencies [39]. In 2020, Sha et
al. implemented a GRU-based forecasting system capable of
predicting time intervals ranging from 15 minutes to 6 hours,
significantly improving traffic management, safety monitor-
ing, and passenger flow regulation [40]. More recently, in

2023, VN. Katambie et al. introduced a hybrid framework
that fuses LSTM with ARIMA, combining the strengths
of statistical modeling and deep learning-based sequence
prediction. This integration has substantially enhanced the
reliability and robustness of traffic flow forecasting, offering
a more precise depiction of traffic dynamics [41].

B. GCN-based traffic prediction

Graph Convolutional Networks (GCNs) (Kipf Welling,
2017) have demonstrated strong capabilities in capturing
spatial dependencies within non-Euclidean domains, leading
to significant advancements in areas such as protein structure
analysis and social network modeling. In recent years, GCN-
based spatiotemporal neural networks have gained increasing
attention in traffic forecasting. Li et al proposed the Diffusion
Convolutional Recurrent Neural Network (DCRNN), which
integrates graph convolution operations into a recurrent
framework based on diffusion processes to enhance average
speed prediction. Building upon this, researchers introduced
the Attention-Based Spatial-Temporal Graph Convolutional
Network (ASTGCN), which leverages both spatial and tem-
poral attention mechanisms to refine predictive accuracy.
To further optimize model performance, Li and Zhanxing
(2021) incorporated a specialized temporal graph into the
framework.

Despite these advancements, the inherent uncertainty in
node relationships presents challenges in accurately captur-
ing spatial dependencies. To address this limitation, recent
studies have explored graph learning modules to dynamically
infer graph structures. Wu et al. proposed Graph WaveNet,
which constructs an adaptive dependency matrix to model
bidirectional sparse interactions between nodes. However,
this approach struggles to enforce strict sparsity constraints
on the learned adjacency matrix. Subsequently, Wu et al.
developed an enhanced graph learning layer designed to ex-
tract unidirectional dependencies while incorporating sparsity
constraints. Nevertheless, empirical results indicate that this
method remains suboptimal for end-to-end training frame-
works. Guo et al. introduced a Laplacian matrix learning
approach that dynamically constructs graph structures based
on input data, alleviating inaccuracies in predefined graphs.
However, this method still faces limitations in effectively
capturing latent node correlations.

C. Spatio-temporal Correlation-Based traffic prediction

Current spatiotemporal graph networks primarily evolve
along two technical pathways: RNN-based and CNN-based
methods. Early RNN-based approaches modeled spatiotem-
poral dependencies by filtering input data and passing fea-
tures extracted through graph convolution to recurrent units.
Subsequent studies introduced various optimization strate-
gies, such as enhancing information propagation through
diffusion convolution or employing attention mechanisms
to strengthen focus on critical features [42]. Additional
research proposed node-level RNNs and edge-level RNNs
to separately model different aspects of temporal sequence
information [43]. However, RNN architectures exhibit lower
computational efficiency when processing long sequences
and are more prone to gradient explosion when combined
with GCNs.
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In contrast, CNN-based methods adopt architectures com-
bining graph convolution with one-dimensional convolutional
neural networks (1D-CNNs) to improve computational ef-
ficiency [43]. Although these methods offer computational
advantages over RNNG in terms of complexity, expanding the
model’s receptive field typically requires stacking multiple
convolutional layers or incorporating global pooling mecha-
nisms to capture long-range dependencies.

III. PRELIMINARIES
A. Problem Formulation

The topological structure of transportation networks can
be formally characterized through a weighted digraph G =
(V,E, A), where urban road segments constitute the vertex
set V (JV| = N), and spatiotemporal correlations between
segment traffic states define the edge set £. As visualized in
Fig. 2(a), this relational structure is encoded in the adjacency
matrix A € RY*N | whose elements quantify connection
weights derived from either road network connectivity or
inter-segment spatial proximities.

The dynamic traffic measurements (speed/flow/occupancy)
across the network at timestamp ¢ form a feature tensor
Xy = (zf,27,...,2))" € RN*F where each nodal
observation i € R contains F-dimensional attributes.
Over a temporal window [1, 7], the evolving network states
constitute a spatiotemporal sequence:

Xl:r _ ()(1’)(27 o ’XT)T c RNXFXT

Formally, the traffic forecasting task requires learning
a mapping function JF that projects historical observa-

tions X(=T"+1):t gapd graph structure G onto future states
XA+ (T

F (‘X'(t—T’-i,-l):t7 g) N X(t+1):(t+T) (])

where X (=T +1):t ¢ RNXFXT" encodes T’-step historical
patterns and X (t+1):(HT) ¢ RNXFXT denotes T-step pre-
dictions.

B. Graph and Hypergraph Convolution Networks

Graph Convolutional Networks (GCNs) are a type of con-
volutional network designed for graphs, where node features
are updated by aggregating and transforming the features
of neighboring nodes. Kipf et al. [11] introduced a first-
order Chebyshev polynomial approximation for GCN, for-
mulated as follows: The first-order approximation of Graph
Convolutional Networks (GCNs) is defined as a layer-wise
transformation function:

GCN(X) = o (D—%AD—%XW) )

where A = A+ Iy € RV*N is the adjacency matrix with
self-connections, X € RV*F denotes the input node feature
matrix containing F'-dimensional features for N nodes, and
W € REXF' represents the trainable weight matrix. The
symmetric normalized matrix D=2 AD~% stabilizes gradi-
ent propagation by controlling feature magnitudes, balances
node influence through degree normalization, and preserves
directional consistency via self-loop integration.

The complete architecture is constructed by successively
applying the GCN layer:

XD = GeN(x @) 3)

where X () indicates the hidden node representations at layer
I. The nonlinear activation function o(-) ( ReLU) enables
model capacity enhancement between layers. The simplified
formula is as follows:

GCN(X) = AXO 4

where A € RV*N s the normalized adjacency matrix,
X € RV*F1 s the input feature matrix, and © € RF1 2 g
the parameter to learn.

The hypergraph convolution network (HGCN) can be
regarded as the extension of the GCN from graph to hy-
pergraph. Feng et al. proposed a hypergraph convolution as
follows:

HGCN(X,,) = D, PHWD, *H D, *X,0 (5

where Dy, € RY*N and Dy, € RE*F denote the diag-
onal matrices of the hyper-edge degrees and the hyper-node
degrees, respectively. Here, we call the node of hypergraph
as hyper-node for distinguishing from that of the general
graph. H € RE*¥ g the incidence matrix, W € RV XV is
the weighted diagonal matrix of the hyper-edge, generally
the identity matrix. X;, € RF*F is the input feature matrix,
and © € RF1*F2 g the learnable parameter.

C. Expectation Maximization Algorithm Framework

The Expectation-Maximization (EM) algorithm provides
an iterative framework for maximum likelihood estimation
in probabilistic models involving latent variables. Given
observed data X, latent variables Z, and model parameters
6, the complete-data log-likelihood is defined as:

logp(X, Z | 6) (6)

where direct maximization is often intractable due to the
presence of unobserved latent variables Z. The EM algorithm
iteratively refines parameter estimates through alternating
expectation and maximization steps.

In the E-step of iteration ¢, the expected complete-data log-

likelihood is computed using the current parameter estimates
o)

QO 0M) = Ezpzix,0mylogp(X, Z [ 0)]  (7)

where the expectation is taken with respect to the posterior
distribution p(Z | X,0®)) of the latent variables.

The subsequent M-step updates parameters by maximizing
the Q-function:

0+ — arg max Q| e(t)) (8)

This alternating optimization scheme ensures a non-
decreasing marginal likelihood p(X | ) at each iteration.

For traffic prediction tasks, the EM framework is im-
plemented to jointly optimize the parameters of the graph
learning module 6, and the prediction network 6,. By
alternately fixing one parameter subset while optimizing the
other via Equations (7)—(8), the algorithm enables effective
coordination between structural learning and temporal pattern
discovery to enhance predictive performance.
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Fig. 2: The road network and dual transformation.

IV. MODEL
A. Dual transformations for graphs and hypergraphs

The dual graph transformation constitutes a structural con-
version where vertices in the primal graph G = (V, &, A) are
mapped to edges in the dual hypergraph G, = (Vp,, &, H),
while primal edges become hypergraph vertices. This op-
eration generates hypergraph structures because nodes with
degree > 2 in G induce hyperedges connecting multiple
vertices in Gy. As depicted in Fig. 2(b), the vertex-edge
cardinality relationship satisfies:

[Vh| & = N )

The incidence matrix H € RE*Y follows the binary
convention:

:E’

1 ifv, €e;
[H]i; = 7
0 otherwise

where v; € V,, and e; € &,. To handle directed traffic
networks, we decompose H as:

H = Hsrc + Hdsu HSr07 Hdst € REXN

where non-zero elements in Hg. and Hyg
source/destination nodes respectively.

Hypernode features X}, in Gy, integrate edge attributes from
G through:

X, = (W1 © Hye)X; (Wao © Hag) X5 Xis) (12)

where X, € REX@F+UXT o denotes the Hadamard
product, X € RNV*F*T ig the node feature matrix, X, €
R is the road network distance matrix, and Wi, Wy €
RE*N are learnable parameters.The initial components en-
code dynamic characteristics of directional connections,
whereas the final component preserves static relational at-
tributes. Edge-node interdependencies within the traffic net-
work are established through learnable parameter matrices
W1 and WQ.

The inverse conversion operation reconstructs primal node
characteristics by projecting hypernode features from the
dual domain back to the original traffic graph. This bi-
directional mapping preserves structural consistency through:

(10)

(1)

encode

X =Ws0H)'X]

! !
where X/ € RNVN*IF'XT, X € REXF'XT
REXN

(13)

and W3 €
is a learnable parameter matrix that captures asso-
ciations between edges and nodes in the dual hypergraph.
In traffic flow graphs, the number of edges generally
exceeds the number of nodes, leading to hypergraphs with

a large number of nodes and increasing the complexity
of Graph Convolutional Networks (GCNs). Additionally,
excessive redundant edges may introduce noise. To address
this issue, we select more significant edges from the traffic
flow graph to reduce the number of hypergraph nodes.
Specifically, a simple Top-k sampling method is applied,
where only the top-k edges with the highest node weights are
chosen for dual transformation, thereby preserving critical
information.

B. Dual hypergraph convolution Module

The underlying mechanism of Graph Convolutional Net-
works (GCNs) operates through localized information prop-
agation, where nodal representations are iteratively refined
by:

XD = o (AX“)W(”) (14)
where A denotes the normalized adjacency matrix encoding
neighborhood connectivity, W () represents trainable param-
eters at layer [, and o(-) is the activation function. This
paradigm systematically assimilates topological information
through spectral or spatial aggregation of features from
connected nodes within their receptive field.

However, when predicting passenger flow in transit sys-
tems, the inter-node correlations exhibit complex patterns
where predefined adjacency graphs often fail to provide
optimal feature representations for graph learning.

While some scholars have attempted to address the limited
expressive capability of geographically adjacent graphs by
introducing global semantic adjacency matrices to construct
GCN’s relational matrices, their theoretical frameworks in-
adequately utilize the spatiotemporal characteristics inherent
in transportation networks. To overcome this limitation,
this paper proposes the incorporation of dual hypergraph
representations that systematically integrate edge features
into the model learning process. This innovative approach
ensures deep exploration of edge features while maintaining
structural integrity, as demonstrated in Fig. 3. To capture
temporal dependencies in traffic data, we employ a Gated
Temporal Convolutional Network (Gate-TCN), which utilizes
dilated convolution along the temporal dimension for mod-
eling. Given the input feature sequence of traffic flow graph
nodes X € RVXFXT the Gate-TCN is defined as:

TCN4(X) = Conv, (X) € RV FX(T=m(To=1)) (135

GateTCN(X) = tanh (TCNy, (X)) ® o (TCNg, (X)) (16)
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Fig. 3: Dual hypergraph convolution network.

where GateTCN(X) € RN*Fx(T=m(To—1)) denotes the
output tensor, Conv, (-) represents a dilated convolution oper-
ation along the temporal dimension with kernel g € R7° and
dilation factor m, TCNg, (-) and TCN, (-) are two indepen-
dent TCN branches with parameters ¢; and ¢4 respectively,
and tanh(-) and o(-) correspond to the hyperbolic tangent
and Sigmoid activation functions.

Based on the dual transformation, the hypernode features
obtained from Eq.(13) are processed by the Gate-TCN mod-
ule in Eq.(11), followed by hypergraph convolution through
Eq.(5) to capture spatio-temporal features of the hypergraph.
Finally, we transform the hypergraph node features via the
dual transformation and concatenate them with the node fea-
tures from the traffic flow graph to accomplish information
fusion.

C. Adaptive dual Hypergraph Spatio-Temporal Convolu-
tional Network

1) Adaptive Correlation Graph Learning Module: The
spatial dependencies between nodes in dynamic traffic flow
are inherently non-bidirectional. As demonstrated in Fig.2(a),
upstream traffic fluctuations rapidly influence downstream
nodes, while the converse interaction is negligible. To model
such directional relationships, we propose an Adaptive Cor-
relation Graph Learning (ACGL) module. A coarse-grained
affinity matrix is first derived as:

A; =RelU (@ ® (MM, ) — B ® (MM, ) + Diag(A))
a7
where «, 3 € RY denote learnable directional weight vec-
tors, My, My € RN*Fo (Fy < N) are low-rank projection
matrices, and Diag(A) constructs a diagonal matrix from
learnable parameters A € R™. The skew-symmetric term
(MM, — MyM,") captures directional spatial interactions,
while ReLU activation promotes sparsity by setting the
diagonal and half of the off-diagonal entries to zero.
An adaptive fusion mechanism combines real-time and
historical dependencies through attention-guided gating:
Hq(Ar) - Hi(Aoa) "

)

where 7{,(-) and Hy(-) represent independent 1 x 1
convolutional layers, and dj is a scaling factor. The final
adjacency matrix is computed as:

S¢ = Softmax ( (18)

Anew = St © Al + (1 - St) © Aold (19)

Here ® denotes element-wise multiplication and 1 is
an all-ones matrix. This design enables dynamic weighting
between current traffic patterns (A;) and historical depen-
dencies (Ayq), prioritizing real-time interactions during peak
hours while retaining stable historical correlations.
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2) ADHSTGCN Framework : The dual hypergraph con-
volution demonstrates strong capabilities in capturing edge
features and road network characteristics. However, due to
the incompleteness of predefined graph structures, it strug-
gles to effectively represent urban road network topologies
and track dynamic changes in traffic systems, leading to
degraded performance under nonlinear and fluctuating traffic
conditions.

To address these challenges, inspired by the Expectation-
Maximization (EM) algorithm, we propose an Adaptive Col-
laborative Graph Learning (ACGL) module. By alternately
training the Dual Hypergraph Convolution (DHGC) module
and the ACGL module to optimize parameters, we construct
a novel model framework named the Adaptive Dual Hyper-
graph Spatio-Temporal Convolutional Network (ADHGCN).

As shown in Fig. 4, let A* denote the optimal support
matrix that accurately captures spatial dependencies among
nodes in the road network structure, and 6* represent the
optimal parameters of the DHGC module. The proposed
three-stage optimization process proceeds as follows:

Stage 1: The DHGC module is trained using the current
adjacency matrix A, as an approximation of A*. Through
maximum likelihood estimation, this stage yields optimized
parameters 6, for the current iteration:

0, = arg max EDHGC(HMt) (20)
where A, is subsequently refined via Stage 3 updates. Stage
2: The ACGL module is trained with fixed parameters 6,
(approximating 6*), generating an enhanced support matrix
through sparsity-constrained learning:

Ay = FacaL(Adlfy) st Ao < e 2D

where FacgL(+) denotes the transformation with customized
loss functions that simultaneously recalibrate dependency
intensities and preserve latent information.

Stage 3: The optimized matrix A is incorporated into
a candidate set M. The support matrix is updated through
performance-weighted fusion:

A1 = Z w;iAi,  w; < exp(—nE(A;))
A, eM

(22)

where £(+) evaluates prediction error and 7 controls weight
concentration. This adaptive aggregation ensures continuous
improvement of spatial dependency modeling.

D. Loss Function

1) DHGC Module: As illustrated in Fig. 4, the input layer
consists of a linear transformation, whose primary function
is to map the input traffic data into a high-dimensional space,
thereby enhancing the expressive capability of the network.

The output layer first performs skip-connection operations
on all outputs of the DST modules. Subsequently, it fuses
these spatiotemporal features and feeds the result into a
Leaky ReLU activation function layer and a linear transfor-
mation layer, ultimately yielding the prediction result:

o Xpyr)”

We employs the Mean Absolute Error (MAE) to construct
the loss function. For the ground truth X+ (¢t + T) =

XU+ T) = (Xpp1, Xego, -

(Xt41, Xeya, .-, Xerr)T, the loss function is defined as

follows:
loss = MAE (X@“)(t +T), XD (¢ 4 T))
N t+T
_ Zi:l Ej:tJrl |25 — x;|
NxT '

2) AGCL Module: To ensure the sparsity of the generated
adjacency matrix, a novel loss function is proposed:

(23)

AA = ReLU(Apew — Aoid) (24)
N N (4,5)
ReLU (ﬂsz‘;M - 5)

La(Y,Y) = Lp(Y,Y) +

’ (25)

where § € (0,1) is a hyperparameter controlling the
sparsity rate of Ae,. The smaller § is, the stronger the
sparsity constraint on Ap.y. AA calculates the weight dif-
ference between the new and old matrices, ensuring that the
loss function not only penalizes the number of newly added
edges but also suppresses excessive weight growth. This
design more precisely suppresses unnecessary high-weight
edges, prevents model overfitting, enhances training stability,
and the normalization operation effectively constrains the
proportion of newly added edges. The spatial dependencies
between nodes can be adaptively strengthened or weakened
based on the value of Lp, where strong correlations are
preserved and weak correlations are gradually eliminated
after iterations.

V. EXPERIMENTS
A. Datasets and Baselines

This study is conducted on four public traffic datasets:
METR-LA, PEMS-BAY, PEMSO03, and PEMS04. METR-LA
captures traffic speed data from the Los Angeles metropoli-
tan area, while PEMS-BAY covers the San Francisco Bay
Area. The PEMS03 and PEMSO04 datasets contain traffic
flow data from California Districts 3 and 4, respectively.
All datasets include three features—flow, occupancy, and
speed—sampled every 5 minutes.

The spatial graphs are constructed based on different
criteria: METR-LA and PEMS-BAY use pairwise road seg-
ment distances to define edges, whereas the PEMS series
datasets rely on road connectivity for graph construction.
The adjacency matrices are generated using the thresholded
Gaussian kernel to capture spatial correlations. All features
are normalized using z-score normalization. Detailed statis-
tics are provided in Table I.

To assess the performance of the proposed model, we
conducted experimental trials comparing ADHSTGCN with
the following baseline models:

1) Auto Regressive Integrated Moving Average (ARIMA)
[4]: A classical model for non-stationary time series, re-
moving trends/seasonality to enable multi-step predictions in
complex temporal data.

2) Vector Auto Regression (VAR) [5]: Models multivariate
time series by regressing variables on their lagged interde-
pendencies, enabling joint forecasting and causal inference.

Volume 33, Issue 10, October 2025, Pages 4153-4166



Engineering Letters

Intput Traffic Data

UOIJeW JOJSUE) JeaulT]

Time
+T4] b1t

Fig. 4: ADHSTGCN framework, it consists of DHGC module, ACGL module and matrix optimization.The DHGC module
stacks multiple layers, each with residual connections, and sums the layer outputs via skip connections.

TABLE I: Basic Statistics of the Datasets Used in the Experiments

Dataset Location Time Span Time Interval Nodes Edges Time Steps Missingness

PEMSO03 CA, USA  9/1/2018 - 11/30/2018 5 min 358 547 26,208 0.67%

PEMS04 CA, USA  1/1/2018 - 2/28/2018 5 min 307 340 16,992 3.18%
PEMS-BAY CA, USA  1/1/2017 - 5/31/2017 5 min 325 2,369 52,116 0.003%
METR-LA  CA, USA  3/1/2012 - 6/30/2012 5 min 207 1,515 34,272 8.11%

3) Long Short-Term Memory (LSTM) [10]: A variant of
RNN, utilizing gates to control information flow and capture
long-term dependencies in sequential data.

4) Graph Convolutional Recurrent Network (GCRU) [11]:
Combines graph convolutional networks with recurrent lay-
ers to jointly capture spatial and temporal dependencies in
dynamic graph-structured data.

5) Spatio-Temporal  Graph  Convolutional — Network
(STGCN) [29]: Integrates graph convolution with gated
temporal units to jointly model spatial dependencies and
dynamic traffic patterns in transportation systems.

6) Diffusion Convolutional Recurrent Neural Network
(DCRNN) [30]: Combines bidirectional diffusion convolu-
tions with sequence-to-sequence learning to capture spatio-
temporal interactions in dynamic networks.

7) Graph WaveNet [32]: Employs dilated causal convolu-
tions and adaptive adjacency matrices to address long-range
dependencies and latent spatial relationships.

8) Multi-Range Attentive Bicomponent Graph Convolu-
tional Network (MRA-BGCN) [41]: The model improves
traffic forecasting accuracy by integrating multi-range atten-
tive mechanisms with bicomponent graph convolutions to
capture complex spatio-temporal dependencies.

9) Spatio-Temporal Self-Supervised Learning (ST-SSL)
[35]: The framework enhances traffic pattern representation
to reflect spatio-temporal heterogeneity through an assisted
self-supervised learning paradigm.

B. Evaluation Metrics

In the empirical validation phase, the predictive capabil-
ity of our framework is quantified through three principal
statistical measures for temporal forecasting: Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), and Mean
Absolute Percentage Error (MAPE). These error metrics
are formally defined through the following mathematical

expressions:
Mean Absolute Error (MAE):
1< N
MAE = — Y,-Y; 26
- ; (26)
Root Mean Square Error (RMSE):
S Ly AR AN 2
RMSE = | — ( A ) 7
- ; 27)
Mean Absolute Percentage Error (MAPE):
1Y —Y,
MAPE = — 100 28
- ; — | x 100% (28)

where Y; denotes the actual values, Y; represents the pre-
dicted values, and n is the number of samples. Lower values
of these metrics indicate higher prediction accuracy. MAE
measures absolute error, while RMSE emphasizes overall
error trends by penalizing larger deviations. MAPE provides
scale-agnostic error comparisons across datasets.
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TABLE II: The Traffic Prediction Results of Different Methods on METR-LA and PEMS-BAY

D Model 15 min 30 min 60 min
ataset odels MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)
ARIMA 308 823 962 514 1038 1276 678  13.26 17.67
VAR 433 7.88 1024 533 9.09 1267 623 10.58 15.87
LSTM 3.44 6.30 960  3.77 723 1090 437 8.69 13.20
GCRN 3.56 5.56 826  3.54 6.78 1034 432 8.48 13.05
METR.LA  STGCN 2.88 574 762 347 7.24 957 459 9.40 12.70
g DCRNN 277 5.38 730 3.15 6.45 880  3.60 7.60 10.50
Graph WaveNet 3.43 6.57 973 3.60 6.96 1035 395 777 11.65
MRA-BGCN 270 5.14 692  3.10 6.96 840  3.60 777 11.65
ST-SSL 2.69 5.13 690  3.07 6.22 837 3.3 137 10.01
ADHSTGCN(ours)  2.66 5.02 6.86 3.1 6.07 8.16  3.50 7.18 9.74
ARIMA 1.62 330 350 233 776 540 338 6.50 830
VAR 1.74 3.16 3.60 232 425 500 293 5.44 6.50
LSTM 2.05 4.19 480 220 4.55 520 237 4.96 5.57
GCRN 1.46 3.06 322 1.88 4.17 434 240 5.36 5.89
STGCN 1.36 2.96 290 181 427 417 249 5.69 579
PEMS-BAY  cprNN 138 295 200 174 397 390 207 474 490
Graph WaveNet 2.54 447 588 2.60 4.93 6.03 271 428 4.39
MRA-BGCN 1.30 275 275 165 371 370 271 328 339
ST-SSL 1.30 2.74 273 1.63 3.70 3.67 195 4.52 4.63
ADHSTGCN(ours)  1.29 2.68 270 161 3.68 365  1.90 4.37 4.46
TABLE III: Performance Comparison on PEMS03 and PEMS04 Datasets
PEMSO03 PEMS04
Models
MAE RMSE MAPE(%) MAE RMSE MAPE(%)
ARIMA 35.41 47.59 33.78 33.73 48.80 24.18
VAR 23.65 38.26 24.51 23.75 36.66 18.09
LSTM 21.334+0.24  35.114+0.50 23.33+4.23  27.14+0.20 41.5940.21 18.204+0.40
GCRN 19.884+0.04  32.404+0.63 20.784+0.33 26.73+0.66  40.91+0.39 19.20+0.30
STGCN 17.494+0.46  30.1240.70 17.1540.35 21.83+£0.45 35.55+0.75 14.5940.21
DCRNN 17.844+0.35 30.3140.60 17.514:0.40 22.04+0.23 35.724+0.10 15.0440.10
STSGCN 17.481+0.15 29.2140.56 16.88+0.20 22.35+£0.40 33.65+0.20 14.9040.05
Graph WaveNet 19.854+0.03  32.94+0.18 19.504+0.15 25.45+0.40 37.70+0.74 17.2940.24
MRA-BGCN 17.85+0.02  32.84+0.15 18.50+0.15 26.45+0.30 36.70+0.34 16.29+0.24
ST-SSL 17.504+0.15  29.20+0.56 16.78+0.20  21.35£0.40 34.65+0.20 14.9040.05
ADHSTGCN (ours) 17.00+0.02 27.154+0.43 15.544+0.05 20.23+0.11 31.88+0.05 13.70+0.03

C. Experiment Settings

All experiments are conducted on a Linux server equipped
with a 14 vCPU Intel® Xeon® Gold 6330 CPU (2.00
GHz) and an NVIDIA RTX 3090 GPU (24 GB). Following
previous studies [32], the datasets are split chronologically
into training, validation, and test sets: METR-LA and PEMS-
BAY use a 7:1:2 ratio, while the PEMS03 and PEMS04
datasets adopt a 6:2:2 split. The input and output time
series lengths are equal, i.e., 7/ = T = 12, indicating that
the model predicts the next hour’s data using the previous
hour’s observations. The DHGC module is stacked with
b = 3 layers. The dilation factor m of Gate-TCN alternates
between 1 and 2. All spatial convolutions employ a diffusion
coefficient N = 2 and incorporate Dropout layers with a
probability of p = 0.3. The number of intermediate filters
is F' = 40, and top-k sampling uses k¥ = 4. The Adam
optimizer is applied with a batch size of 64, an initial
learning rate of 0.001, and an early stopping strategy to
determine termination conditions. For ACGL parameters, the
dimensions of matrices M; and M5 are both set to 64, with
0 = 0.02. The number of epochs per iteration is adjusted
between 5 and 10 based on the convergence speed of the
DHGC module.

D. Overall Performance

To systematically evaluate the temporal forecasting capa-
bilities, we developed a multi-granularity evaluation frame-
work with four prediction horizons. The ADHSTGCN model
exhibits statistically significant error reduction across all
evaluated scenarios (p < 0.01, paired t-test). Our experi-
mental design incorporates two complementary data modal-
ities: instantaneous traffic speed and aggregated traffic flow
measurements. To ensure fair benchmarking, we adhere to
established protocols from [32] and [35]:

o Speed datasets (METR-LA, PEMS-BAY): Multi-step
predictions at 15/30/60-minute intervals

o Flow datasets (PEMS03, PEMS04): Hourly aggregated
volume forecasting

The comparative analysis demonstrates that our architec-
ture achieves superior performance in both fine-grained and
long-term prediction tasks, particularly in capturing complex
spatiotemporal patterns inherent in urban traffic dynamics.

Table II presents the results of different methods for traffic
speed prediction, while Table III shows the traffic flow
prediction performance across methods. The best results are
highlighted in bold, and the second-best results are under-
lined. Compared to the second-best results, ADHSTGCN
achieves average improvements of 1.16%, 1.69%, and 1.87%
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in MAE, RMSE, and MAPE metrics, respectively, across
three prediction horizons on traffic speed datasets (METR-
LA and PEMS-BAY). For traffic flow datasets (PEMS03
and PEMSO04), the improvements are more substantial, with
average increments of 2.59%, 4.45%, and 3.18% in MAE,
RMSE, and MAPE metrics compared to the second-best
results.

Tables II and III reveal significant performance disparities
among forecasting methodologies. The conventional VAR
algorithm delivers suboptimal results across temporal scales,
as evidenced by elevated error metrics, which suggest lim-
itations in its reliance on simplistic historical averaging.
This fundamental approach proves inadequate for modeling
intricate temporal patterns and dynamic trend variations in
sequential data.

In contrast, neural architectures employing LSTM and
GRU cells achieve enhanced forecasting accuracy with re-
duced error metrics. However, their sequential processing
nature imposes inherent constraints on modeling capacity,
particularly manifesting as predictive inaccuracies when han-
dling sophisticated temporal dynamics and extended forecast-
ing horizons.

Graph-based neural architectures such as DCRNN, Graph
WaveNet, and STGCN demonstrate marked improvements
through sophisticated integration of spatial-temporal corre-
lations. These models surpass conventional approaches by
simultaneously processing topological relationships and tem-
poral dependencies. Nevertheless, concerns remain regarding
their temporal stability: Graph WaveNet exhibits notable
performance degradation (as evidenced by increased error
rates) in 60-minute passenger flow predictions, suggesting
limitations in capturing long-term temporal dependencies
within spatio-temporal graphs. Similarly, STGCN’s effec-
tiveness diminishes when processing highly sparse graph
structures, potentially due to incomplete adjacency matrix
representations.

E. Ablation experiment

To further validate the effectiveness of the components
of ADHSTGCN, we conducted ablation experiments by
combining the components of the proposed model in different
configurations, including the DHGC and ACGL modules, as
shown in Fig. 5. The results of one-hour traffic prediction
on METR-LA and PEMSO03 are presented in Table IV.
Specifically, four variants of the model were designed for
ADHSTGCN:

1) w/o Dual Hypergraph: This variant uses only a single
graph structure (based on the predefined adjacency matrix),
removing the dual hypergraph associations and edge feature
fusion mechanism.

2) w/o Graph: This variant employs only hypergraphs
without leveraging the graph component to verify the ef-
fectiveness of the two-channel architecture.

3) w/o DHGC: This variant replaces the DHGC module
with a traditional GCN while retaining the ACGL dynamic
graph learning mechanism to evaluate the superiority of the
dual hypergraph structure.

4) w/o ACGL: This variant utilizes only the DHGC
module with fixed predefined graphs, excluding dynamic
optimization, to assess the optimization gains provided by
the ACGL module.

The ablation study results confirm the effectiveness of
key components in the proposed ADHSTGCN model across
the METR-LA and PEMS-BAY datasets. The full model
(ADHSTGCN) achieves the best performance on both
datasets, with MAE values of 3.51 and 17.02, respectively,
validating the synergistic integration of dual hypergraphs, dy-
namic graph learning (ACGL), and hypergraph convolution
(DHGC). Notably, removing the dual hypergraph structure
(w/o Dual Hypergraph) leads to a significant performance
degradation on METR-LA, emphasizing its critical role in
capturing edge features and modeling complex urban road
networks. However, this degradation is marginal on PEMS-
BAY, likely due to the simpler topology of the highway
network, where edge features contribute less to spatial de-
pendency modeling. Similarly, disabling the DHGC module
(w/o DHGC) causes a 2.6% MAE increase on METR-LA
and a 1.2% rise on PEMS-BAY, underscoring the necessity
of hypergraph convolution for learning high-order node re-
lationships, particularly in sparse topologies.

The ACGL module demonstrates context-dependent util-
ity: On METR-LA, disabling ACGL (w/o ACGL) results
in a 2.0% MAE increase, indicating its capability to refine
spatial dependencies in dynamic urban scenarios, while its
impact on PEMS-BAY is negligible, suggesting that static
graphs suffice for stable highway traffic patterns. Interest-
ingly, completely removing graph structures (w/o graph)
degrades METR-LA performance significantly but minimally
affects PEMS-BAY, highlighting the heightened importance
of spatial modeling in heterogeneous road networks.

These findings reveal that ADHSTGCN’s dual hypergraph
mechanism and ACGL-driven dynamic adaptation excel in
complex, dynamic environments like METR-LA, whereas
simpler networks benefit more from baseline graph convolu-
tions. Future work could enhance edge feature engineering
for homogeneous networks and explore lightweight ACGL
variants to balance efficiency and adaptability across diverse
transportation systems.

F. Parameter Sensitivity and Visualization of Experiment
Results

1) Parameter Sensitivity: The main hyperparameters of
the proposed ADHSTGCN model include the top-k value
in the dual transformation, which determines the number
of sampled edges, the number of stacked layers b in the
DHGC module, and the number of intermediate filters F'.
To analyze the sensitivity of these hyperparameters, we
conduct experiments with different settings on the METR-
LA and PEMSO03 datasets. The Mean Absolute Error (MAE)
is used as the evaluation metric. Detailed results are shown
in Table IV.

o Number of stacked layers b: As shown in Table IV,
increasing the number of stacked layers b deepens the
network, thereby enhancing its representation capacity
and improving performance. However, as b continues
to increase, the performance gradually stabilizes and no
longer exhibits significant improvement. Based on the
results, we set b = 4 in our model.

o Top-K sampling in dual transformation: K determines
the number of hypernodes in the hypergraph. As illus-
trated in Table IV, increasing K raises the complexity
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Fig. 5: Ablation Study of ADHSTGCN.

TABLE IV: MAE values for sensitivity analysis of key hyperparameters on model performance.

Parameter value

The number of b layers stacking

The k number of top-k sampling

The number of intermediate filter F'

METR-LA PEMS03  METR-LA PEMS03  METR-LA PEMSO03

1 - - 3.08 17.00 - -

2 3.01 15.34 3.03 16.25 - -

3 2.98 15.40 2.96 15.30 - -

4 2.97 15.30 2.98 15.49 - -
5 2.96 15.45 3.01 15.24 - -

6 297 15.46 - - - -

30 - - - 3.00 16.70
35 - - - - 2.99 15.60
40 - - - - 2.96 15.25
45 - - - 2.98 15.19
50 - - - - 2.98 15.25

of the dual hypergraph, which enhances its expressive
power and improves model performance. Nevertheless,
further increasing K introduces excessive noise, leading
to degraded performance due to misleading learning sig-
nals and increased computational overhead. Therefore,
we set K = 3 in our experiments.

o Number of intermediate filters F': The parameter F' con-
trols the dimensionality of feature channels for nodes
and hypernodes in the graph and hypergraph, respec-
tively. As shown in Table IV, the performance initially
declines with increasing F', but then gradually stabi-
lizes. However, an excessively large number of filters
increases computational cost and may lead to overfitting
due to higher model complexity. Consequently, we set
F' =40 in our implementation.

2) Visualization of Experiment Results: To visualize the
experimental results more intuitively, we present the daily
average traffic prediction outcomes of different methods on

the METR-LA and PEMSO03 datasets, with comparisons of
average RMSE and predicted values against ground truths
illustrated in Fig. 6. The results demonstrate the superior
performance of our method. In Fig. 6(a), the curve of our
ADHSTGCN method lies below those of other approaches,
indicating that ADHSTGCN significantly outperforms base-
line methods on the PEMSO03 dataset. However, the advan-
tage of ADHSTGCN is less pronounced on the METR-LA
dataset, as shown in Fig. 6(b). This discrepancy can be
attributed to the relatively simpler structure of the METR-LA
dataset, which contains fewer nodes and less diverse traffic
patterns compared to PEMSO03, allowing many methods to
achieve competitive results. Notably, during the evening peak
hours (highlighted by dark region in Fig. 6(a) and 6(b)), the
proposed ADHSTGCN method exhibits significant advan-
tages over all other methods, underscoring its capability to
handle complex and dynamic traffic conditions. This obser-
vation validates that the synergistic interaction between the
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Fig. 6: The daily average traffic prediction performance of various methods on METR-LA and PEMSO03.

DHGC and ACGL modules enables simultaneous modeling
of dynamic spatiotemporal features for both nodes and edges
in traffic flow graphs. By uncovering deeper attributes of
traffic systems, such as congestion propagation dynamics
and latent spatial dependencies, the framework enhances
robustness in challenging scenarios, solidifying its practical
value for real-world traffic management applications.

VI. CONCLUSION

The proposed ADHSTGCN framework addresses key
limitations of current spatiotemporal graph convolutional
networks (ST-GCNs) for traffic forecasting, particularly the
insufficient exploitation of edge-level features and the un-
stable training dynamics inherent in end-to-end models. By
integrating dual hypergraph associations and an expectation-

maximization (EM)-inspired alternating optimization strat-
egy, the model effectively balances static topological con-
straints with evolving traffic dynamics. Experimental results
on METR-LA and PEMS-BAY datasets validate the frame-
work’s superiority, demonstrating consistent performance
improvements over baseline methods. The dual hypergraph
structure proves essential in capturing edge-level interactions,
especially in complex urban road networks (METR-LA),
where it reduces MAE by 5.7% compared to its ablated
variant. This enhancement arises from the model’s ability
to encode implicit relationships between road segments, such
as congestion propagation paths and functional dependencies,
which traditional adjacency matrices fail to represent. Simul-
taneously, the alternating optimization scheme between the
DHGC and ACGL modules ensures stable convergence by
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alleviating gradient competition typically observed in jointly
optimized graph learning and prediction frameworks. This
decoupled strategy not only refines spatial dependencies but
also uncovers latent node correlations, providing actionable
insights for traffic management systems, such as identifying
bottleneck intersections or optimizing signal coordination.

The framework’s adaptability to diverse network topolo-
gies further highlights its practical value. While the ACGL
module drives significant gains in dynamic urban environ-
ments, its minimal impact on highway networks (PEMS-
BAY) reflects context-aware applicability. The integration
of edge features within the dual hypergraph, constrained
by sparsity regularization, achieves a balance between rep-
resentational expressiveness and structural interpretability,
yielding compact yet semantically rich graph representations.
For instance, visual analyses reveal that high-weighted hy-
peredges frequently align with major arterial roads exhibiting
synchronized flow patterns, consistent with established traffic
engineering practices.

Future research can extend this paradigm along three
primary directions. First, augmenting edge features with mul-
timodal inputs—such as weather data and event logs—may
further enhance the dual hypergraph’s ability to capture
anomalous traffic behaviors. Second, lightweight variants
of the ACGL module could be developed for resource-
constrained environments, leveraging techniques like graph
distillation or dynamic sparsity tuning. Finally, integrating
temporal attention mechanisms into the EM optimization
loop could enable finer-grained control over graph evolution,
particularly for long-term forecasting tasks. The ADHST-
GCN framework not only advances the frontier of spa-
tiotemporal graph learning but also provides a modular and
extensible blueprint for addressing dynamic urban mobility
challenges—ranging from ride-sharing optimization to emer-
gency response routing. By synthesizing theoretical rigor
with practical design principles, this work underscores the
transformative potential of adaptive graph-based learning in
intelligent transportation systems.
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