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Abstract—To address the limitations of the Pied Kingfisher
Optimizer (PKQ), such as premature convergence and limited
global search capability when solving complex optimization
problems, this paper proposes an improved algorithm based on
a dual-disturbance mechanism. The proposed method first
incorporates a probabilistically controlled reverse perturbation
strategy to enhance population diversity. Subsequently, a
dual-disturbance mechanism is constructed by integrating
multiple heavy-tailed distributions, including Lévy flight,
Cauchy distribution, Student's t-distribution, and Laplace
distribution, to strengthen the ability to escape from local
optima. The mechanism promotes a more effective trade-off
between exploration and exploitation during optimization. Its
performance was rigorously evaluated on the CEC-BC-2022
benchmark set. The results demonstrate that the improved
algorithm, referred to as LO-PKO, achieves superior optimal
values, mean performance, and convergence speed on most test
functions, significantly outperforming the original PKO and
other enhanced variants. Furthermore, the LO-PKO algorithm
was applied to the Economic Load Dispatch (ELD) problem
involving both 20 and 40 generating units to further evaluate its
scalability and effectiveness in solving large-scale engineering
optimization tasks. The experimental results demonstrate that
LO-PKO consistently achieves the lowest total generation cost
while strictly adhering to all operational constraints in both
cases. These findings confirm the algorithm's superior
optimization capability, scalability and applicability in
addressing complex and real-world power system scheduling
problems.

Index Terms—F.conomic Load Dispatch, Pied Kingfisher
Optimizer (PKQ), Dual-Disturbance Mechanism, Probabilistic
Reverse Perturbation, Heavy-Tailed Perturbation

[. INTRODUCTION

‘ N [ ith the rapid development of artificial intelligence
and computational intelligence, meta-heuristic
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optimization techniques have emerged as powerful tools for
addressing a broad spectrum of complex real-world problems.
Among them, swarm intelligence algorithms have garnered
increasing attention due to their inherent advantages,
including derivative-free search capability, strong global
exploration potential, adaptability to various optimization
landscapes, and ease of implementation.

These algorithms are inspired by the collective behaviors
and self-organizing principles observed in biological
populations such as birds, fish, ants, and insects, which
exhibit intelligent group behaviors through local interactions
and information sharing among individuals.

Unlike gradient-based optimization methods that require
continuous and differentiable objective functions, Swarm
intelligence algorithms are well-suited for solving
non-differentiable, non-convex, multi-modal, and high
dimensional problems. Prominent examples include Particle
Swarm Optimization (P3O)[1], Grey Wolf Optimizer (GWO)
[2] and Differential Evolution {DE) [3], which have been
extensively studied and successfully applied in various fields
such as numerical optimization, robotics path planning,
image analysis, resource scheduling, and power system
operations [4].

Swarm 1ntelligence algorithms have been applied to the
Economic Load Dispatch (ELD) problem, which minimizes
fuel cost subject to operational constraints such as power
balance, generation limits, ramp rates, and transmission
losses [5]. ELD is challenging due to its nonlinear, non-
convex, and multi-constraint nature, especially with valve-
point effects and prohibited zones. Traditional deterministic
methods often fail to find global optima in such complex
scenarios.

In contrast, Swarm intelligence algorithms provide a
promising alternative, as they do not rely on gradient
information or assumptions about the problem’s structure.
Their stochastic search mechanisms and population-based
exploration facilitate better adaptation to diverse and rugged
search landscapes, making them highly effective for solving
ELD problems and other real-world engineering challenges
[6].

However, despite their advantages, many existing swarm-
based optimizer suffer from limitations such as premature
convergence, local stagnation and inefficient search
dynamics, particularly in high-dimensional and multi-modal
problem spaces. To address these challenges, recent studies
have introduced stochastic perturbation strategies grounded
n heavy-tailed probability distributions, such as Lévy {lights
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[7], Cauchy distribution [8], Student's t-distribution [9] and
Laplace distribution [10].

These distributions differ from the traditional Gaussian
distribution in that they offer a significantly higher likelihood
of generating large jump steps, thereby enhancing the global
exploration ability of optimization algorithms and improving
their capacity to escape local optima. Empirical evidence has
demonstrated that integrating heavy-tailed perturbations into
meta-heuristic frameworks enhances population diversity,
convergence speed, search robustness, and global optimum
[11].

Motivated by these insights, this study proposes an
enhanced variant of the recently introduced Pied Kingfisher
Optimizer (PKO) [12], which is inspired by the predatory
diving behavior of pied kingfishers. Although the original
PKO has shown promise in global optimization, it suffers
from limited exploitation capacity and vulnerability to
premature convergence when tackling high-dimensional or
rugged landscapes. To overcome these shortcomings, we
present a novel dual-disturbance framework, which
incorporates two key mechanisms. (1) A probabilistic reverse
learming perturbation to diversify the search trajectory. (2)
The integration of heavy-tailed distributions to facilitate
long-distance exploration.

Based on this framework, five improved PKO variants are
developed as O-PKO, LO-PKO (Lévy-based), CO-PKO
(Cauchy-based), TO-PKO (Student’s t-based) and LAO-
PKO (Laplace-based). These variants are systematically
evaluated on complex numerical benchmarks to investigate
their optimization efficacy and robustness. To validate the
proposed algorithms, extensive experiments are conducted
on the CEC-BC-2022 benchmark suite, which encompasses a
variety of function types including multi-modal, rotated,
discontinuous, hybrid and composition functions.

HExperimental results reveal that the proposed variants
significantly outperform the original PKO across most
evaluation criteria. Among them, the LO-PKO algorithm
demonstrates the most consistent and superior performance,
indicating the effectiveness of Lévy-based perturbation in
high-dimensional optimization.

Furthermore, to assess real-world applicability, the
best-performing LO-PKO variant is applied to two widely
studied ELD test cases involving 20-unit and 40-unit systems
[13]. The algorithm’s performance is benchmark against the
original PKO and several state-of-the-art meta-heuristics,
including Newton-Raphson-Based Optimizer (NRBO) [14],
Splendid Fairywren Optimization Algorithm (SFOA) [15],
Tuna Swarm Optimizer (TSO) [16] and Rapidly-exploring
Random Tree-Based Optimizer (RRTO) [17].

Simulation results confirm that LO-PKO achieves the
lowest total generation cost while satisfying all system
constraints, demonstrating its high potential for practical
deployment in large-scale power system optimization.

In summary, this study contributes an advanced PKO
framework augmented with stochastic heavy-tailed
perturbation strategies, offering enhanced balance between
global exploration and local exploitation. The proposed
methods exhibit strong performance on both synthetic
benchmarks and real-world ELD scenarios, providing new
insights into the design of robust and efficient swarm
intelligence algorithms for complex optimization problems.

II. PiED KINGFISHER OPTIMIZER

A, Initialization

The PKO algorithm starts by randomly initializing a
population within the search space, defined as:

Xi; =LB+ (UB—LB) xrand,
i=12,...,.Nandj=12,...,Dim (1

where, X;; is the position of the i-th individual in the j-th
dimension, rand is a random value in [0,1], and UB and LB
are the search space bounds.

B. Perching and Hovering Strategy (Exploration Phase)

During exploration, PKO mimics hovering to update
positions:

X+ =X(t)+axTx (Xj(t) — X, (),
Li=12,...,Nandj+i (2)

During iteration, X;{¢ + 1)and X;(t) represent the current
and updated positions, respectively. The parameter a is
computed as 2 X randn(1, Dim) — 1, where randn follows
a standard normal distribution. N and Dim denote the
population size and problem dimension, while T is adaptively
set based on the current strategy and behavior phase.

When perching, the parameter T 1s calculated as follows:

=1

T = (exp(1) — exp(——

1
)8F) X cos{Crest_angles) (3)

where, Max_Iter is the maximum number of iterations, BF is
a constant set to 8, and rand is a uniformly distnibuted
random value in [0, 1].

When hovering, the parameter T is calculated as follows:

1

BF
T = beating_rate X (t—l €]
Max IterBF
PKO_fitness(j) )
PKO_fitness(i)

&)

where, PKO_fitness(j) and PKO_fitness(i) are the fitness
values of individuals j and i, and BF is a constant set to 8.

beating rate = rand X (

C.  Diving Strategy {Exploitation Phase)

The exploitation phase, modeled on the pied kingfisher's
diving behavior, is defined as:

X+ =X () + HAXoxax{h—X,. () ©)

HA = rand x (—P:i’: I;:zf;(;)) (N
— — 2
0= exp( Max_Iter) (8)

b=X,(t)+ 0® X randn X X, () 9

where, PKO_fitness(i) denotes the fitness value of the i-th
pied kingfisher, while Best_fitness represents the best
fitness value obtained during the iteration process. The
parameter « is a control variable calculated as 2 X
randn(1, Dim) —1 |, Where randn 1s a uniformly
distributed random number. H4 and o represent the hunting
abilities.

D. Co-Feeding Phase (Local Escape Phase)

This phase, mspired by the pied kingfisher's symbiosis, is
defined as:
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Xt 1) = {Xm(t) J;{ :3( ;)( ax |X,0t) — X, (0] i}; :}?:Ti l>s 51(;)135) {a)
(10)

i=12,...,N (11)

o= exp(Ma;&ET)2 (12)

a=2xrandn(1, Dim)—1 (13)

PE = PE . = (PEpax = PE i) X (5—-—) (14)

where, X, and X, are two individuals randomly selected
from the population. The predation efficiency of the pied
kingfisher is denoted by PE, with fixed values PE, .. = 0.5
and PE,,;,=0.

III. DUAL-LAYER PERTURBATION-BASED PKO
ALGORITHM

To enhance the robustness and global search capability of
the PKO algorithm in solving complex optimization
problems, this study proposes a dual-mechanism design for
the evolution of its control parameters, comprising a
probabilistic reverse perturbation mechanism and a
heavy-tailed perturbation regulation mechanism.

These two mechanisms work synergistically to establish a
control strategy characterized by jumpiness, adaptability, and
nonlinear perturbations, thereby improving the algorithm’s
ability to escape local optima and increasing search
efficiency.

A. Probabilistic Reverse Perturbation Mechanism

In the original PKO algorithm, the control parameter o
evolves exponentially decreasing with respect to the iteration
number ¢, and is expressed as follows:

<y

Max_[ter

0 = exp( (15

Although this approach can guide the algorithm to
gradually transition into the fine-tuning search phase to some
extent, the fixed monotonic decreasing trend tends to cause
premature convergence and reduce the global search
capability. To address this issue, a probabilistic reverse
perturbation mechanism is introduced in this study, wherein
the parameter 0 undergoes a reverse transformation with a
certain probability during the update phase, expressed as
follows:

o=1-0

(16)

The execution of this mechanism is governed by a random
variable r, which is un iformly distributed between 0 and 1.
When r < p (where p is a predefined small probability, set to
0.1 in this study), the reverse perturbation mechanism is
triggered. This design introduces an asymmetric perturbation
pathway, enhancing the diversity of the search directions and
thereby helping to overcome the inertia of local convergence.

B. Heavy-Tailed Perturbation Regulation Mechanism

To further enhance the adaptability of the control
parameter and its ability to perform jump searches, this study
introduces perturbations based on heavy-tailed distributions
into the parameter o , including Leévy flight, Cauchy
distribution, Student’s t-distribution and Laplace distribution.
Specifically, Lévy flight introduces long-distance random

jumps to increase the ability of individuals to escape from the
current local region; Cauchy perturbation, characterized by
its extremely heavy tails, induces more aggressive search
behavior, which is effective in overcoming premature
convergence traps, the Student’s t-distribution provides
moderate-intensity asymmetric perturbations, offering good
convergence stability; The Laplace distribution constructs a
symmetric, centrally concentrated perturbation pattern that is
beneficial for searching high-quality solutions m local
neighborhoods.

The mathematical expressions of these four perturbations
are given in Eq. (17)-(20).

(1) Leévy Flight Perturbation
t
0 = min(1, max(0.1353, (¢ #axizr)? + 0,05 X MLW))(H)

where, ¢ represents the current iteration number, Max Iter
denotes the maximum number of iterations, u and v are
random variables drawn from the standard normal
distribution, and £ 1s the Lévy flight exponent, which is set to
1.5 1n this study.

(2) Cauchy Perturbation

t
0 = min{1, max(0.1353, (¢ ¥axiter)? 4 g X tan(m X
(rand — 0.5)))) (18)

where, o 1s the perturbation scale factor, set to 0.05 in this
study, and rand is a random number uniformly distributed
between 0 and 1.

(3) Student’s t-Distribution Perturbation

t
0 = min{1,max(0.1353, (¢ #witer)? + 5 x &,)) (19)

where, o 1s the perturbation scale factor, set to 0.05 in this
study, and &, is a variable following a Student’s t-distribution
with degrees of freedom v = 3.

{4) Laplace Perturbation

t
0 = min(1, max(0.1353, (e Maxiter)? 4+ h X sign(r, —
0.5) x In{1 -2 x|r, =05 (20)

where, & is the scale parameter of the Laplace distribution, set
to 0.05 1n this study, and r; and r, are random numbers
uniformly distributed between 0 and 1.

Fig. 1 illustrates the variation trends of the control
parameter o and its reverse transformation under different
perturbation mechanisms. Fig. 1(a) shows the original control
parameter o and its reverse transformation decreasing over
the course of iterations. Fig. 1{b)-(e) correspond to the
variations of parameter o and its reverse transformation under
perturbations based on Lévy flight, Cauchy distribution,
Student’s  t-distribution and  Laplace  distribution,
respectively.

As observed, different perturbation mechanisms exhibit
nonlinear fluctuations and jumps to varying degrees. Such
perturbations not only facilitate a broader and more effective
exploration of the search space in the initial stage, but also
facilitate enhanced and more focused development near
promising regions in subsequent iterations, thereby
significantly improving the overall optimization performance.
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Fig. 1. The images of o and its reverse transformation under different
double-layer perturbation mechanisms.

In summary, the two proposed control factor improvement
mechanisms, probabilistic reverse perturbation and heavy-
tailed distribution perturbation, functionally emphasize
different aspects while structurally complement each other,
forming a synergistic and adaptive control framework.

Specifically, the probabilistic reverse perturbation
mechanism introduces a low-probability reverse operation
(o=1-—0) during the update of the control parameter,
effectively enhancing the directional diversity and
uncertainty of the search path, thereby improving the
flexibility and diversity of population exploration. In contrast,
the heavy-tailed perturbation mechanism dynamically
regulates the evolutionary trend of the control parameter by
leveraging the jumpiness and asymmetry of various typical
heavy-tailed distributions such as Lévy flight, Cauchy
distribution, Student’s t-distribution and Laplace distribution,
endowing the search behavior with stronger global jumping
ability and local perturbation capacity.

From an overall algorithmic perspective, the probabilistic
reverse perturbation primarily influences the directionality
and uncertainty of the control parameter, whereas the heavy-
tailed perturbation mainly adjusts its magnitude and dynamic
responsiveness. Their collaborative effect enables the control
parameter to dynamically adapt to the structure of the search
space during the algorithm’s execution while maintaining
convergence, thus achieving a more favorable balance
between exploration and exploitation.

This combined mechanism demonstrates significant
performance advantages, not only enhancing the algorithm’s
global search capability in complex function spaces but also
improving its adaptability and robustness in engineering
applications. Experimental results further validate the
effectiveness of this dual-perturbation strategy across various
benchmark functions and practical engineering scenarios.

C. Computational Complexity Analysis

The improved algorithm introduces a dual perturbation
strategy that integrates multiple heavy-tailed distributions
along with a probabilistically controlled opposition-based
mechanism to enhance population diversity and global search
ability. Although these enhancements significantly improve
the algorithm’s robustness and convergence behavior, the
overall computational structure remains consistent with that
of the original PKO. Specifically, the additional perturbation
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operations are based on basic arithmetic calculations and
random sampling, which incur negligible overhead compared
to the cost of objective function evaluations.The total time
complexity of the improved algorithm is expressed as
O (Max Iter X N X (D2 + 1)), where Max Iter denotes the
maximum number of iterations, & 1s the population size, I 1s
the dimensionality of the problem, and 7 represents the
computational cost of a single objective function evaluation.
The space complexity is given by O {Max Iter + N x D).
Therefore, despite its enhanced search mechanisms, the
mmproved algorithm maintains a computational complexity
on par with the original PKO.

D. Pseudo-code of the Dual-Layer Perturbation-Based Pied
Kingfisher Optimizer

Pseudo code of dual-layer perturbation-based pied
kingfisher optimizer is described as follows.

1: Initialize population and algorithm parameters
2: Evaluate fitness of each individual

3 1=1

4: While t < Max Iter do

5: For each individual Xi in the population do
6: If rand() < .8 then

7: // Exploration Phase

8: If rand¢) > 0.5 then

9: Compute T using Eq. (3)

10: Update X7 using Eq. (2)

11: Else

12: Compute T using Eq. (5)

13: Update X7 using Eq. (2)

14: End if

15: Else

lé: // Exploitation Phase

17 Update X7 using Eq. (7)

18: Endif

1%: Evaluate fitness of new solution Xi

20: If new fitness is better then

21: Replace old solution with new X7
22: End if
23:  Endfor

24:  Update Best position based on best fitness
25:

26: //Local Escape Strategy

27 For each individual X7 do

28: If vand() = (1 — PE) then

29: Update X7 using Eq. (112}
30 Else

31: Update X7 using Eq. (11b)
32 Endif

33: Endfor

34

35:  Re-evaluate fitness of population
36: Update Best_position if improved
37 t=t+l

38: End While

39: Retumn Best position, Best fitness

IV. EXPERIMENT AND ANALYSIS OF CEC-BC-2022 TEST
FUNCTION

To comprehensively validate the effectiveness of the
proposed Dual-Layer Perturbation-Based Pied Kingfisher
Optimizer in enhancing global search capability and
convergence performance, the CEC-BC-2022 benchmark test
suite was selected as the evaluation platform. This suite
comprises multi-modal functions, discontinuous functions,
high-dimensional rotated functions, composition functions,
and hybrid functions, characterized by high complexity,
strong discriminability, and considerable challenge. Tt 1s
widely used for performance comparison experiments of
swarm  intelligence  optimization  algorithms.  The
experimental setup used 20 dimensions, a population of 30,
and 1000 iterations. All algorithms ran 30 times with
identical settings, and were evaluated by Best, Mean, Std, and
convergence behavior. In the comparative experiments, the
original PKO algorithm was used as the baseline.
Subsequently, the two proposed perturbation mechanisms
were incrementally incorporated to construct multiple
comparative algorithm versions. The algorithm with the
probability-based reverse perturbation mechanism 1s denoted
as O-PKO; Based on this, four vanants were developed by
further  introducing four types of heavy-tailed
perturbations-Lévy flight, Cauchy distribution, Student’s
t-distribution and Laplace distribution-denoted as the
LO-PKO, the CO-PKO, the TO-PKO and the LAO-PKQ,
respectively. Performance comparisons on the CEC-BC-
2022 benchmarks confirm the dual-mechanism’s robustness
in improving global search, avoiding local optima and
accelerating convergence. See Table I and Fig. 2 for results.
To provide a more intuiive comparison of overall
performance, a wind rose plot was generated based on the
average ranking of each algorithm, as illustrated in Fig. 3. In
the plot, algorithms with higher average ranks are represented
by larger sectors, making it easier to visualize their relative
advantages and stability across the benchmark functions.

The experimental results clearly demonstrate that the
proposed dual-layer perturbation-based pied kingfisher
optimizer significantly outperforms the original PKO
algorithm on the CEC-2022 benchmark test suite. This fully
validates the effectiveness of the proposed dual-perturbation
mechanism in enhancing global search capabilities,
mproving the ability to escape from local optima, and
accelerating convergence speed. The convergence curves
reveal that all enhanced vanants-starting from the O-PKO
algorithm, which introduces a probability-based reverse
perturbation mechanism, to LO-PKO, CO-PKO, TO-PKO
and LAO-PKO, which further incorporate Lévy fhight,
Cauchy, Student’s t- and Laplace distributions, respectively.
Exhibit more rapid objective value reduction during the
mnitial optimization phase, while maintainmg improved
convergence stability in the later stages.

A detailed analysis of the statistical performance further
substantiates the superiority of the proposed approach. The
original PKO algorithm achieved the lowest standard
deviation on functions F1, F2 and F3 and produced the best
solution on I'6, indicating a certain degree of stability on
simpler or lower-dimensional landscapes. The O-PKO
variant, enhanced with the reverse perturbation mechanism,
achieved the lowest standard deviation on F6, reflecting
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improved exploitation capabilities. Among the heavy-tailed
variants, LO-PKO attained the best mean results on F1, F2,
F6, F8 and F11, and achieved the best solution on F10,
exhibiting outstanding convergence precision. CO-PKO
demonstrated superior average performance on F3, F9 and
F10, while also generating the best results on F4, F7, F8 and
F12, and the lowest standard deviations on F5, F9 and F11,

showing strong overall performance and solution consistency.

TO-PKO yielded optimal mean values on F7, best solutions
on F1 and F3, and lowest standard deviations on F7, F8 and
F10, indicating high convergence stability. LAO-PKO
excelled on complex nonlinear functions by obtaining best
solutions on F2, F5, F9 and F11, best mean values on F4, F5
and F12, and lowest standard deviations on F4 and F12,
demonstrating its robustness in high-dimensional, non-
convex problem landscapes. Finally, a comprehensive
ranking based on the average performance across all
benchmark functions indicates that LO-PKO achieves the
best overall optimization results, followed by CO-PKO and
LAO-PKO. This confirms the efficacy of integrating
heavy-tailed perturbation strategies in guiding long-distance
exploratory jumps and effectively avoiding premature
convergence. Overall, the experimental evidence strongly
supports the conclusion that the proposed dual-layer
perturbation framework significantly enhances the original
PKO’s performance across multiple evaluation criteria,
offering improved robustness, global optimization capability,
faster convergence speed, enhanced solution quality, and
broader practical applicability to a wide spectrum of complex
real-world optimization problems.

Convergence curve
1 010(‘2 T T T T T T T T T 3
—6— PKO
—%— O-PKO
9 —#— LO-PKO
10 —¥— CO-PKO
5 —+—TO-PKO
° ) LAO-PKO
5 108 1
g I
i)
S 1071 ]
123
w
o
s
= 6
8 10 LAO-PKO

100 200 300 400 500 600 700 800 900 1000
Iteration
M
Convergence curve
¥ - r T T . T ™ - T
—6—PKO
—%— 0-PKO
—*&—LO-PKO

Best fitness obtained so far

500
Iteration

@/

800 900 1000

Best fitness obtained so far

Best fitness obtained so far Best fitness obtained so far

Best fitness obtained so far

Convergence curve

730 ¢

720

710

700

690

680 [ |

670

660

650

—O6—PKO
—%— 0O-PKO
—#—LO-PKO |
—#— CO-PKO
—+—TO-PKO |
LAO-PKO

0-PKO
TO-PKO CO-PKO

11ooir

1050

1000 [

950

900

L L i L NEEEE&:};::
100 200 300 400 500 600 700 800 900 1000
Iteration
(3)f5
Convergence curve
—6—PKO g
—*— 0-PKO
—%— LO-PKO

—#— CO-PKO
—+—TO-PKO ||
LAO-PKO

LAO-PKO

12000
10000

8000

6000

4000

2000

800

1400033

100 200 300 400 500 600 900 1000
Iteration
GV
Convergence curve
1 —6—PKO
'] ——0-PKO |]
—%— LO-PKO
—#—CO-PKO |
—+—TO-PKO
LAO-PKO |
i 0-PKO ]
| LO-PKO i
TO-PKO
CO-PKO / LAO-PKO

500 600 800
Iteration

®)fs5

Convergence curve

900 1000

T T T T T T T T T

—6—PKO

—— O-PKO
—#*—LO-PKO |7
—¥— CO-PKO
—+—TO-PKO
LAO-PKO | |

1000

900

100 200 300 400 500

Iteration

(6)fs

Volume 33, Issue 10, October 2025, Pages 4167-4179



Engineering Letters

Best fitness obtained so far

Best fitness obtained so far

Best fitness obtained so far

Best fitness obtained so far

Convergence curve
T T T

2550 +
2500
2450
2400 |
2350
2300
2250
2200

2150

2100

Convergence curve
. : :

T T T

P 1 14000 )
0. 0K 130009
—*—LO-PKO 12000 |
—#— CO-PKO 11000
—+—T0o-PKO | ]

— LAO-PKO 10000

Best fitness obtained so far

4000

—&— PKO

—»— 0-PKO

—#*—LO-PKO

—#— CO-PKO |

—+—TO-PKO | |
B— LAO-PKO

800 900 1000

10“q

100 200 300 400 500 600 700 100 200 300 400 500 600 700 800
Iteration Iteration
N7 a0 fu
Convergence curve Convergence curve
—6—PKO 42000 —— PKO i
—%— O0-PKO * —%— O-PKO
| —#— LO-PKO | —*— LO-PKO
—¥— CO-PKO 4000 —#—CO-PKO | A
—+—TO-PKO - i —+—TO-PKO
P LAO-PKO o —$5—LAO-PKO
2 -
Z 3800
(5]
=1
1 =
-8 3600
(23
0
Q
S
TO-PKO & 3400 |
-PK 0
PKO  O-FKO CO-PKO LAO-PKO 2
LO-PKO
3200

300

100 400 500 600 700 800 900 1000 600
Iteration Iteration
(8)fs (12) /12
Convergence curve Fig. 2. Experimental results convergence diagram.
: : : ; : : : : - )
4200 —6—PKO ]
] —*—0-PKO
4000, —*—LO-PKO | { F5 F2
i —#— CO-PKO
3800 —+—TO-PKO |
—p—LAO-PKO
3600 1
PKO B

3400 |
3200

3000 |

2800 |-

LO-PKO ]
CO-PKO
TO-PKO LAO-PKO

2600
100 200 300 400 500 600 700 800 900 1000
Iteration
0f
" Convergence curve
8000 5— PKO
7500 —*—O0-PKO | ]
—#— LO-PKO
7000 —#— CO-PKO | ]
—+—TO-PKO
6500 PKO —>— LAO-PKO | |

4500

Bn o )
R

Rank

100 200 300 400 500 600 700 800 900 1000
Iteration F9 F10
(10) fio (2) O-PKO

Volume 33, Issue 10, October 2025, Pages 4167-4179



Engineering Letters

F2

Fl1

F9 F10
(3) LO-PKO
F4 F3
F5 F2

F6

F7

(4) CO-PKO
Fig. 3. The wind rose diagram of the experimental results ranking.

V. THE EXPERIMENT AND ANALYSIS OF SOLVING ELD

To further validate the applicability and effectiveness of
the proposed improved algorithm in practical engineering
optimization  problems, this study applies the
best-performing LO-PKO to the classical Economic Load
Dispatch (ELD) problem. As a core optimization task in
power system scheduling, the ELD problem aims to
minimize the total generation cost of the system while
satisfying power balance constraints and generator operating
limits. The problem is characterized by nonlinearities,
non-convexities, and multiple constraints. Particularly,
when practical operating conditions such as valve-point
effects and transmission losses are considered, higher
demands are placed on the global search capability and
solution accuracy of optimization algorithms. Therefore, the
ELD problem is widely recognized as a standard benchmark
for evaluating the engineering performance of intelligent
optimization algorithms.

In the experimental design, standard power generation
system models comprising 20 and 40 thermal generating
units were selected as research subjects to evaluate the
scalability and robustness of the proposed algorithm under
different system complexities. Based on these models, the
objective function was mathematically formulated as shown
in Eq. (21), incorporating a quadratic fuel cost function
together with valve-point effect modeling to reflect practical
non-linear characteristics. Specifically, the objective
function is expressed as follows:

s

PAl/ 2
Y |
O

Fi

F12

.'

F8 F11
F9 F10
(5) TO-PKO
F4 F3
F5 F2

LAO-PKO
Rank

-
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b
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F12

F11

F9 F10
(6) LAO-PKO

MinF; = ¥ (a; + BiP + yiP? + |e; x sin(fi(PP™ — PY)(21)

where, F; denotes the total fuel cost, and P; represents the
power output of the i-th generator. n is the total number of
generating units. The constants «;, f5;, and y; correspond to
the fuel cost coefficients of the i-th generator. Parameters e;
and f; represent the valve-point effect coefficients for the
i -th generator, while P™" indicates the minimum
permissible power output of the i-th unit. The constraints
include power balance constraints, upper and lower power
output limits, and permissible transmission loss modeling,
which collectively ensure solution feasibility and system
stability. To comprehensively evaluate the optimization
capability of the LO-PKO algorithm in handling such
complex real-world problems, this study compares it with
the original PKO algorithm and four representative swarm
intelligence optimization algorithms reported in the
literature: Newton-Raphson-based Optimizer (NRBO) [14],
Superb Fairy-wren Optimization Algorithm (SFOA) [15],
Tuna Swarm Optimization (TSO) [16] and RRT-based
Optimizer (RRTO) [17].

The selected algorithms encompass a diverse set of search
strategies, including gradient-based updates, random walks,
and biologically inspired behaviors, thus covering a broad
spectrum of optimization paradigms. Such a comprehensive
comparison enables a more robust and objective assessment
of the improved algorithm generalization ability,
convergence efficiency and adaptability across different
types of problem landscapes.
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TABLE I. DUAL-LAYER PERTURBATION-BASED PIED KINGFISHER OPTIMIZER TO OPTIMIZE THE CEC-BC-2022 FUNCTIONS

Function PKO QO-PKO LO-PKO CO-PKO TO-PKO LAO-PKO

Best 5.6160E+03 8.2465E+03 4 .5138E+03 6.0939E+03 3.5860E+03 4.6176E+03

Mean 2.1890E+04 1.9351E+04 1.3009E+04 1.4057E+04 1.3114E+04 1.3566E+04

% Std 1.0604E+04 9.6022E+03 7.6726E+03 7.3631E+03 5.7568E+03 6.6400E+03
Rank 6 5 1 4 2 3

Best 54484E+02 4 .8723E+02 4 .8252E+02 4.7476E+02 4.7805E+02 4.6850E+02

Mean 8.5731E+02 8.2109E+02 5.4274E+02 5.6422E+02 5.6448E+02 5.4666E+02

£ Std 2.3816E+02 3.2715E+02 4 8805E+01 6.7074E+01 5.4269E+01 6.2347E+01
Rank 6 5 1 3 4 2

Best 6.3960E+02 6.3426E+02 6.3120E+02 6.2763E+02 6.2629E+02 6.3091E+02

Mean 6.5370E+02 6.4825E+02 64147E+02 6.4106E+02 6.4240E+02 6.4206E+02

% Std 72251E+00 7.9721E+00 7.7875E+00 9.3336E+00 1.3149E+01 9.1605E+00
Rank 6 5 2 1 4 3

Best 8.6732E+02 8.6583E+02 8.6505E+02 8.3869E+02 8.5397E+02 8.4713E+02

Mean 9.0712E+02 9.0103E+02 8.8482E+02 8.6233E+02 8.7512E+02 8.6194E+02

£ Std 2.2368E+01 2.6000E+01 1.2076E+01 1.1047E+01 1.1733E+01 8.8623E+00
Rank 6 5 4 2 3 1

Best 1.5468E+03 1.9486E+03 1.5284E+03 1.6170E+03 1.1465E+03 1.1281E+03

Mean 2.3420E+03 2.2964E+03 2.0598E+03 1.9073E+03 1.8325E+03 1.6910E+03

% Std 3.2761E+02 2.9522E+02 3.0401E+02 1.8157E+02 3.9608E+02 3.3706E+02
Rank 6 5 4 3 2 1

Best 1.9647E+03 2.2169E+03 2.0409E+03 2.0553E+03 1.9977E+03 2.8411E+03

Mean 3.3407E+04 1.3941E+04 5.7209E+03 6.1837E+03 7.1208E+03 8.4528E+03

f Std 4 8891E+04 1.2411E+04 3 3317E+03 4.7543E+03 5.2893E+03 5.3975E+03
Rank 6 5 1 2 3 4

Best 2.0961E+03 2.0865E+03 2.0475E+03 2.0363E+03 2.0545E+03 2.0765E+03

Mean 2.1369E+03 2.1365E+03 2.1008E+03 2.0996E+03 2.0955E+03 2.1169E+03

4 Std 4.9553E+01 3 .5900E+01 3.1678E+01 4.1339E+01 1.8579E+01 3.4408E+01
Rank 6 5 3 2 1 4

Best 2.4238E+03 2.2398E+03 2.2264E+03 2.2261E+03 2.2291E+03 2.2267E+03

Mean 2.6187E+03 2.5110E+03 22329E+03 2.2457E+03 2.2338E+03 2.2444E+03

% Std 1.8306E+02 2.0788E+02 6.2817E+00 3.8067E+01 4.7736E+00 3.8681E+01
Rank 6 5 1 4 2 3

Best 2.4949E+03 2 A909E+03 2 A848E+03 2 A832E+03 2.4832E+03 2.4821E+03

Mean 2.6060E+03 2.5303E+03 2 4965E+03 2.4913E+03 2.4955E+03 2. 4994E+03

% Std 1.2120E+02 3 .9160E+01 9.6037E+00 6.1816E+00 1.2011E+01 1.0695E+01
Rank 6 5 3 1 2 4

Best 2.6061E+03 2.5264E+03 2.5011E+03 2.5024E+03 2.5032E+03 2.5019E+03

Mean 5.3289E+03 5.1451E+03 4.3624E+03 4.0017E+03 4.4715E+03 4.0336E+03

fr Std 1.0628E+03 1.4394E+03 1.1007E+03 1.1046E+03 1.0547E+03 1.1401E+03
Rank 6 5 3 1 4 2

Best 3.3530E+03 3 A855E+03 3.1245E+03 3.3451E+03 3.2053E+03 3.0774E+03

Mean 5.6259E+03 5.1564E+03 3.4649E+03 3.6401E+03 3.5694E+03 3.5761E+03

Ji Std 1.6888E+03 1.7136E+03 2.9642E+02 2.4415E+02 2.9244E+02 4.7810E+02
Rank 6 5 1 4 2 3

Best 3.0074E+03 2.9829E+03 2.9751E+03 2.9448E+03 2.9476E+03 2.9607E+03

Mean 3.1248E+03 3.0786E+03 3.0119E+03 3.0092E+03 3.0158E+03 3.0046E+03

fa Std 1.0710E+02 1.1296E+02 3A191E+01 4.1288E+01 4.8768E+01 2.9103E+01
Rank 6 5 3 2 4 1

Friedman 6 5 225 242 2.75 2.58

Rank 6 5 1 2 4 3
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A. Casel: 20 Unit

In Case 1, the total load demand was set at 2500 MW,
with the optimization conducted over 1000 iterations using a
population size of 20 and problem dimension of 20. To
ensure statistical reliability, all algorithms were
independently executed 30 times under identical parameter
settings. Performance indicators such as best solution, mean
value, standard deviation, and convergence speed were
systematically recorded. Detailed algorithmic parameters
and system-specific generation constraints, including fuel
cost coefficients, are provided in Tables II and III,
respectively.

The summarized results for the 20-unit system across
different algorithms are presented in Table IV, with
corresponding convergence profiles shown in Fig. 4.
Furthermore, a racing plot is illustrated in Fig. S to visually
compare the total generation costs achieved by different
algorithms.

In this plot, each algorithm is assigned a track lane and its
position along the track reflects its corresponding cost
performance. Algorithms with lower total costs are
positioned farther from the starting line and closer to the
front, indicating superior economic efficiency. This
reverse-mapping design provides a clear and intuitive
understanding of the comparative cost effectiveness of each
method.

The simulation outcomes reveal that the proposed
LO-PKO algorithm attains superior overall performance in
solving the 20-unit Economic Load Dispatch (ELD)
problem. Specifically, LO-PKO achieves an active power
loss (PL) of 71.56 MW and a total delivered power (PD) of
2571.58 MW, accurately satisfying the system’s power
balance constraints, including transmission losses.

Notably, LO-PKO obtains the lowest total fuel cost of
$61,870.75, surpassing the original PKO algorithm
($61,896.93) as well as other advanced meta-heuristics
including NRBO ($61,944.24), SFOA ($62,108.18), TSO
($61,873.64) and RRTO ($61,892.01). Although TSO yields
a comparable fuel cost, LO-PKO demonstrates a more
balanced and efficient power allocation scheme.

A detailed examination of power distribution shows that
SFOA and RRTO report relatively lower transmission losses
(63.50 MW and 67.23 MW, respectively), resulting in a
correspondingly lower total generated power (PD). This
deviation may indicate potential imbalances between supply
and demand, thereby raising concerns about system
reliability. Conversely, NRBO more precisely meets the
total power delivery requirements (PD = 2570.63 MW) but
at the expense of higher fuel costs, reflecting limited
optimization efficiency.

The original PKO and TSO algorithms produce
intermediate results in both power loss and cost metrics but
fall short of matching the enhanced convergence stability
and overall effectiveness of LO-PKO.

Overall, the experimental analysis confirms the enhanced
adaptability, convergence speed, and robustness of the
LO-PKO algorithm in addressing the nonlinear, constrained
nature of the ELD problem, validating its potential for
practical deployment in power system economic dispatch
applications.

TABLE II. PARAMETER SETTINGS OF EACH ALGORITHM

Algorithm Main parameters setting
PKO BF=8;PEmax=0.5; PEmin=0;
LO-PKO BF=8; PEmax=0.5; PEmin=0;
NRBO DF=0.6;Flag=1;
SFOA C=0.8;T=0.5;
TSO aa=0.7,z=0.05;
RRTO C=10;

TABLE III. THE FUEL COST COEFFICIENT AND POWER GENERATION LIMIT OF
20 GENERATING UNITS

Unit O Bi Yi P Prnax
1 1000 18.19 0.00068 150 600

2 970 19.26 0.00071 50 200

3 600 19.80 0.00650 50 200

4 700 19.10 0.00500 50 200

5 420 18.10 0.00738 50 160

6 360 19.26 0.00612 20 100

7 490 17.14 0.00790 25 125

8 660 18.92 0.00813 50 150

9 765 18.27 0.00522 50 200

10 770 18.92 0.00573 30 150

11 800 16.69 0.00480 100 300

12 970 16.76 0.00310 150 500
13 900 17.36 0.00850 40 160
14 700 18.70 0.00511 20 130

15 450 18.70 0.00398 25 185
16 370 14.26 0.07120 20 80
17 480 19.14 0.00890 30 85
18 680 18.92 0.00713 30 120
19 700 18.47 0.00622 40 120
20 850 19.79 0.00773 30 100

x10* ' . ' ‘

6281 ifg-c;m ]

6.27| ¢2522 1

o = |

6.25
6,241
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6.19

100 200 300 400 500 600 700 800 900 1000

Fig. 4. Experimental convergence diagram of 20 unit.
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B. Case2: 40 Unit

To further assess the scalability and practical applicability
of the proposed LO-PKO, we conducted comprehensive
experiments on a large-scale Economic Load Dispatch (ELD)
problem comprising 40 generating units. In this scenario, the
total load demand was set at 10,500 MW, with a problem
dimension of 40 and a population size fixed at 50. The
maximum number of iterations was limited to 1000. To
ensure the statistical significance and robustness of the
results, all algorithms were independently executed 30 times.
Key performance indicators, including best solution, mean
value, standard deviation, and convergence characteristics,
were systematically recorded for in-depth comparative
analysis. The detailed fuel cost coefficients and generation
constraints for the 40-unit system are provided in Table V.
Simulation outcomes generated by various algorithms under
these settings are summarized 1n  Table VI, with
corresponding convergence curves depicted in Fig. 6. The
racing plot based on the total cost 1s shown in Fig. 7.

The experimental results clearly indicate that the
proposed LO-PKO algorithm delivers superior performance
in solving the large-scale 40-unit ELD problem. Specifically,
under the power demand constraint of 10,500 MW,
LO-PKO attains the lowest total fuel cost of $121,556.85,
achieving a notable cost reduction of approximately 2.23%
compared to the original PKO algorithm, which incurred a
total cost of $124,326.98.

TABILE IV. COMPARISON OF EXPERIMENTAL RESULTS OF UNIT 20

Unit PKO LO-PKO NRBO SFOA TSO RRTO
P, 511.02 529.89 531.97 247.92 517.18 499.24
P, 10845 133.95 138.77 182.51 145.87 179.45
Py 11491 76.14 93.74 149.66 89.45 109.51

P, 97.23 8530 115.87 191.99 99.62 52.79

P 142,69 117.38 93.86 105.41 118.06 80.26

Py 72.56 8243 59.29 3333 48.20 4939
P; 11914 83.07 68.03 54.93

104.07 101.16

Py 80.87 71.10 99.76 113.97 86.65 99.75

Py 81.10 142.30 56.79 9347 105.34 154.95
Py, 7529 117.70 3525 49.27 101.77 146.84
Py 21718 188.93 23777 265.02 189.31 196.50
P, 33468 338.83 286.53 306.62 329.83 277.05
P35 9056 88.73 148.85 159.57 97.89 122.40
Py, 4759 8242 126.73 118.28 94.43 56.78
Pz 11540 138.73 9546 130.45 134.48 173.18
Py, 62.00 39.80 44 .84 20 49.90 4093

Py; 4567 54 44 82.85 84.96 31.91 41386
P 8971 7047 104.50 63.80 82.26 7372
P, 10551 8321 94.08 103.61 81.78 60.11

P,,  58.5% 46.77 55.67 88.78 62.61 51.86

P 70.12 71.56 70.63 63.50 69.80 67.23

Pp 257012 257158 257063 2563.56 2570.11 2567.25

Cost 61896.93 61870.75 61944.24 62108.18 61873.64 61892.01

TABLE V. THE FUEL COST COEFFICIENT AND POWER GENERATION LIMIT OF
40 GENERATING UNITS

Unit &; ﬁg ¥i e; fz‘ Prm Proax

1 94705 6.73 0.0069 100 0.084 36 114

2 94705  6.73 0.0069 100 0.084 36 114
3 30054 7.07 0.02028 100 0.084 60 120
4 369.03 818 0.00942 150  0.063 80 150
5 148.89 535 0.0114 120 0.077 47 97
6 22233 805 0.01142 100  0.084 68 140
7 267.71 8.03 0.00357 200  0.042 110 300
8 39198 699 0.00492 200 0.042 135 300
9 45576 6.60 0.00573 200  0.042 135 300

10 72282 129 000605 200 0.042 130 300

11 635.2 12.9 000515 200 0042 94 375
12 65469 1238 0.0056% 200  0.042 94 375
13 9134 125 0.00421 300 0.035 125 500
14 17604 884 0.00752 300  0.035 125 500
15 17283 915 0.00708 300 0.035 125 500
16 17263 915 0.00708 300 0.035 125 500
17 64785 797 0.00313 300 0.035 220 500
18 64969 795 0.00313 300 0.035 220 500
19 64783 797 0.00313 300 0.035 242 550
20 647.81 7.97 0.00313 300 0.035 242 550
21 78596  6.63 0.00298 300 0.035 254 550
22 78596 6.63 0.00298 300 0.035 254 550
23 79453  6.66 0.00284 300 0.035 254 550
24 79453  6.66 0.00284 300 0.035 254 550
25 801.32 7.0 0.00277 300 0.035 254 550

26 80132 7.0 000277 300 0.035 254 550

27 1055.1 333 052124 120 0.077 10 150
28 1055.1 333 052124 120 0.077 10 150
29 10551 333 052124 120 0.077 10 150
30 14889 535 0.01140 120 0.077 47 97
31 22292 643 0.00160 150  0.063 60 190
32 22292 643 0.00160 150  0.063 60 150
33 22292 643 0.00160 150  0.063 60 190

34 107.87 895 0.0001 200 0.042 90 200

35 116.58  8.62 0.0001 200 0.042 90 200

36 116.58 862 0.0001 200 0.042 90 200

37 30745 588 0.0161 80 0.098 25 110
38 30745 588 0.01e61 80 0.098 25 110
39 30745 588 0.0161 80 0.098 25 110

40 64783 797 0.00313 300 0.035 242 550

In addition, LO-PKO surpasses other leading
meta-heuristic algorithms, including NRBO ($123,832.70),
SFOA ($146,290.73), TSO ($123,313.18) and RRTO
($125,827.80), highlighting its superior cost-efficiency and
optimization capability in large-scale, nonlinear constrained
problems. The pronounced cost advantage and consistent
convergence performance of LO-PKO reflect its enhanced
ability to effectively navigate complex solution spaces.
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TABLE VI. COMPARISON OF EXPERIMENTAL RESULTS OF UNIT 40

Unit  PKO  LO-PKO NRBO SFOA TSO RRTO
Py 81.23 111.16 103.28 114 52.16 113.51
P, 54.11 36 44.04 114 105.40 114
Ps 109.08 117.06 101.32 120 117.16 118.31
P, 190.00 185.04 181.63 190 156.69 188.31
Ps 84.38 94.66 94.06 97 87.41 95.84
P 126.40 136.26 131.28 68 121.54 121.31
P;  297.15  292.08  241.19 300 25492 297.52
Pg 29796 29296  298.47 300 223.95 300
Py 29795 29210  288.96 135 255.64 29830
Py 29416 156.03  269.33 300 206.83  296.24
Py 242.08 138.11 330.97 375 128.07  365.88
Py, 361091 94 338.42 375 94.12 286.41
Py;  383.37 125 198.97 500 365.15  415.06
Py, 455.64 125 215.08 500 477.09  426.44
Pis 32413  486.84 48725 125 307.77 41730
Pig 38857 48754  456.95 500 486.61  403.63
Py; 35470 486.78  264.14 500 499.68  419.01
Pig  280.81 500 489.46 500 49996  411.13
Py 549.07 550 535.78 550 45993  418.67
Py 54779 47233 529.05 550 506.86  442.17
Py 45372 53549 54937 254 505.17  364.07
Py, 50311 530.07 550 254 536.62  456.29
Py;  550.00 53199 49530 550 37633 45147
Py, 46343 53637 49131 254 50449  516.57
Pys 28183 52225 526.07 550 518.15  420.05
Pye 54256 53559  549.99 550 51437 38251
Py; 35.63 10 20.51 10 10.09 15.31
Pyg 56.52 14.72 21.46 10 13.95 30.85
Py 37.93 10 18.89 10 16.19 18.49
P 64.22 94.42 86.33 97 89.69 94.39

P3; 169.04 184.98 121.67 190 189.97 162.05

P3, 12452 190 179.03 60 189.89 182.16

P33 189.99 183.46 189.99 60 181.23 186.30

Py 19111 200 19001 119.03  194.07  147.17
Py 199.99

194.74 130.06 142.24 177.22 200

P3¢ 165.00 194.74 103.12 200 200.00 200

Ps3; 30.10 107.08 36.72 74.56 110.00 92.71

P3g 93.71 102.46 105.89 25 109.74 108.77
P 71.17 107.14 31.65 25 105.37 108.82
Py 550.00 53559  503.00 550 54994  414.65

Pp  1.05E+04 1.05E+04 1.05E+04 1.02E+04 1.05E+04 1.05E+04

Cost 124326.98 121556.86 123832.70 146290.73 123313.18 125827.80

LO-PKO
[ Tso
I RRTO
I PKO
I NRBO
I SFOA
Fig. 5. The total cost of 20 units racing plot.
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Fig. 6. Experimental convergence diagram of 40 unit.
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Fig. 7. The total cost of 40 units racing plot.

This substantial improvement is primarily attributed to
the dual-layer perturbation mechanisms integrated within
LO-PKO, which proficiently balance global exploration and
local exploitation. Such a balance enables the algorithm to
avoid premature convergence to local optima while
maintaining stable convergence rates, thereby ensuring
feasible and near-optimal solutions under multiple
constraints.  Consequently, the LO-PKO algorithm
demonstrates strong potential for practical deployment in
large-scale power system economic dispatch tasks requiring
high reliability and efficiency.
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VI. CONCLUSION

This paper proposes an enhanced meta-heuristic
algorithm, the dual-layer perturbation-based Pied Kingfisher
Optimizer, to address the limitations of the original Pied
Kingfisher Optimizer (PKO), specifically its tendency
toward premature convergence and limited local search
capability when dealing with complex optimization
problems. The dual-layer perturbation-based Pied
Kingfisher Optimizer retains the foundational structure of
PKO while introducing a probability-controlled reverse
perturbation mechanism to enhance population diversity.
Furthermore, it incorporates a suite of heavy-tailed
distributions, including Lévy flight, Cauchy distribution,
Student’s t-distribution and Laplace distribution, to
strengthen the algorithm's ability to escape local optima and
strike a balance between global exploration and local
exploitation.

To comprehensively evaluate the performance of the
proposed algorithm, extensive experiments were conducted
on the CEC-BC-2022 benchmark function suite. Compared
with the original PKO and other perturbation-based variants,
the LO-PKO algorithm demonstrates not only faster
convergence speed but also higher convergence accuracy.
Among all the tested variants, LO-PKO achieves the best
overall performance, thereby validating the effectiveness of
the dual-layer perturbation mechanism 1in enhancing
optimization outcomes.

Beyond benchmark testing, the practical applicability of
Dual-Layer Perturbation-Based Pied Kingfisher Optimizer
was further evaluated on real-world engineering problems.
The algorithm was applied to solve both 20-unit and 40-unit
Eeonomic Load Dispatch (ELD) problems, classic
constrained nonlinear optimization tasks in power system
scheduling. Simulation results indicate that LO-PKO not
only satisfies complex operational constraints (e.g., power
balance, generation limits, and valve-point effects), but also
achieves the lowest total fuel cost among all compared

algorithms, including PKO, NRBO, SFOA, TS0 and RRTO.

Notably, in the 40-unit EL.D scenario with a total power
demand of 10,500 MW, LO-PKO attained a mmimum fuel
cost of $121,556.86, reducing the cost by 2.23% compared
to the original PKO and outperforming all other competitors.
These results underscore LO-PKO’s robustness, scalability,
and suitability for large-scale, high-dimensional engineering
optimization tasks.

In conclusion, the proposed Dual-Layer Perturbation-
Based PKO algorithm exhibits outstanding performance
across both theoretical benchmarks and practical
applications. Its strong convergence capability, adaptability
toreal-world constraints, and consistent optimization quality
highlight its generalization and potential for widespread
adoption. Future work will focus on extending dual-layer
perturbation-based Pied Kingfisher Optimizer to address
multi-objective  optimization, dynamic  environment
adaptation and large-scale high-dimensional problems,
further enhancing its utility in intelligent decision-making
and resource allocation systems in complex engineering
domains.
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