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Abstract—This paper investigates the use of the Benders
Decomposition Method to solve a class of uncertain
multi-objective optimization problems involving linear integer
variables. The approach begins by modeling the problem
as a multi-objective integer programming formulation.
The Lexicographic Method is employed to prioritize and
sequentially address the objectives according to a predefined
hierarchy. This lexicographic formulation is then extended to
an uncertain setting by incorporating polyhedral uncertainty
sets, transforming the problem into an Adjustable Robust
Optimization (ARO) framework. Given that the resulting robust
formulation can be interpreted as a two-stage mixed-integer
linear program (MILP), the Adjustable Robust Counterpart
(ARC) is derived. This ARC problem remains a MILP, which is
then efficiently solved using Benders Decomposition. The paper
contributes both a methodological integration of lexicographic
and robust optimization with decomposition techniques and
a theoretical analysis ensuring the global optimality of the
solution via convexity arguments. A mini-review is also
presented to highlight the novelty of the approach.

Index Terms—Robust Optimization, Adjustable Robust
Counterpart, Multi-objective, Lexicographic Method, Mixed
Integer Linear Programming, Benders Decomposition Method

I. INTRODUCTION

OPTIMIZATION models in real life often experience
problems with data that cannot be known precisely [1].

This kind of data is termed data that contains uncertainty.
This uncertainty can be caused by data measurement errors,
such as measuring an object’s dimensions and temperature,
data estimation errors, or rounding numbers [2]. This
becomes a drawback when using data in optimization
problems. The methodology for dealing with the issue of
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data uncertainty in optimization is Robust Counterpart (RC),
proposed by [3]. Referring to [3], Robust Optimization
is a method for finding solutions to robust optimization
problems against uncertain data in parameters where the
uncertainty is in an uncertainty set. A recent survey on
uncertain optimization can be seen in [4], which discusses
surveying the current state of uncertain optimization models
and methodologies.

Robust optimization can be categorized into two
types, namely single-stage and multi-stage models. In
single-stage Robust Optimization, all decision variables with
here-and-now decisions are considered to be resolved
immediately. In contrast, in a multi-stage Robust
Optimization with wait-and-see decisions, the decision
variables in the second stage are adjusted to the realization
of the previous parameter uncertainty. This multi-stage
Robust Optimization approach was first introduced in [5] by
considering two variables. The first set must be determined
before resolving the uncertainty, and the other set can be
calculated after the uncertainty is resolved. This multi-stage
Robust Optimization is the Adjustable Robust Counterpart
(ARC) or two-stage RC methodology.

Multi-objective optimization problems can be solved
using the Lexicographic Method (LM). Referring to [6],
the lexicographic method is a method that sorts objective
functions based on their interests or priorities determined
by the researcher. The optimum solution x is obtained by
minimizing the objective function, starting from the most
important and continuing according to the number and level
of importance. One of the implementations of the LM is
presented in [7], which discusses how a hybrid metaheuristic
algorithm is used for the bi-objective school bus routing
problem. See also in [8], the application of LM on a
robust optimization model using ellipsoidal and polyhedral
uncertainty sets for the spatial land-use allocation problem.

Furthermore, three uncertainty parameters can be used
in single-stage or multi-stage Robust Optimization, i.e.,
the uncertainty parameters in the Box, Ellipsoidal, and
Polyhedral Uncertainty Sets. This study assumes that the
uncertainty parameter is in the Polyhedral Uncertainty Set.
The indeterminate data points mapped into the Polyhedral
Uncertainty Set will produce a convex hull that guarantees a
feasible solution. In addition, the Polyhedral Uncertainty Set
assumes the best uncertainty set among the other two sets
because it does not include additional data outside the set
and does not discard the original data used.
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A multi-objective integer ARC optimization model with
a Polyhedral Uncertainty Set can also be obtained. The
existence of the ARC methodology can overcome the
problem of uncertainty in the multi-objective integer
optimization model. The ARC method was chosen because
this study worked on determining the integer decision
variables in the first stage and determining other continuous
decision variables in the second stage. Several studies have
been conducted related to this topic with various problems.
Research written by [9] discusses the comprehensive Mixed
Integer Linear Programming (MILP) model for distributing
energy reserves using the ARC methodology. In Chaerani
et al. [10], ARC is used to determine the adjustable robust
maximum flow problem with a parametric ellipsoidal and
polyhedral uncertainty set.

Furthermore, the problem of multi-stage robust
optimization (ARC) can be approached using
various methods. Among the ways often used are
Column-and-constraint Generating algorithms, as in
the study of [11] on distribution networks. Research in
[12] used the Benders Decomposition Method to determine
facilities’ construction. There is also a study written by
[13] using the Cutting Plane Method to solve the Unit
Commitment (UC) problem, [14] using the Branch and
Bound Method to develop integer optimization problems by
partitioning the set of uncertainty. A recent result in [15]
presents a study on the Benders decomposition approach
on an adjustable robust counterpart optimization model for
multi-objective supply chain problems in sugar distribution.

Based on various methods that can solve the ARC
optimization problem, a general multi-objective integer
ARC optimization model is formulated using a polyhedral
uncertainty set and the Benders Decomposition Method
approach. Because the general model is obtained, the model
can be applied according to the desired topic at the end of
the study.

As in [16], [17] and [18], the Benders Decomposition
Method is the basis of a mathematical model that is required
to partition or divide the problem into linear or continuous
parts that are easy to solve and nonlinear or integer parts
that are difficult to solve. Then the Benders Decomposition
algorithm is applied, which has the central concept of
partitioning the variables into two sets x and y, solving the
problem on the complex variable Y . This is an optimization
method to solve problems with feasible subproblems, see
[16] and [17]. For a robust mixed integer problem, see [18].

Previous studies that examined the multi-objective integer
RC optimization model using the Benders Decomposition
Method approach were more than ARC. This is because ARC
is a methodology to handle two-stage Robust Optimization
that still needs to be developed [19]. Previous studies that
have focused on developing mathematical methods regarding
the RC multi-objective integer optimization model using
the Benders Decomposition Method approach include (1)
Research in [20] on a large-scale MIP optimization model
with an objective function and a convex constraint function,
(2) Research in [21] regarding the MILP optimization model
for distribution problems with the first stage using the
Cutting Plane Method, and (3) Research in [22] regarding
the MIP optimization model containing inequalities, local
branching, In-out Variant Method, and scenario-based

aggregated cuts. As [23] is included in research references
that focus on developing mathematical methods regarding the
multi-objective integer ARC optimization model using the
Benders Decomposition Method, this article solves the linear
Robust Optimization problem with mixed integer decision
variables as non-adjustable variables that are solved in the
first stage and continuous resource decision variables as
adjustable variables which are solved in the second stage.
Furthermore, the article focuses on the uncertainty on the
right-hand side. Then, it provides a generalization of the
development of mathematical methods if there is uncertainty
on the left side. The technique used in [23] is a generating
constraint algorithm. The literature review and its novelty
will be discussed later. In this research, the development of
mathematical methods are presented. The analytical studies
based on the convexity of the general model is also obtained.
The general model obtained contains integer and continuous
variables, so it has two stages of completion assisted by
the ARC method to handle its uncertainty. Therefore, the
Benders Decomposition Method approach can be used.

II. MATERIALS AND METHODS

This section presents an overview of the materials and
methods employed in the study. The foundational model
used is a deterministic Mixed Integer Linear Programming
(MILP) formulation introduced by [23], which serves as the
initial input to our framework. The model involves two types
of decision variables: integer variables determined in the
first stage (here-and-now decisions), and continuous variables
determined in the second stage (wait-and-see decisions).
This two-stage structure supports the development of a more
advanced multi-objective Adjustable Robust Counterpart
(ARC) model, which incorporates polyhedral uncertainty sets
to handle parameter ambiguity.

To address the computational challenges posed by the
presence of integer variables, the Benders Decomposition
Method is applied (see [16]). This approach decomposes the
problem into a master problem and a subproblem, effectively
managing complexity by isolating the integer and continuous
components. As a result, a general ARC formulation for
multi-objective mixed-integer optimization under polyhedral
uncertainty is obtained.

Additionally, the mathematical properties of the resulting
model are analyzed by examining its convexity. This analysis,
following the principles outlined in [24], ensures that the
locally optimal solutions identified are also globally optimal,
thereby enhancing the robustness and reliability of the
solution methodology.

A. Mixed-integer linear problem

Research in [23] describes an integer optimization model
that is a single objective function that is formulated as
follows:

min
x,y

αTx+ βT y,

s.t.: Ax+By ≥ d,
Cx ≥ b,
x, y ≥ 0,

(1)

with A ∈ QT×q , B ∈ QT×q , C ∈ Ql×p, d ∈ Ql, αp+, β ∈
Qq+ , and Q is the set of rational numbers. Optimization
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problems whose optimization is viewed from more than one
point of view require the multi-objective characteristic of the
model

B. Lexicographic method for multi-objective mixed-integer
linear problem

This section discusses the formulation of the
multi-objective integer optimization model, which refers
to [23] with minor changes. An additional formulation of
the integer optimization model (1) is needed to support
the multi-objective. Referring to [6], the priority scale
on the minimization objective function is denoted by
additional indexes i and j, with j being (i − 1). The
optimal solution is obtained in the calculation process by
minimizing the objective function from the most important
and then continuing according to the number and level of
importance [6]. In other words, this calculation process
is called the Lexicographic Method. The reformulation of
the integer optimization model in (1) with the addition of
multi-objective properties with i objective functions is as
follows:

min
x,y

(fi(x, y) = αTi x+ βTi y),∀i = 1, 2, ...,m,

s.t.: Ax+By ≥ d,
Cx ≥ b,
fi(x, y) = f∗j ,∀j = 1, 2, ..., (m− 1),

x, y ≥ 0, x ∈ Rp, y ∈ Nq,

(2)

with A ∈ QT×p, B ∈ QT×q , C ∈ Ql×p, d ∈ QT , b ∈ Ql,
α ∈ Qp+, β ∈ Qq+, and Q is the set of rational numbers.

C. Benders Decomposition Method

Refers to J.F Benders in 1962 [16] and Bischop in 2006
[17], the partitioning procedures for solving mixed-integer
variable programming problems is known as the Benders
Decomposition Method. The method is an optimization
method for solving problems with feasible subproblems.
Consider the formulation of the minimization problem called
the initial problem P (x, y) as follows.

min cTx+ f(y),

s.t Ax+ F (y) = b,

x ≥ 0, y ∈ Y,
(3)

where A ∈ Rm×n, x, c ∈ Rn, b ∈ Rm, y ∈ Y ⊂ Rp,
in case f(y) and F (y) could be nonlinear and Y could
be discrete or continuous range. Partition the variable into
two sets, i.e., x and y is the main concept in the Benders
Decomposition Algorithm. First, then solve the problem on
the difficult variable Y .

It is mentioned in [17], the step-by-step Benders
Decomposition Method is proceeded as follows.

1) First, formulate the fixed value of y ∈ Y becomes a
Linear Programming problem in terms of x. Let P (x|y)
be the notation of a feasible subproblem. Assume that
P (x|y) has a finite optimal solution x ∀y ∈ Y . Thus
equation (3) can be reformulated into a constraint
equivalent to P1(x, y):

min
y

{
f(y) + min

x
{cTx : Ax = b− F (y), x ≥ 0}

}
,

(4)

where

min
x
{cTx : Ax = b− F (y), x ≥ 0}, (5)

is an inner optimization problem, and it is assumed to
have an optimal solution x for every y ∈ Y .

2) Second, find a dual problem formulation for the inner
optimization problem. Equation (3) can be rewritten
as:

min
y

{
f(y) + max

u

{
(b− F (y))

T
u : AT y ≤ c

}}
.

(6)
The constraint function in the inner optimization
problem is independent of the y variable. As it is
assumed that (5) has an optimal solution x for every
y ∈ Y , the optimal solution for the inner optimization
problem is finite. This optimal solution is the extreme
point u ∈ U . Thus, Equation (6) can be rewritten as
follows:

min
y

{
f(y) + max

u
(b− F (y))

T
u
}
. (7)

3) Third, the Full Master Problem is determined by
rewriting (7) as a simple minimization problem as
follows.

min f(y) +m s.t (b− F (y))
T
u ≤ m,u ∈ U,

y ∈ Y.
(8)

From equation (8), the Relaxed Master Problem
M(y,m) is obtained as follows.

min f(y) +m

s.t (b− F (y))
T
u ≤ m,u ∈ B

y ∈ Y,
(9)

where B is an empty set and m is initialized as 0.
Benders’ subproblem that solves an extreme point u
with a fixed value y ∈ Y so that it can be considered
a maximization problem

S(u|y) = max
{

(b− F (y))
T
u : AT y ≤ c

}
, (10)

where u ∈ R, S(u|y) has a finite optimal solution. The
subproblem S(u|y) is solved to get the value of u, i.e.,
given the value determined from solving the master
problem M(x, y). This means that a simple test was
done to determine whether a constraint that includes u
should be added to the master problem. If so, the next
problem is solving the master problem to generate a
new value of y. Then, input the new value of y to
the subproblem, which is solved again. This iteration
continues until the optimization is reached.

D. Robust Optimization

Referring to Ben-Tal et al. in [3], RO is a method to
solve Optimization problems with data uncertainty and is
only known in a set of uncertainties. The general form of the
problem of indefinite linear optimization can be formulated
as in equation (11) follows:

min cTx,
s.t Ax ≤ b,

(c, A, b) ∈ U ,
(11)
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where c ∈ Rn, A ∈ Rmxn, b ∈ Rn, the three decision
variables are indefinite coefficients. U is a notation of the set
of uncertainties.

There are three basic assumptions in RO, namely all
decision variables state decisions ”here and now”, decision
makers are fully responsible for the consequences of
decisions made, if and only if the actual data has been
determined in the set of uncertainties U , and constraints on
programming problems linear with uncertainty is ”hard”. In
addition, referring to Gorissen et al. in [25], in dealing with
Linear RO, three things are also assumed. First, the objective
function is certainly valuable. Suppose there are uncertainties
in the objective function. In that case, the problem can
be formulated by replacing the objective function with a
single-variable function, such that uncertainty arises in the
constraint function. Second, the right vertex vector b is of a
certain value. If b is uncertain, an extra variable xn+1 can be
introduced. Third, robustness against U can be formulated as
a constraint-wise problem, and the set of uncertainties U is
a closed and convex set.

Assuming that c ∈ Rn and b ∈ Rm are of certain value,
the Robust Counterpart (RC) formulation of equation (11) is
equivalent to equation (12) below.

min cTx,
s.t aT (ζ)x ≤ b,

x ≥ 0, ∀ ζ ∈ Z.
(12)

Note the uncertain constraint in equation (12) and define
the uncertain parameter a(ζ) = ā + Pζ where ā ∈ Rn is
a nominal value vector and P ∈ RnxL is a confounding
matrix. The set U is defined as in equation (13).

U = {a|a = ā+ Pζ, ζ ∈ Z} , (13)

where Z ⊂ RL is an uncertain set of primitive factors, so
equation (14) is obtained.

(ā+ Pζ)
T
x ≤ b, ∀ ζ ∈ Z. (14)

The optimal solution from Robust Counterpart is called
optimal robust. Furthermore, the following Theorem 1 as
stated in [3], applies to reformulate the set of uncertainty
U into a computationally tractable problem.

Theorem 1: Assume the set of uncertainty U is an affine
image of the limited set Z = {ζ} ⊂ Rn, and U is:

1) The system of linear inequality constraints

Pζ ≤ p. (15)

2) The system of conic quadratic inequality

‖Piζ − pi‖2 ≤ p
T
i ζ − ri, i = 1, ...,M. (16)

3) Systems of linear matrix inequality

p0 +

dimζ∑
i=1

ζiPi ≥ 0. (17)

In cases (2) and (3) it is also assumed that the system of the
constraints defining U is strictly feasible. Then, the Robust
Counterpart of equation (11) is equivalent to:

1) Linear Programming (LP) problems in the case (1),
2) Conic Quadratic Programming (CQP) problems in

cases (2),

3) Semidefinite Programming (SDP) problems in cases
(3).

As stated in Gorissen et al. in [25], the computational
tractability of robust counterpart for different sets of
uncertainties can be seen in Table I.

TABLE I: Tractable formulations for constraints with sets of
uncertainties

Uncertainty Set Z Robust Counterpart Tractability
Box ‖ζ‖∞ ≤ 1 aT x+ ‖PT x‖1 ≤ b LP

Ellipsoidal ‖ζ‖2 ≤ 1 aT x+ ‖PT x‖2 ≤ b CQP

Polyhedral Dζ + q ≥ 0

 aT x+ qTw ≤ b
DTw = −PT x
w ≥ 0

LP

E. Adjustable Robust Counterpart Optimization

Referring to Bental et al. in [3] and [5] also in Yanikouglu
et al. [19], in multistage optimization, the basic paradigm of
RO, namely the ”here and now” decision, can be relaxed.
Some decision variables can be adjusted later according to
decision rules, which are a function of (some or all parts
of) uncertain data. Adjustable Robust Counterpart (ARC) is
given as in equation (18).

minx,y(.) cTx,

s.t. A(ζ)x+By(ζ) ≤ b, (18)
∀ζ ∈ Z.

where x ∈ Rn is the first stage decision ”here and now”
made before ζ ∈ RL is realized, y ∈ Rk denotes a ”wait
and see” decision and B ∈ Rmxk which shows a certain
matrix coefficient.

In practice, y(ζ) is often through an approach with affine
or linear decision rules y(ζ) = y0 + Qζ with y0 ∈ Rk and
Q ∈ RkxL is the coefficient in the decision rule, which is
to be optimized. Thus, the reformulation of equation (18) is
equation (19).

minx,y0,Q cTx,

s.t. A(ζ) +By0 +BQζ ≤ b, (19)
∀ζ ∈ Z.

III. RESULTS

This section discusses some of the results of the
mini-review for topics Benders Decomposition and
Multi-objective Integer Adjustable Robust Counterpart
(ARC) Optimization Model, the formulation of the
initial multi-objective integer optimization model, the
multi-objective Adjustable Robust Counterpart (ARC)
optimization model with Polyhedral Uncertainty Sets and
their convexity analysis of the application of the Benders
Decomposition Method to the model.

A. Mini-review for topics Benders Decomposition and
Multi-objective Integer Adjustable Robust Counterpart
(ARC) Optimization Model

In this paper, the Benders Decomposition and
Multi-objective Integer Adjustable Robust Counterpart
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Fig. 1: Selection process based on the PRISMA framework.

(ARC) Optimization Model have been reviewed for the
period 2014 to 2025. The literature search was performed
using the combined keywords Benders Decomposition,
Adjustable Robust Optimization, and Multi-objective
Optimization. The number N of results varied across
databases: Scopus (N = 1), ScienceDirect (N = 24),
dimensions.ai (N = 134), and Google Scholar (N = 114).
All retrieved records were then subjected to the PRISMA
screening process to ensure that only articles meeting our
inclusion criteria were carried forward. The complete flow
of this selection process is illustrated in Figure 1.

This study employed a systematic twophase data analysis
approach. The initial bibliometric analysis was conducted
on Dataset 1, which comprised 136 articles remaining
after duplicates and survey articles were removed. Dataset
1 served as the basis for mapping overall research
trends in Benders Decomposition and Adjustable Robust
Optimization.

For the indepth systematic literature review, a rigorous
PRISMA-guided screening of Dataset 1 records produced
eleven articles, referred to as Dataset 2. These selected
articles were analyzed for their specific contributions to
Adjustable Robust Optimization, Benders Decomposition,
Multiobjective Optimization, and the types of uncertainty sets
employed. A thematic map of Dataset 1 was generated using
the Bibliometrix package in R Software, plotting each theme
by development (density) and relevance (centrality).

Table II presents this strategic diagram, where the motor
themes mean that the result is in high density and high
centrality. The niche themes mean high density and low
centrality, the basic themes mean low density and high
centrality, and the emerging/declining themes refer to low
density and low centrality. The interpretation of the thematic
map reveals in the following indications.

1) Benders Decomposition appears as a niche theme,
indicating methodological maturity but specialized
application areas, notably renewable energy planning.

2) Multiobjective Optimization is positioned among the
motor themes, reflecting both high maturity and

centrality, and driving developments in microgrid
management and demandside optimization.

3) Robust Optimization, including the Adjustable Robust
variant, falls into the basic themes quadrant, signifying
fundamental relevance for handling uncertainty, with
innovation progressing at a steadier pace.

The initial findings and a detailed analysis is conducted
from the eleven selected articles in Dataset 2. As can be seen
in Table III summarizes their methodological characteristics,
with particular focus on the types of uncertainty sets
employed and the implementation frameworks. A notable
pattern emerges: polyhedral uncertainty sets dominate the
literature, appearing in seven out of the eleven studies
reviewed [10], [15], [26], [27], [28], [29], [30], [31].
The remaining works employ alternative constructs such
as budget-based [32], interval [33], norm-based data-driven
[34], and machine learning-derived uncertainty sets [35]. The
popularity of polyhedral sets is largely attributable to their
convex structure and representation via linear constraints.
These properties allow efficient reformulation techniquessuch
as dualization and Benders decompositionand often lead to
globally optimal solutions [15], [28].

For instance, ARC-ISOP and sugar-distribution
models [10], [15] employ polyhedral bounds to model
uncertainty in delivery times and price fluctuations,
ensuring robustness without excessive conservatism.
In hydro-thermal-wind unit commitment models [29],
polyhedral sets capture spatial-temporal inflow uncertainty,
enabling scalable resolution using Column-and-Constraint
Generation (C&CG) methods while preserving system
interdependencies. Similarly, in hydrogen infrastructure
planning [30], representative polyhedral days facilitate
adjustable risk-conservatism tradeoffs.

In contrast, [35] proposes a machine learning-based
uncertainty set using Support Vector Clustering (SVC).
Their study benchmarks the performance of SVC-based
sets against traditional polyhedral constructs in hub-routing
problems. Results indicate that SVC-based models yield
more robust and less conservative outcomes while effectively
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TABLE II: Thematic Map Based on Density and Centrality

Centrality
Low High

D
en

si
ty

High

Niche Themes Motor Themes
−Distributed generation, planning, renewable −Demand response, microgrid, multi-objective optimization
−Benders decomposition, demand-side management,
improved non-dominated sorting genetic algorithm

−Renewable energy, electric vehicles, energy management

Low

Emerging or Declining Themes Basic Themes
−Optimization, stochastic programming, project management −Robust optimization, uncertainty, facility location
−Surgery scheduling −Distributionally robust optimization, energy hub, integrated

energy system

TABLE III: Robust Optimization Methods in Dataset 2.

Article Topic Adjustable Robust
Optimization

Benders
Decomposition

Multi Objective
Optimization

Uncertainty Set

[15] Sugar Distribution Supply Chain X X X Polyhedral
[26] ARC Model with Polyhedral Uncertainty in

ISOP
X - - Polyhedral

[32] Dynamic Programming for Natural Gas
Networks

- X X Budget-based

[27] Benders Decomposition for ARC in Internet
Shopping Problem

X X - Polyhedral

[28] Analysis Multi-objective Linear Robust
Optimization

- - X Polyhedral

[29] C&CG algorithm for two-stage robust UC - X X Polyhedral
[34] Deep Peak Shaving and Renewable Energy - X - Data-driven
[30] Data-driven robust model for hydrogen

infrastructure
X - X Polyhedral

[35] Hub Location-Routing Problem - - - Machine
learning-based
(SVC) compared
with polyhedral
and Box

[33] Time-Cost-Environment Project Scheduling - X X Interval
[31] Integrated energy system with multi-scale

hydrogen energy management.
X X - Polyhedral

This research X X X Polyhedral

capturing multimodal and nonlinear travel-time distributions.
These findings collectively highlight the strength of
polyhedral sets in ensuring tractability and global optimality.
However, they also underscore the growing potential of
machine learning to learn richer, data-driven uncertainty
representations, particularly within multi-objective adjustable
robust optimization frameworks [15].

B. Multi-objective Integer Adjustable Robust Counterpart
(ARC) Optimization Model with Polyhedral Uncertainty Set

This section discusses the formulation of a multi-objective
integer Adjustable Robust Counterpart (ARC) optimization
model with a Polyhedral Uncertainty Set. In the previous
section, the ARC methodological approach with Polyhedral
Uncertainty Sets is carried out on the multi-objective
integer optimization model. The ARC methodology can
be applied to multi-stage optimization problems, so the
first thing to do is formulate the model and determine
the uncertainty parameters and two-stage decision variables.
In the preparation of the model, the uncertain parameters
(containing the assumption of uncertainty) are matrix A,
while the other parameters d are certain. Furthermore, the
here-and-now decision variable (a non-adjustable variable
determined in the first stage) is a continuous value variable
x.

In contrast, the wait-and-see decision variable (an
adjustable variable specified in the second stage) is discrete.
Therefore, it can be assumed that A ∈ U1 and y ∈ U2,
with U1, U2 ∈ U and U is a primitive uncertainty set. The

formulation (2), if adjusted into the general form of the ARC
methodology, is as can be seen in formulation (20).

minx,y (fi(x, y) = αTi x+ βTi y),∀i = 1, 2, ...,m,

s.t.: −Ax−By ≤ −d,
−Cx ≤ −b,
fj(x, y) = f∗j ,∀j = 1, 2, ..., (m− 1), (20)
x, y ≥ 0,

A ∈ U1, y ∈ U2,
x ∈ Rp, y ∈ Nq.

Based on the first basic assumption related to the general
model of the Robust Optimization problem, if uncertainty
arises in the objective function, it is necessary to define a
single variable function in the form of ti ∈ R with t ≥
fi(x, y) and fi (x, y) = αTi x + βTi y, ∀i = 1, 2, . . . ,m, so
that the reformulation form is obtained as follows (vector y
and constraint matrix A expressed in a primitive uncertainty
parameter ζi, ζ2 ∈ Z , with ζ1 ∈ Rw and ζ2 ∈ Rz:

min
t1

1
0
0

T tix
y

 ,
s.t.:

−A(ζ) −B
−C 0
αi βi

[ x
y(ζ)

]
≤

−d−b
ti

 ,
[
x
y

]
≥ 0,

ti unrestricted.

(21)
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Given the constraint-wise assumption of uncertainty
in Robust Optimization, two constraints containing an
uncertainty vector (first and third constraints) in the
formulation (21) can be focused on a single constraint as
follows:

− (ā+ Pζ2)
T
x− bT (ȳ +Qζ1) ≤− d,

αTx+ βT (ȳ +Qζ1) ≤t,
(22)

with (ā+ Pζ2) and (ȳ +Qζ1) are an affine function over
primitive uncertain parameters ζi, ζ2 ∈ Z, ā ∈ Qp, and ȳ ∈
Nq .

Next is determining ζ, which maximizes the two
constraints in (22) and satisfies these constraints. The
formulation of this optimization model assumes that the
uncertain parameter A and the adjustable variable y are in
the Polyhedral Uncertainty Set, which is defined as follows:

Z1 = {ζ1 : r −Rζ1 ≥ 0} ,
Z2 = {ζ2 : h−Hζ2 ≥ 0} ,

(23)

with r ∈ Rm, R ∈ R(w×m), ζ1 ∈ Rw, h ∈ Rn, H ∈ Rz×n,
and ζ2 ∈ Rz .

The first step in applying the Polyhedral Uncertainty Set
to the model is to reformulate the second left-hand side of
the constraints in (22). The following are obtained.

−āTx − max
ζ2:h−Hζ2≥0

(
PTx

)T
ζ2 −

bT ȳ − max
ζ1:r−Rζ1≥0

(
bTQ

)T
ζ1 ≤ d, (24)

αTx+ βT ȳ max
ζ1:r−Rζ1≥0

(
bTQ

)T
ζ1 ≤ t. (25)

Next, the discussion is focused on changing the primal
form to the dual form. The maximization problem in both
constraints in (24) and (25) is a primal form of inequality
≤ and has unrestricted uncertain variables ζ1 and ζ2, so the
dual formulation is as follows:

−āTx−min
γ

{
hT γ : HT γ = PTx, γ ≥ 0

}
− bȳ

−min
λ

{
rTλ : RTλ = bTQ,λ ≥ 0

}
≤ −d,

αTx+ βT ȳ + min
λ
rTλ : RTβTQ,λ ≥ 0 ≤ t.

(26)
The primal-dual relationship used is strong duality.

Therefore, the optimum value of the primal and dual
problems in the (24) and (26) formulations is the same. In
other words, the primal-dual relationship can be written as
follows:

max{
(
PTx

)T
ζ2 : h−Hζ2 ≥ 0} (27)

is equivalent with

min
{
hT γ : HT γ = PTx, γ ≥ 0

}
. (28)

As well as

max{
(
bTQ

)T
ζ1 : r −Rζ1 ≥ 0} (29)

is equivalent with

min
{
rTλ : RTλ = bTQ,λ ≥ 0

}
, (30)

and

max{
(
βTQ

)T
ζ1{r −Rζ1 ≥ 0} (31)

is equivalent with

min
{
rTλ : RTλ = βTQ,λ ≥ 0

}
, (32)

which is satisfactory for a feasible solution γ and λ contained
in the following feasible set:

G1 =
{
γ
∣∣HT γ = PTx, γ ≥ 0

}
→ ∃γ ≥ 0 3 HT γ = PTx,

G2 =
{
λ
∣∣RTλ = bTQ,λ ≥ 0

}
→ ∃λ ≥ 0 3 RTλ = bTQ,

G3 =
{
λ
∣∣RTλ = βTQ,λ ≥ 0

}
→ ∃λ ≥ 0 3 RTλ = βTQ.

(33)
Thus, the formulation of the multi-objective integer ARC
optimization model with the overall Polyhedral Uncertainty
Set can be written as:

min
ti

fi(t) = ti,∀1, 2, ...,m,

s.t.: − āTx− hT γ − bȳ − rTλ ≤ −d,
Hγ = Px,

Rλ = bTQ,

− Cx ≤ −b,
αTi x+ βTi ȳ + rTλ ≤ ti,
RTλ = βTQ,

fj(t) = f∗j , j = 1, 2, ..., (m− 1),

x, ȳ, γ, λ,Q ≥ 0,

ti unrestricted,

(34)

with αi ∈ Qp+, ā ∈ Qp, h ∈ Rn, r ∈ Rm, d ∈ QT ,
H ∈ Rz×n, P ∈ Rz×p, R ∈ Rw×m, b ∈ Qq , C ∈ Ql×p,
b ∈ Qq , C ∈ Ql×p, b ∈ Ql, βi ∈ Qq+, Q ∈ Rq×w, x ∈ Rp,
ti ∈ R, γ ∈ Rn, λ ∈ Rm, and ȳ ∈ Nq . Furthermore, the
multi-objective integer ARC optimization model with the
whole Polyhedral Uncertainty Set (34) can be expressed in
the form of sigma and index, i.e.

min
ti

fi(t) = ti,∀1, 2, ...,m, (35)

s.t.:
∑
p∈P

āpxp +
∑
n∈N

hnγn +
∑
q∈Q

bq ȳq

+
∑
m∈M

rmλm ≥ dT , ∀t ∈ T, (36)∑
n∈N

Hznγn =
∑
p∈P

Pzpxp, ∀z ∈ Z, (37)∑
m∈M

Rwmλm =
∑
q∈Q

bqQqw, ∀w ∈W, (38)∑
p∈P

Clpxp ≥ bl, ∀l ∈ L, (39)∑
p∈P

α(i)
p xp +

∑
q∈Q

β(i)
q ȳq +

∑
m∈M

rmλm ≤ ti, (40)∑
m∈M

Rwmλm =
∑
q∈Q

βqQqw, ∀w ∈W, (41)

fj(t) = f∗j , j = 1, 2, . . . , (m− 1), (42)

xp, ȳq, γn, λm, Qqw ≥ 0, (43)
ti unrestricted. (44)
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IV. DISCUSSION

A. Mathematical Characterization Based on Convexity in
the Multi-objective Integer Adjustable Robust Counterpart
(ARC) Optimization Model with Polyhedral Uncertainty

This subsection refers to Theorem 1 by presenting the
proof of the convex set on the entire model solution set
(35)-(44). There are five types of solution sets for the
non-negative decision variables xp, ȳq , γn, λm, and Qqw
as follows:

xp = (x1, x2, . . . , xn) ≥ 0,

ȳq = (ȳ1, ȳ2, . . . , ȳi) ≥ 0,

λm = (λ1, λ2, . . . , λi) ≥ 0,

γn = (γ1, γ2, . . . , γi) ≥ 0,

Qqw = (Q1, Q2, . . . , Qn) ≥ 0.

(45)

The first set of solutions is S1 which is defined as

S1 = {x = (x1, x2, . . . , xn) ∈ Rn|xi ≥ 0, i = 1, 2, . . . , n} .
(46)

It will be proved that S1 is a convex set.
To this end, take any x(1),x(2) ∈ S1 with

x(1) = (x
(1)
1 , x

(1)
2 , . . . , x(1)n ) (47)

and
x(2) =

(
x
(2)
1 , x

(2)
2 , . . . , x(2)n

)
, (48)

with λ ∈ [0, 1], so that:

x(2) + (1− λ)x(1) ≥ λ · 0 + (1− λ) · 0 = 0. (49)

Therefore, it is clear that λx(2) + (1− λ)x(1) ∈ S1, and S1

proved to be a convex set. Similar proofs are carried out for
the entire solution set, proving that the whole solution set is
a convex set.

The convexity analysis of the objective function can be
shown as follows. Referring to the model (35)-(44), the
objective function in equation (35) is f(t) = t. Further
analysis was carried out to check whether the objective
function was convex. Note that f (t) = t. Take any x, y ∈ R
and λ ∈ [0, 1], so that:

f (λx+ (1− λ) y) = λx+(1− λ) = λf (x)+(1− λ) f (y) .
(50)

Thus, based on (50), it is clear that the objective function
f (t) = t is convex.

B. Multi-objective Integer Adjustable Robust Counterpart
(ARC) Optimization Model with Polyhedral Uncertainty Set
Using Benders Decomposition Method

This subsection discusses the application of the Benders
Decomposition Method as a calculation process in
solving numerical experiments on an integer multi-objective
Adjustable Robust Counterpart (ARC) optimization model
with a Polyhedral Uncertainty Set. Duality Theory is needed
to apply the Benders Decomposition Method to decompose
the obtained model into a Master Problem and Dual
Subproblem.

Referring to the model (35)-(44), the first thing to do is to
decompose the decision variables and the constraint function
into two parts. The first part is the constraint function, which
only contains the discrete decision variable ȳ ∈ Nq in (36)

and (40). The second part is the constraint function which
only includes the continuous decision variables ti ∈ R, γ ∈
Rn, λ ∈ Rm, Q ∈ Rq×w, and x ∈ Rp in (37), (38), (39),
(41), and (42), which represents the linear part that needs
to be duplicated. Furthermore, σ, π, τ , µ, and θ are dual
variables for the constraints (37), (38), (39), (41), and (42),
respectively.

The steps to determine the Master Problem or M(ȳ,m)
as the result of the first decomposition and the Dual
Subproblem or S(σ, π, τ, µ, π|ȳ) as the result of the second
decomposition are to create a Relaxed Master Problem or
M (ȳ,m = 0). Formulation of M(ȳ,m = 0) is a separate
model that only contains the discrete decision variable
ȳ ∈ Nq . If, in the model, there are continuous decision
variables simultaneously, then suppose the continuous
decision variables become equal to one. The formulation is
obtained as follows:

min 0,

s.t.:
∑
p∈P

āpxp +
∑
n∈N

hnγn +
∑
q∈Q

bqT ȳq

+
∑
m∈M

rmλm ≥ dT , ∀t ∈ T,∑
p∈P

α(i)
p xp +

∑
q∈Q

β(i)
q ȳq +

∑
m∈M

rmλm ≤ ti,

ȳ = (ȳ1, ȳ2, . . . , ȳi) ≥ 0,

xp = (x1, x2, . . . , xp) = 1,

γn = (γ1, γ2, . . . , γn) = 1,

λm = (λ1, λ2, . . . , λm) = 1,

ti = (t1, t2, . . . , ti) = 1.

(51)

Next, a formulation of the Inner Optimization Problem
or P (ti, γ, λ,Q, x, ȳ), where the formulation is a separate
model containing only continuous decision variables ti, γn,
λm, Qqw, and xp. If the model includes discrete decision
variables simultaneously, then suppose the discrete decision
variables are equal to one so that the following formulation
is obtained:

min
ti

fi(t) = ti,∀i = 1, 2, ...,m,

s.t.:
∑
n∈N

Hznγn =
∑
p∈P

Pzpxp, ∀z ∈ Z,∑
m∈M

Rwmλm =
∑
q∈Q

bqTQqw,∀w ∈W, t ∈ T,∑
p∈P

Clpxp ≥ bl, ∀l ∈ L,∑
m∈M

Rwmλm =
∑
q∈Q

βqQqw, ∀w ∈W,

fj (t) = f∗j , j = 1, 2, . . . , (m− 1) ,

xp = (x1, x2, . . . , xp) ≥ 0,

γn = (γ1, γ2, . . . , γn) ≥ 0,

λm = (λ1, λ2, . . . , λm) ≥ 0,

Qqw = (Q1, Q2, . . . , Qi) ≥ 0,

ti unrestricted,

(52)

with αi ∈ Qp+, ā ∈ Qp, h ∈ Rn, r ∈ Rm, d ∈ QV , H ∈
Rz×n, P ∈ Rz×p, R ∈ Rw×m, b ∈ Qq×V , C ∈ Ql×p,
b ∈ Ql, βi ∈ Qq+, Q ∈ Rq×w, x ∈ Rp, ti ∈ R, γ ∈ Rn,
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λ ∈ Rm, ȳ ∈ Nq . See that P (ȳ, t, γ, λ, x) model in (52)
is a model to be duplicated with a dual variable σ, π, τ ,
µ, for each constraint. The dual result of the model is called
Dual Subproblem or S(σ, π, τ, µ, θ|ȳ) the result of the second
decomposition, which is formulated as follows:

max
τ,θ

τlbl + θjf
∗
j , ∀l ∈ L, j ∈ J,

s.t.: −
∑
p∈P

Pzpτp +
∑
p∈P

Clpτp ≤ 0,∑
n∈N

Hznσn ≤ 0,∑
m∈M

Rwmπm +
∑
m∈M

Rwmµm ≤ 0,

−
∑
q∈Q

bqTπqw −
∑
q∈Q

βqµqw ≤ 0,

(fj(t)) θj = 1, j = 1, 2, . . . , (m− 1),

τp = (τ1, τ2, . . . , τp) ≥ 0,

τl = (τ1, τ2, . . . , τl) ≥ 0,

σn, πqw, πm, µqw, µm, and θj unrestricted.

(53)

The next step is to determine the Benders Cut
obtained directly from the formulation objective function
S(σ, π, τ, µ, θ|ȳ) in (53). Benders Cut is a new constraint
added to the Relaxed Master Problem or M (ȳ,m = 0), so
as that produces a Full Master Problem or M(ȳ,m) as the
result of the first decomposition. Benders Cut is formulated
as follows:

τlbl + θjf
∗
j ≤ m, ∀l ∈ L, j ∈ J, (54)

with bl and f∗j are parameters, τj a dual variable, and
an unknown number. Furthermore, the formulation of the
Full Master Problem or M(ȳ,m) as the result of the first
decomposition is as follows:

min m,

s.t.:
∑
p∈P

āpxp +
∑
n∈N

hnγn +
∑
q∈Q

bqT ȳq

+
∑
m∈M

rmλm ≥ dT ,∑
p∈P

α(i)
p xp +

∑
q∈Q

β(i)
q ȳq +

∑
m∈M

rmλm ≤ ti,

ȳ = (ȳ1, ȳ2, . . . , ȳi) ≥ 0,

xp = (x1, x2, . . . , xp) = 1,

γn = (γ1, γ2, . . . , γn) = 1,

λm = (λ1, λ2, . . . , λm) = 1,

t1 = (t1, t2, . . . , ti) = 1.

(55)

Thus, the implementing Benders Decomposition Method
is done. The Benders Decomposition method is said to
be successful if it can be applied to the model so that it
is partitioned into two parts: the Dual Subproblem Model
(the result of the first decomposition) and the Full Master
Problem Model (the result of the second decomposition).
The two decomposition results must produce an optimal
and computationally tractable solution using the ARC
methodology.

V. CONCLUSIONS

The Adjustable Robust Counterpart (ARC) optimization
model for multi-objective integer programming problems
with a polyhedral uncertainty set can be effectively
solved using the Benders Decomposition Method. This is
justified by the inherent two-stage structure of the ARC
frameworkcomprising the here-and-now (first-stage) and
wait-and-see (second-stage) decisionsand the mixed nature
of variables (integer and continuous), which aligns well with
the decomposition principles of Benders methodology. The
convexity analysis conducted on the feasible set, objective
functions, and constraints confirms that the local optimal
solution obtained from the ARC model is also globally
optimal, ensuring solution reliability under uncertainty.

For future research, the integration of machine learning
techniques presents a promising direction for enhancing the
tractability of ARC models. As demonstrated by Lee et
al. [36], machine learning can be employed to estimate
uncertainty sets and accelerate the solution process for
robust mixed-integer linear programs. Additionally, dynamic
programming approachessuch as those discussed by Shapiro
[37] may offer alternative strategies for solving ARC models,
particularly in high-dimensional or stage-dependent problem
structures.
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