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Abstract—Hyperspectral sparse unmixing is a method for

unmixing hyperspectral data by utilizing a vast spectral library
as prior information. However, the large size of spectral
libraries in sparse unmixing leads to several challenges,
including high computational costs and unmixing errors caused
by hyperspectral noise, which hinder fast and accurate data
unmixing. To address these issues, this paper proposes a sparse
unmixing method based on spectral library pruning and
adaptive total variation constraint (PSU-ATV). The method
employs an interactive learning strategy between the
abundance matrix and the spectral library to perform multiple
rounds of spectral library pruning, retaining spectral
signatures with higher likelihood. This approach significantly
reduces computational complexity and improves unmixing
speed. Additionally, to enhance robustness and mitigate the
impact of hyperspectral noise on spectral pruning, an
ATV-based denoising term is introduced to improve unmixing
accuracy. Simulation and real-data experiments demonstrate
that the proposed method achieves superior unmixing accuracy
and computational efficiency compared to several
state-of-the-art methods.

Index Terms—spectral library pruning, adaptive total
variation, sparse unmixing, hyperspectral images

I. INTRODUCTION

N hyperspectral images, mixed pixels—where materials
with distinct spectral characteristics coexist within a single

pixel — result from three primary factors: the spatial
distribution of ground objects, atmospheric mixing effects
during signal propagation, and the intrinsic limitations of
hyperspectral sensors [1]. These mixed pixels substantially
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interfere with subsequent hyperspectral data processing [2].
To decompose mixed pixels into their constituent pure
materials (endmembers) and corresponding proportions
(abundances) [39], researchers [3-5] have developed
numerous unmixing approaches. Notably, sparse unmixing
methods [6] demonstrate superior performance by leveraging
large prior spectral libraries.

Hyperspectral sparse unmixing leverages a large spectral
library as prior knowledge and incorporates various
constraint terms [7]. By applying sparse regression [8] to the
abundance matrix, it estimates endmember information and
the corresponding fractional abundances. As a classical
sparse unmixing method, SUnSAL [9] has significantly
advanced subsequent research. It utilizes 240 randomly
selected endmembers from the U.S. Geological Survey
(USGS) [10] spectral library as the dataset, solving the
unmixing problem through sparsity and non-negativity
constraints. Since SUnSAL relies solely on the L1-norm for
unmixing, its performance is suboptimal. Consequently,
many researchers [11-14] have proposed improvements,
introducing various sparse unmixing methods based on L1/2
[12], L2 [13], and Lp [14] norms. Considering the spatial
characteristics of hyperspectral data, Iordache [15] enhanced
the SUnSAL method and proposed SUnSAL-TV, which is a
sparse unmixing method incorporating total variation (TV)
spatial regularization. Subsequently, researchers have
proposed TV-regularized sparse unmixing methods [16-18]
based on L1/2, L2, and Lp norms. In addition to
regularization terms, many scholars [19-21] have
incorporated weighting factors into the sparse terms (e.g.,
spectral weighting [19], spatial weighting [20], and
spatial-spectral weighting [21]) to further improve unmixing
accuracy. Xu et al. [22, 38] proposed the SU-ATV model,
which enhances the TV term to adaptively adjust the ratio of
horizontal and vertical differences in spatial total variation.
This was based on the observation that different regions of
the abundance matrix exhibit distinct texture characteristics
[23]. The approach achieved better denoising and improved
unmixing accuracy. Extending this work, Ma et al. [24]
introduced a spectral weighting factor in the sparse term,
resulting in the WSU-ATV model, which further improved
accuracy. Xu et al. [40] combined low-rank characteristics
with an adaptive total variation term to propose the
ATVLRSU model. Shen et al. [25] proposed a local and
global sparse unmixing method (LGSU), incorporating a
superpixel-based local sparse regularization to improve
performance. Furthermore, Shen et al. [26] proposed the
layered sparse regression unmixing (LSU) method, which
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decomposes the sparse regression process into multiple
layers. This refines the spectral library atoms while
promoting sparse regression of the abundance matrix.

The aforementioned methods have successfully applied
sparse unmixing techniques to hyperspectral data, achieving
effective results. However, these approaches still face several
limitations:
1) High computational cost: Sparse unmixing requires

selecting a small subset of materials from spectral
libraries containing hundreds or thousands of entries.
Although additional constraints can improve
performance, they inevitably increase computational
complexity.

2) Low robustness under noise: In low signal-to-noise ratio
(SNR) scenarios, hyperspectral unmixing becomes
highly sensitive to noise, degrading algorithm
performance. The high coherence of spectra in large
libraries further exacerbates this issue, leading to
inaccurate abundance estimation.

3) Lack of mutual learning capability: Conventional sparse
unmixing methods rely on static spectral libraries and
focus solely on optimizing the abundance matrix through
constraints, neglecting the potential to refine the spectral
library based on abundance matrix feedback.

To address these challenges, we propose a hyperspectral
sparse unmixing method combining spectral library pruning
and adaptive total variation (ATV) regularization. Our key
contributions include:
1) Spectral library pruning for efficiency: By analyzing the

abundance matrix through deep learning, we identify
significant abundance rows and iteratively prune the
spectral library. This reduces its size while improving
accuracy, significantly accelerating the unmixing
process.

2) Denoising for reliable pruning: The abundance matrix's
reliability directly affects spectral library pruning
accuracy. However, under low SNR conditions, noise
corrupts the matrix. To mitigate this, we introduce two
enhancements: First, neighborhood-weighted averaging
is applied to the abundance matrix prior to learning to
improve denoising. Second, a novel ATV regularization
term adaptively adjusts horizontal and vertical TV
weights based on local texture, further enhancing
denoising further. Together, these steps ensure robust
spectral library pruning.

3) Efficient optimization via ADMM: We solve the
proposed model using the alternating direction method
of multipliers (ADMM), ensuring computational
efficiency.

II. RELATED WORK

Hyperspectral sparse unmixing refers to the problem of
solving the abundance by sparse regression, using a rich
spectral library as prior knowledge. The model is as follows:

, Y AX s. t. 0,X (1)

where M NY denotes hyperspectral data, M LA
denotes spectral library, L NX denotes abundance

matrix, and   M N denotes noise. M denotes the
number of bands, N denotes the number of pixels, and L

denotes the number of pure material spectra included in the
spectral library. 0X denotes a non-negativity constraint
on the abundance matrix X .

Due to the presence of dozens or even hundreds of pure
material spectra in the spectral library A , while the actual
real endmembers are often only a few, the resulting X
becomes very sparse. Therefore, the sparsity of X can be
used as a constraint for the unmixing process. The sparse
characteristics of X can be represented by the expression of

0
X [27], and the unmixing model can be expressed as

follows:
2

0

1
min

2 F


X
Y - AX X , s. t. 0,X (2)

where  is the regularization parameter of the sparse

term
0

X .

However, the solution of the model (2) is challenging.
SUnSAL uses the

1
X approximation to represent

0
X ,

which is modelled as follows:
2

1

1
min

2 F
 

X
Y AX X , s. t. 0.X (3)

Subsequently, Iordache improved SUnSAL by proposing
the SUnSAL-TV [15], which enhances the unmixing
accuracy by incorporating a TV regularization term to the
abundance matrix. The model is as follows:

 2

1,1

1
min

2 TVF
TV   

X
Y AX X X , s. t. 0,X (4)

where TV is the regularisation parameter of  TV X ,

  1
,1

2 ,1
g

g

TV
 

     

X
X X

X
, 1 X and 2 X are

the horizontal and vertical differences of the abundance
matrix, respectively. The number of paradigms g is usually
defined as 1 or 2.

III. PROPOSED METHOD

A. Spectral Library Pruning
Sparse unmixing algorithms can significantly improve

unmixing accuracy [28]. However, reliance on a large
spectral library as a prior leads to huge amounts of data to be
processed, resulting in excessively high computational costs.
Therefore, this section focuses on spectral library
streamlineing to improve computational efficiency while
maintaining algorithm correctness and enhancing accuracy.

During sparse unmixing, each spectrum in the spectral
library corresponds to a unique row in the abundance matrix.
Through algorithm iterations, constraint application, and
decorrelation, the algorithm ultimately generates a sparse
abundance matrix. Rows with significant non-zero values in
the abundance matrix correspond to actual endmembers in
the spectral library, whereas near-zero rows represent noise
or redundant spectra. Typically, the number of redundant
spectra is tens or even hundreds of times that of actual
endmembers [29], and these excess spectra significantly
increase computational costs. To reduce redundant spectra in
the library, we divide the unmixing process into multiple
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stages and iteratively prune the library, retaining only the
most probable spectra. This reduces the library's size and
improves unmixing efficiency.

Before pruning the spectral library, it is necessary to assess
the sparsity of each row in the abundance matrix. The row
sparsity of the abundance matrix X can be measured by the
sum of the absolute values of each row's elements [30], with
smaller sums indicating greater sparsity. The row sparsity of
the abundance matrix can be obtained using the following
formula:

,t t t N M X X I (5)

where p N
t

X denotes the abundance matrix after the
t-th spectral pruning, and the pruned spectral library contains
p spectra. 1p

t
M is a column vector of p rows, and each

member in the vector is used to save the sparsity of each row
in the tX . 1N

N
I is a unit vector of N rows.

In order to filter out the more likely substance spectra, we
sort the weight values in tM , eliminate the corresponding
rows of the abundance matrix and the corresponding
substance spectra in the spectral library with very small or
zero weights, and keep only the ones with larger weights as
candidate endmembers, thus effectively pruning the spectral
library. The above pruning process performs well under high
SNR conditions. However, when dealing with hyperspectral
data that has low SNR, spectral pruning becomes much more
challenging. In the unmixing process of high-noise
hyperspectral data, the abundance matrix is often affected by
substantial noise interference, and the accuracy of the
abundance matrix in the unmixing plays a crucial role in the
success of spectral library pruning. Excessive noise
interference can lead to incorrect pruning, which may have
serious consequences for subsequent unmixing processes. To
address these issues, this paper applies a
neighborhood-weighted averaging method [31] for denoising
the abundance matrix before assessing its sparsity, ensuring
the accuracy of the sparse vector. In this paper, a new
abundance reference matrix p N

t
E after applying the

neighborhood-weighted averaging to tX is added to replace
the original abundance matrix in order to take a more
accurate abundance sparsity. The size of this matrix remains
the same as tX . It is assumed that the value of an element

in tE is jointly determined by the value of an element in tX
and its neighbourhood weight. The neighbourhood weights
are defined as follows:

   2 21 ,ijD a b c d    (6)

ijD denotes the neighbourhood distance weight between

matrix centroid i (a, c) and neighbourhood point j (b, d)
denotes the neighbourhood weight of matrix centroid i with
coordinates (a, c) and neighbourhood point j with coordinates
(b, d). The larger the difference between their coordinates,
the smaller the value of the neighbourhood weight, and the
weaker the effect on the centroid.

( ) ( ) ( )
( ) ,h ij ij h h hh ij h ij

f x D x D  
  (7)

where  ij denotes the set of neighbours of ijx .

( ) ( )h ij ijf x denotes the weighted average of the centroid

( , )x i j in its neighbourhood  h ij . Thus, the

abundance reference matrix after the t-th pruning is obtained
as:

11, 1 ,

,

1, ,

( ) 11, ( ) 1 ,

( ) ,

( ) 1, ( ) ,

            

( ) ( )
( ) .

( ) ( )

t n t

t ij t

m t mn t

h ij t h ij n t

h ij ij t

h ij m t h ij mn t

e e
e

e e

f x f x
f x

f x f x

 



 

 
   
  

 
 
 
  

E


 



 



(8)

Then use Eq. (5) to compute the row sparsity vectors of tE

.t t t N M E E I (9)
The sparse vectors obtained after denoising using Eq. (9)

are more accurate. Each value in tM denotes the sparse

weight of the row corresponding to it in tX and the spectral

weight of the column corresponding to it in tA . By sorting

the values in tM , the abundance and spectral libraries were
screened down. Spectra with small or zero weights can be
eliminated and not subsequently retained in the spectral
library.

Fig. 1 shows the unmixing results of the proposed method
with and without abundance denoising at 20 dB. In the
abundance map, the horizontal axis represents hyperspectral
image pixels, and the vertical axis corresponds to the
endmembers in the spectral library. In the endmember map,
the horizontal axis denotes the endmembers in the spectral
library, and the vertical axis represents the band information
of the hyperspectral image. It can be observed that the
unmixing result without abundance denoising contains an
erroneous abundance row, and the corresponding endmember
spectrum also exhibits a spurious signature (the differential
information is marked with a red box in the figure). In
contrast, the unmixing result with abundance denoising
closely matches the true values. This indicates that the
unmixing performance with abundance denoising is indeed
significantly better than that without abundance denoising.

B. Hyperspectral sparse unmixing
Pruning the spectral library can effectively accelerate

computational efficiency. However, in hyperspectral data
with severe noise, merely applying abundance denoising is
insufficient. To address this, we propose a hyperspectral
sparse unmixing method based on spectral library pruning
and adaptive total variation (ATV) constraints. This method
jointly leverages the spatial and spectral information of
hyperspectral data, simultaneously performing denoising and
unmixing, thereby more effectively ensuring the pruning of
the spectral library in sparse unmixing. The optimization
model for each pruning step is as follows:
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Fig. 1. Unmixing results of the proposed method with and without abundance denoising in the 20 dB.

 2

1,1 2,1

1min
2t

t t t TV t tF
    

X
Y A X X B X ,

s. t. 0,X (9)
where t denotes the number of times the spectral library is
pruned. M p

t
A denotes the spectral library after the t-th

pruning. p N
t

X denotes the abundance matrix after the
t-th pruning. p is the number of pure substances of the
spectral library after pruning, and its initial value is L.

 1 2
T

t t t   X X X is the abundance total variation

term, and 1 t X and 2 t X are the horizontal and vertical
differences of the abundance matrix, respectively. In Eq. (4),
the total variation (TV) regularization term fixes the ratio of
horizontal to vertical differences, which restricts the ability to
process horizontal differences and vertical differences
differently in images with different spatial structures, and
thus does not give full play to the denoising efficacy of the
abundance total variation. Therefore, this paper introduces an
adaptive adjustment matrix tB , which can dynamically
adjust the ratio of horizontal and vertical differences
according to the varying structural characteristics of different
regions, so it can denoise more effectively in the unmixing
and arrive at better results. The expression for tB is as
follows:

 
 

2
ˆ 1

1,

2
2,

ˆ 2

1/ 1

1/ 1

t
t

t
t

t

diag diag
r Gb

b r G





 

     
   
    

 

B
X

X
，(10)

where  diag  denotes the diagonal matrix. r is a tuning

parameter, ˆG


defines a Gaussian convolution with

standard deviation ̂ and is the convolution symbol.

C. Model Optimisation and Solution
A collation of Eq. (9) can be obtained:

   

2

1,1

2,1

1min
2

_ .

t
t t tF

TV t t ti R



 

  

 

X
Y A X X

B X X
(11)

The ADMM method was used to solve for Eq. (11) and
obtained:

Let
 

 

2
1, 1,1

4, 5,2,1

1
2

_ ,

t t t tF

TV t t

g

i R



 

   



V Y A U V

V V
(12)

where 1, 2, 3, 4, 5,,  [ , , , , ],  t t t t t t t t U X V V V V V V

1, 2, 3, 2, 4, 3,,  ,  ,  ,  t t t t t t t t t    V U V U V V V B V

5, .t tV U
Simplify to get the following equation:

 min
t t

tg
U ,V

V , s. t. ,t t tRU Z V (13)

where

 
 
 
 
 
 
  

I
I

R 0
0
I

t

t

 
 
 
  
  
  

I 0 0 0 0
0 I 0 0 0

Z 0 I 0 0
B0 0 I 0

0 0 0 I0

.

Solving Eq. (13) by the Lagrange multiplier method can be
obtained:

   
2

min min

,
2

t t t t t t
t t t t

t t t t F

g



 

 

U ,V ,D U ,V ,D
U ,V ,D V

RU Z V D
(14)

where   0 denotes the regularisation parameter

and 1 2 3 4 5, , , ,t ,t ,t ,t ,t ,t   D D D D D D denotes the

estimated deviation between the Lagrange multiplier and the
correct value.

Solve for tU :

21 arg min
1
2t

k
t t t F
    

U
U Y A U

 2 2

1, 1, 2, 2,2
k k k k

t t t t t tF F


    U V D U V D

2

5, 5, .k k
t t t F

  U V D (15)

can be obtained by solving:
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  


11
1, 1,

2, 2, 5, 5,

3 ( )

( ) ( ) .

k k k
t t t t t t

k k k k
t t t t

 
    

    

T TU A A I A Y V D

V D V D
(16)

Solve for 1,tV :

,

21 1
1, 1, 1, 1,1,1

arg min .
2t

k k k
t t t t t F

      
 1V

V V U V D

(17)
The solution is obtained:

1 1
1, 1,tsoft , .k k k
t t




  
  

 
V U D (18)

Solve for 2,tV :

2,

21
2, 2,1

2, 2

2, 3, 3,

D
arg min .

t

k k
t t t Fk

t
k k

t t t F




          

V

U V
V

V V D
(19)

The solution can be obtained:

  
 

1
2, 3, 3,1 1

2, .
k k k k
t t t tk

t

F div
F

F div



 
   
 

  
 

U D V D
V

I
(20)

Solve for 3,tV :

3,

21
2, 3, 3,1

3, 2

3, 4, 4,

D
arg min .

t

k k
t t t Fk

t
k k

t t t t F




          

V

V V
V

B V V D
(21)

The solution can be obtained:


    
   

T1 1 1 1
3, 31, 32, 1 2, 31,

2 1
1, 41, 41, 1, 2 2, 32,

T
2

2, 42, 42, 2,

/ 1   

/ 1

k k k k k
t t t t t

k k k k
t t t t t t

k k
t t t t

b b

b b

   



       

   

   

V V V V D

V D V D

V D ，

(22)

where
T

3, 31, 32, ,k k k
t t t   D D D

T

4, 41, 42, ,k k k
t t t   V V V

T

4, 41, 42, .k k k
t t t   D D D

Solve for 4,tV :

4,

4, 2,11
4, 21

3, 4, 4,

arg min .

2
t

TV t
k
t

k k
t t t t F








  
  

  
 

V

V
V

B V V D
(23)

The solution is obtained:

1 1
4, 3, 4,soft , .k k k TV
t t t t




  
  

 
V B V D (24)

Solve for 5,tV :

 
5,

21 1
5, 5, 5, 5,arg min _ .

2t

k k k
t t t t t F

i R  


     
 V

V V U V D

(25)
The solution is obtained:

 1 1
5, 5,max ,0 .k k k
t t t
  V U D (26)

Solve for tD :

 
 
 
 
 

1 1 1
1, 1, 1,

1 1 1
2, 2, 2,

1 1 1
3, 3, 2, 3,

1 1 1
4, 4, 3, 4,

1 1 1
5, 5, 5,

,

,

,

,

.

k k k k
t t t t

k k k k
t t t t

k k k k
t t t t

k k k k
t t t t t

k k k k
t t t t

  

  

  

  

  

   

   
    


  


  

D D U V

D D U V

D D V V

D D B V V

D D U V

(27)

TABLE I shows the flow of PSU-ATV , the first step
requires the input of regularisation parameters and initial
values of variables. t and k are the pruning count variable
and the iteration count variable, both of which have an initial
value of 0. t_max is the maximum number of prunings and
p_min is the minimum number of pure substances retained

by pruning of the spectral library, which needs to be judged at
each spectral pruning. p_min is generally set to the number
of true endmembers. The second step is the core of the
algorithm. First of all, using the ADMM method [32] to solve
the solution variable iteratively. It should be noted that in
order to ensure the stability of the algorithm, we update tB
every bi iterations, not every iteration. Similarly, in pruning
the spectral library, we prune the spectral library once after

ai iterations instead of pruning the spectral library every

iteration. This procedure sets bi = 50 and ai =80.

Address records the index of the tM vector before the
descending ordering, which is likewise the index of the
position of each single substance in the spectral library

tA before the ordering, and the index of the position of the
corresponding abundance of each single substance in the
abundance matrix k

tU before the ordering. We eliminate
some of the single substances that have very small or zero
sparsity after descending ordering for the purpose of spectral
library construction. The pruning progress q indicates the
magnitude of each spectral library pruning, the larger q is,

the faster the pruning is, and 2q  is taken in this paper.

TABLE I
The pseudocode of PSU-ATV

Algorithm 1: PSU-ATV algorithm
1. Input:  ,  ,   ,  TV p_min t_max  .

Initialization：set    10
0 0 0 03


 T TU A A I A Y ,

0 0 0 0
1 0 2 0 5 0 0  V V V U， ， ， , 0 0

3 0 2,0 V V， , 0 0
4 0 3,0V BV， ,

0 0 0 0 0 0
0 1,0 2,0 3,0 4,0 5,0, , , ,    D D D D D D 0 ,

0, ,0  kt  20
ˆ1 0 1 01/ 1b r G


   U， ,

 20
ˆ2 0 2 01/ 1 .b r G


   U， ,

2. Repeat
(1) Update variables:
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(a)

  11

1, 1,

2, 2, 5, 5,

3

( )
.

( ) ( )

k
t t t

k k
t t

t k k k k
t t t t





  

   
         

T

T

U A A I

V D
A Y

V D V D

(b) 1 1
1, 1,tsoft , .k k k
t t




  
  

 
V U D

(c)


   

1 1 1
2, 2,

3, 3, .

k k k
t t t

k k
t t

F F

div F div

    
   

V U D

V D I

(d)


   

  
 

T1 1 1 1
3, 31, 32, 1 2,

2
31, 1, 41, 41, 1,

1
2 2, 32, 2, 42, 42,

T2
2,

/ 1

  /

1

k k k k
t t t t

k k k
t t t t t

k k k k
t t t t t

t

b b

b

b

   



      

  

   

 

V V V V

D V D

V D V D

，

，

(e) 1 1
4, 3, 4,soft , .k k k TV
t t t t




  
  

 
V B V D

(f)  1 1
5, 5,max ,0 .k k k
t t t
  V U D

(2) Update Lagrangian operator:

(g)  1 1 1
1, 1, 1, .k k k k
t t t t
    D D U V

(h)  1 1 1
2, 2, 2, .k k k k
t t t t
    D D U V

(i)  1 1 1
3, 3, 2, 3, .k k k k
t t t t
     D D V V

(j)  1 1 1
4, 4, 3, 4, .k k k k
t t t t t
    D D B V V

(k)  1 1 1
5, 5, 5, .k k k k
t t t t
    D D U V

(3) Replacement of variables.
(l) If % 0bk i  , then

(l1)  2
ˆ1, 11/ 1 ,k

t tb r G


   U

 2
ˆ2, 21/ 1 k

t tb r G


   U .

(4) Spectral library pruning
(m) If % 0ak i  and p_minp  and

t_maxt  then

(m1)
11, 1 ,

,

1, ,

t n t

t ij t

m t mn t

e e
e

e e

 
   
  

E


 


where

( )
, ( )

( )

( ) .
h hh ij

ij t h ij ij
hh ij

D x
e f x

D






 



(m2) .t t t N M E E I
(m3) Sort the tM vector in descending order and record

the index before the sort Address .

(m4) If p_minqp /
p_minp 

Else If p_minqp /
)/( qpceilp 

(m5) Pruning Spectral Library ,

   ( .:, )1:t Address p end A
(m6) Synchronised abundance matric

   1( ),: .:k
t Address p end U

(m7) Updated pruning frequency 1.t t 
(5) Update iterations: 1.k k 

3. Until a certain stopping condition is met.
4. Output: tA， .tU

D. Parameter Setting
The  value is updated once after every ten iterations.

When the dual residuals
21 1 1

2

k k k
t t t
  RU Z V (DR) is

much larger than the primal residua
21 1

2

k k k k
t t t t
  Z V Z V

(PR) (e.g., DR > 10PR), the Lagrange multiplier penalty
factor should be increased to reduce the deviation value
(e.g., 2  , 1 / 2t t D D ). On the contrary, when PR is
much larger than PR (e.g. PR>10DR), the Lagrange
multiplier penalty factor should be appropriately reduced to
increase the deviation (e.g. / 2  , 1 2t t D D ).

The maximum number of prunings t_max is related to
the number of pure substances in the original spectral library
L and the minimum number of pure substances  p_min ,
which is determined by the following equation:

1 1/
__ 1 log .q
p mint max round
L

   
 

(28)

E. Convergence

Fig. 2. Plot of iterations versus residuals for PSU_ATV

Fig. 2 is a plot of the
2

2

k k k
t t tRU Z V as a function of

residuals versus iterations for unmixing DC2 using the
PSU_WATV at 20 dB. The algorithm outputs a residual
value every 5 times for a total of 100 values, where the
spectral library is pruned at the 16th, 32nd, 48th, and 80th.
Inevitably, the residuals are disturbed at each spectral library
pruning, and thus the curve jumps at these locations in the
residual plots. However, as the number of iterations increases,
the curve jumps are gradually weakened, and the overall
trend is reduced, and finally smoothed down. It can be
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indirectly illustrated from the figure that the method has good
convergence and stability.

IV. EXPERIMENTS

In this section, we conduct two simulated data experiments
and one real data experiment to evaluate the effectiveness of
our proposed method. We compare our method with several
currently popular methods, including SUnSAL, SUnSAL-TV,
S2WSU, SU-ATV, LGSU, LSU and ATVLRSU. To ensure
fairness, all algorithms are implemented on a PC with an Intel
Core i7-10510U CPU and 32GB of RAM, using MATLAB
R2016a for computation.

A. Experiments with Simulated Data
We utilise three metrics, the Probability of Success (ps)

[33]， the Signal Reconstruction Error (SRE) [34] and Root
Mean Square Error (RMSE)[26], to evaluate the performance
of the algorithms. Let x represent the real abundance and x̂
is the estimated abundance, the expressions for ps , SRE and
RMSE are given in equations (29), (30) and (31).

    2 2

2 2
ˆSRE(dB) 10 lg E E ,  x x x (29)

where E(•) represents the expected function. The unit of SRE
is dB. A larger SRE value indicates smaller errors,
demonstrating better unmixing performance.

  2 2ˆps P threshold  x x x ， (30)

where ps denotes the probability that the abundance error
rate is less than the threshold. A larger value of ps
indicates a higher probability of correctness, resulting in a
better unmixing outcome.

 2

2
ˆRMSE L N  x x ， (31)

where RMSE defines the error between the measured
value and the true value. The smaller the RMSE value is,
the smaller the error is, indicating that the unmixing
results are obtained with smaller error and better effect.

In the simulation data experiments, we use the dataset
224*240A for our experiments. This dataset consists of

240 randomly selected spectral signatures of different
mineral types from the United States Geological Survey
(USGS) spectral library [35]. Each spectral signature in the
dataset contains 224 bands ranging from 0.4μm to 2.5μm. We
conduct two simulation data experiments to evaluate the
effectiveness of the proposed method.
1) DC1 is the first hyperspectral dataset, constructed

through a linear combination of five different mineral
spectra randomly selected from the dataset A and their
corresponding varying abundances.The abundance
matrix of the five minerals consists of non-negative
elements arranged in a 75×75 pixel format. The
abundance map is shown in Fig. 3. By adding Gaussian
white noise with SNR of 10 dB, 20 dB, and 30 dB to the
noise-free DC1, three different noisy versions of DC1
data are created, and used to simulate the hyperspectral
data in the noisy case.

2) DC2 is the second hyperspectral dataset, created from a
real scene simulation. It is formed by a linear
combination of nine randomly selected spectral
signatures of different minerals from the dataset A and
their corresponding abundances. The mineral abundance
matrix consists of non-negative elements arranged in a
100×100 pixel format. The abundance map is shown in
Fig. 4. Similar to DC1, we create three noisy simulated
datasets with SNR of 10 dB, 20 dB, and 30 dB.

(1) Experimental Programme

The PSU-ATV utilizes a spectral library A containing
spectra of 240 different mineral types for unmixing. The
number of endmembers in DC1 and DC2 is 5 and 9,
respectively. According to equation (28), the maximum
pruning iterations for DC1 and DC2 are estimated to be 6 and
5. In order to examine the unmixing effect of spectral pruning
numbers, we pruned and unmixed DC1 and DC2 using
different pruning numbers and analysed the PSU-ATV by
observing the algorithm's unmixing time, SRE, ps and RMSE
values. To ensure fairness, we set the number of iterations for
each pruning to 50, and the number of iterations for unmixing
after the final pruning is uniformly set to 200, and the specific
settings and unmixing results are shown in TABLE II.

Fig. 3. True abundance map of DC1
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Fig. 4. True abundance map of DC2

(a)Running time (b)SRE (c)ps (d)RMSE
Fig. 5. Runtime, SRE, ps and RMSE of DC1 and DC2 using the PSU-ATV at 20 dB under different pruning numbers.

In TABLE II, the columns of the iteration number are a
string consisting of numbers and the character ”+”. The
number of ‘+’ indicates the number of pruning, the number of
iterations before pruning is uniformly set to 50, and the
number of iterations for unmixing after the last pruning is
uniformly set to 200. We observe that as the number of
pruning iterations increases, the unmixing speed improves,
and the unmixing results become better.

To facilitate observation, we plot the different pruning
iterations versus the running time, SRE, ps and RMSE for
comparison, as shown in Fig. 5. In Fig. 5(a), it is evident that
the time required for unmixing decreases rapidly as the
pruning numbers increase. DC1 and DC2 have the shortest
running times at the maximum pruning numbers. The
maximum pruning numbers are 6 and 5, respectively. In Fig.
5(b), the SRE values show little change or a slight decrease
with insufficient pruning iterations. However, with enough
pruning iterations, the SRE values significantly improve.
This indicates that inadequate pruning iterations do not
enhance unmixing performance, while sufficient pruning
iterations can effectively increase unmixing accuracy. In Fig.

5(c), the ps values for DC1 are relatively high, and there is
little change as pruning iterations increase. Conversely, at
insufficient pruning, ps values for DC2 are low and not very
variable, but ps values increased significantly after enough
spectral library pruning. This suggests that increasing
pruning numbers can raise ps values when ps values are
initially low, but when the ps value reaches a high level, the
ps value does not change much with an increase in the
pruning numbers. In Fig. 5(d), the RMSE value fluctuates up
and down when the pruning iteration is insufficient, but as the
pruning iteration increases the RMSE value is significantly
reduced (the smaller the RMSE value, the better the
unmixing effect). This shows that insufficient pruning
iteration cannot improve the unmixing performance, while
sufficient pruning iteration can improve the unmixing
accuracy.

This experiment demonstrates that for DC1 and DC2, with
enough pruning iterations, the PSU-ATV achieves optimal
running efficiency and computational accuracy. Therefore, in
subsequent experiments, we set the pruning iterations to their
maximum values 6 for DC1 and 5 for DC2.
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TABLE II.
Unmixing results of DC2 estimated by PSU-ATV in the 20dB under different pruning numbers

DC1 DC2
Pruning
numbers Iteration number Running time

(sec) SRE ps RMSE Iteration number Running time
(sec) SRE ps RMSE

0 200 166.4472 15.3823 0.9936 0.0050 200 97.0159 9.6231 0.8897 0.0155
1 50+200 103.6268 15.2743 0.9932 0.0052 50+200 84.0850 9.6776 0.8877 0.0152
2 50+50+200 72.7588 15.2120 0.9934 0.0051 50+50+200 72.8832 9.2744 0.8730 0.0163
3 50+50+50+200 52.4766 15.2244 0.9927 0.0053 50+50+50+200 61.5767 10.0852 0.9001 0.0146
4 50+50+50+50+200 50.2239 15.2930 0.9943 0.0046 50+50+50+50+200 56.7302 10.2129 0.9034 0.0140
5 50+50+50+50+50+200 42.4606 16.7784 0.9996 0.0045 50+50+50+50+50+200 54.8842 11.3009 0.9377 0.0134
6 50+50+50+50+50+50+200 38.0384 17.8112 0.9993 0.0044

TABLE III.
The unmixing results of DC2 estimated by PSU-ATV at 20 dB under different iteration numbers

Iteration numbers
before pruning

DC1 DC2
Iteration
numbers

Running time
(sec) SRE ps RMSE Iteration numbers Running time

(sec) SRE ps RMSE

100 100*6+200 75.1005 17.8112 0.9993 0.0044 100*5+200 98.5671 11.3009 0.9377 0.0134
90 90*6+200 69.2317 17.8112 0.9993 0.0044 90*5+200 87.8088 11.3009 0.9377 0.0134
80 80*6+200 61.2970 17.8112 0.9993 0.0044 80*5+200 78.6829 11.3009 0.9377 0.0134
70 70*6+200 54.0475 17.8112 0.9993 0.0044 70*5+200 69.0338 11.3009 0.9377 0.0134
60 60*6+200 47.3170 17.8112 0.9993 0.0044 60*5+200 62.2848 11.3009 0.9377 0.0134
50 50*6+200 38.0384 17.8112 0.9993 0.0044 50*5+200 54.8842 11.3009 0.9377 0.0134
40 40*6+200 28.5416 17.8112 0.9993 0.0044 40*5+200 42.8064 11.3009 0.9377 0.0134
30 30*6+200 25.2175 17.8112 0.9993 0.0044 30*5+200 31.9655 11.3009 0.9377 0.0134
20 20*6+200 18.2001 14.9159 0.9767 0.0063 20*5+200 26.4917 11.3009 0.9377 0.0134
10 10*6+200 11.6944 11.2047 0.9643 0.0097 10*5+200 13.7126 11.3009 0.9377 0.0134
5 5*6+200 8.1693 -1.3676 0.0268 0.0397 5*5+200 10.9011 9.9344 0.8654 0.0196

TABLE IV.
Unmixing results of DC1 and DC2 under different SNR

Algorithms DC1 DC2
10db 20db 30db 10db 20db 30db

SUnSAL (2011)
SRE 0.1891 3.0382 6.153 1.6613 4.195 8.3632
ps 0 0.109 0.819 0.2927 0.5559 0.7921

RMSE 0.0364 0.0253 0.0171 0.0407 0.0304 0.0185

SUnSAL-TV (2012)
SRE 5.8212 9.9123 16.677 3.8530 6.2273 11.4819
ps 0.8100 0.973 0.996 0.5147 0.6463 0.9505

RMSE 0.0177 0.0128 0.0075 0.0317 0.0239 0.0129

S2WSU (2018)
SRE 2.4093 5.6022 16.247 3.2175 7.4758 20.2115
ps 0.137 0.7621 1 0.4790 0.7837 0.9995

RMSE 0.0247 0.0182 0.0062 0.0385 0.0326 0.005

SU-ATV (2021)
SRE 8.5248 16.0722 22.9589 4.0348 9.7841 15.6295
ps 0.8868 0.9929 1 0.5236 0.8896 0.9946

RMSE 0.0128 0.0058 0.0034 0.0292 0.0163 0.0088

LGSU (2022)
SRE 0.7619 5.3886 11.619 1.7391 6.9651 17.5631
ps 0.0630 0.7740 0.9977 0.3307 0.7453 0.9958

RMSE 0.0378 0.0197 0.0087 0.0399 0.0217 0.0079

LSU (2023)
SRE -0.24 9.41 17.832 2.16 9.000 19.3353
ps 0.25 0.9636 1 0.3699 0.7823 0.9998

RMSE 0.0353 0.0175 0.0044 0.0430 0.0254 0.0044

ATVLRSU (2025)
SRE 9.5410 16.3607 19.9839 5.6688 10.8889 14.3619
ps 0.9627 0.9982 1 0.6194 0.9334 0.9929

RMSE 0.0115 0.0052 0.0037 0.0256 0.014 0.0094

Ours
SRE 11.74 17.8112 24.7507 6.3709 11.3009 22.141
ps 0.9877 0.9993 1 0.6624 0.9377 0.9999

RMSE 0.009 0.0044 0.0033 0.0268 0.0134 0.0043

TABLE V.
Running Time (in seconds) using different algorithms on DC1 and DC2 under 200 Iterations

SUnSAL SUnSAL-TV S2WSU SU-ATV LGSU LSU ATVLRSU Ours
DC1 12.8676 130.3231 44.5532 76.1009 125.6412 114.3873 96.1818 38.0384
DC2 19.2772 229.4359 66.7235 98.0697 199.7575 196.3757 247.272 56.2314
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Fig. 6. Abundance of DC1 estimated by algorithms and the difference maps between estimated abundances and true abundances.
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Fig. 7. Abundance of DC2 estimated by algorithms and the difference maps between estimated abundances and true abundances.

True value SUnSAL SUnSAL-TV S2WSU SU-ATV LGSU LSU ATVLRSU Ours

D
C
1

D
C
2

Fig. 8. Abundance of DC1 and DC2 estimated by each algorithm at 20 dB.

In order to detect the relationship between the iteration
numbers before pruning and the unmixing results, we based
on the above experiments (DC1 pruning 6 times, DC2
pruning 5 times), set the number of iterations before each
pruning to 5 or 10 to 100 with a 10 interval, and set the
number of iterations after pruning unmixing is uniformly set
to 200. The results of the experiment are shown in TABLE
III.

In TABLE III, the columns of the iteration numbers are
strings consisting of numbers, ”*” and ”+”. The number
before ”*” indicates the iteration numbers before pruning (set
to 5 or a number in the range of 10-100 at intervals of 10).
The number after ”*” indicates the pruning numbers. The
number after the ”+” indicates the iteration numbers of
unmixing after the last pruning (set uniformly to 200).

From the results in TABLE III, we observe that for both
DC1 and DC2 experiments, when the iteration numbers
before pruning are between 30 and 100, the unmixing results
are close to the estimated optimal values. This suggests that
the iteration numbers before pruning do not significantly
affect the unmixing results. However, when the iteration
numbers are reduced to 10 or 20, the unmixing results for the
DC1 experiment show serious deviations. In particular, when
the iteration times are 5, there is a huge error in the unmixing
results of the two experimental data. This occurs due to
insufficient iterations leading to learning errors. Through this
experiment, we understand that too few iterations before
pruning can significantly disrupt the unmixing results. To
avoid such errors, we set the iteration numbers before each
pruning to 50. This choice ensures that the unmixing results
remain accurate while greatly enhancing unmixing
efficiency.

In summary, we define the experimental schemes as
follows:

DC1 experimental scheme: pruning number is 6, iteration
number before pruning is 50, and iteration number for
unmixing after pruning is 200.

DC2 experimental scheme: pruning number is 5, iteration
number before pruning is 50, and iteration number for
unmixing after pruning is 200.

(2) Experimental Contents

In the unmixing experiments for DC1 and DC2 using
different methods, we set the iteration numbers for each
algorithm to 200 for fairness (the PSU-ATV uses the
experimental protocol established in the previous section).
TABLE IV presents the unmixing results for the two
simulated datasets. In the table, we use bold to mark the best
values and italic to mark the second best values. From this we
draw the following conclusions:
1) These methods(SUnSAL-TV, SU-ATV, ATVLRSU and

PSU-ATV), which make use of spatial TV regularization
term, are better than several other methods in terms of
unmixing results. Moreover, our proposed PSU-ATV
utilizes both the characteristics of the abundance space
and the self-learning capability of the spectral library,
leading to further improvements in unmixing accuracy.

2) Under high noise conditions (e.g., 10 dB), several
algorithms (SUnSAL, S2WSU, LGSU, LSU) exhibit
poor unmixing results due to severe noise interference,
and even significant unmixing errors occurring (e.g.
SUnSAL, LGSU, and LSU). However, our proposed
PSU-ATV method demonstrates excellent robustness,
attributed to its strong interference suppression
capabilities from the ATV term and the denoising
processes implemented during pruning, far surpassing
other algorithms.

3) In contrast to the layered sparse regression unmixing
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method (LSU), which does not account for the impact of
noise on the spectral library, resulting in poor unmixing
performance under high noise conditions. Our proposed
algorithm exhibits strong resistance to noise interference.
It maintains excellent unmixing performance even in
high noise environments.

Figures 6 and 7 display the abundance estimation results
for two simulated datasets using several algorithms at 20 dB,
as well as the difference map between the unmixing
estimated abundances and the true abundances. The figures
are composed of colors such as red, yellow, green, and blue,
and these different colors represent varying weights (red has
the highest weight of 1 and blue has the lowest weight of 0).
In Fig. 6, the unmixing results for DC1 show that algorithms
exhibit considerable spatial error points, such as SUnSAL,
S2WSU, LGSU, and LSU. In contrast, SUnSAL-TV,
SU-ATV, ATVLRSU and PSU-ATV demonstrate better
spatial unmixing performance. However, analysing these
three better unmixing results from the difference maps, it can
be found that SUnSAL-TV has the largest deviation,
followed by SU-ATV and ATVLRSU, and the proposed
PSU-ATV yields the best performance. In Fig. 7, from the
unmixing results of DC2, it can be seen that several
algorithms are good except for the SUnSAL-TV. However,
the difference maps illustrate that the proposed method has
the smallest error.

Fig. 8 shows the unmixed abundance estimates for the two
simulated data at 20 dB, where the areas with obvious errors
are circled in red box. From the figure, it is evident that
methods such as SUnSAL, SUnSAL-TV, S2WSU, and
LGSU exhibit a high number of anomalous abundances,
indicating poor unmixing performance. In contrast, SU-ATV,
ATVLRSU and the proposed method PSU-ATV show less
abundance error. However, in the unmixing results in the
DC2, SU-ATV and ATVLRSU exhibit some anomalous
abundance values, while the proposed method continues to
perform well. This demonstrates that the proposed method
possesses strong robustness across different hyperspectral
datasets.

Fig. 9. SRE as a function of parameters  and TV for DC1 estimated by

PSU_ATV at 20 dB

To test the stability of the algorithm, this experiment uses
the DC1 data as a reference. Create a 3D plot with SRE near
the regularisation parameters  and TV of the optimal

unmixing result of PSU_ATV, and analyze the influence of
the parameters on the outcome. The definition of  and TV ,
please refer to model (9). Fig. 9 shows the relationship among
the parameters , TV and SRE for DC1 at 20 dB. From the
Fig. 9, it can be observed that the plot is centred on the
optimal regularisation parameter,  and TV the SRE data

shows a slow decreasing trend as and TV are varied. This
indicates that the unmixing results are stable and robust.

TABLE V presents the running time of unmixing using
eight different algorithms under 200 iterations. To ensure
fairness, all algorithms are run on a PC equipped with an Intel
Core i7-10510U CPU and 32 GB of RAM using Matlab
R2016a. In terms of time consumption, SUnSAL is the fastest
algorithm, followed by the proposed algorithm PSU-ATV
and S2WSU. Other algorithms are significantly slower.
However, the PSU-ATV greatly improves unmixing
accuracy (see TABLE IV). Considering both computational
efficiency and algorithm accuracy, the PSU-ATV algorithm,
which sacrifices a bit of time for a substantial increase in
unmixing accuracy, is the best option.

TABLE VI.
Ablation experiments of DC1 and DC2 using PSU-ATV unmixing at 20 dB

 TV B Pruning SRE ps RMSE

DC1

√ × × × 3.0382 0.109 0.0253
√ √ × × 9.9123 0.973 0.0128
√ √ √ × 16.0722 0.9929 0.0058
√ √ √ √ 17.8112 0.9993 0.0044

DC2

√ × × × 4.195 0.5559 0.0304
√ √ × × 6.2273 0.6463 0.0239
√ √ √ × 9.7841 0.8896 0.0163
√ √ √ √ 11.3009 0.9377 0.0134

To evaluate the effectiveness of the various components
(  ,  ,  BTV  and spectral library pruning) of PSU-ATV. We
conducted an ablation experiment on the PSU-ATV using
DC1 and DC2, and the results are shown in TABLE VI. From
TABLE VI, it is evident that adding one or more elements
significantly improves the unmixing accuracy of the
algorithms. Moreover, the algorithm that combines all four
elements yields the most favorable results for both the DC1
and DC2 . This indicates that each element in the algorithm is
important and effective.

B. Experiments with Real Data
Since there is no real abundance value in the real data

experiment, in order to evaluate the effectiveness of the real
data hyperspectral unmixing, we redefine the Signal
Reconstruction Error of real data (SRERD) and the Root Mean
Square Error of real data (RMSERD). A larger SRERD value
indicates smaller errors, demonstrating better unmixing
accuracy. Conversely, a smaller RMSERD value signifies
smaller errors, indicating higher precision in the unmixing
results.

   22
RD 2 2

ˆSRE 10 lg E E .    
 

Y Y AX (32)

 
2

RD 2
ˆRMSE .M N  Y AX (33)
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Fig. 10. Distribution of individual minerals in the Cuprite data for Nevada

In this section we utilize the Cuprite mine data acquired by
the Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) [36] in Nevada in 1995 as real data for our
experiments. Fig. 10 presents the mineral distribution map of
the Cuprite mining area, generated using the Tricorder 3.3
software [37] for the mineral analysis. The real hyperspectral
data consists of 188 bands (after removing 36 noisy bands
from the original 224 bands), with wavelengths ranging from
370 nm to 2480 nm . The spatial and spectral resolution of the
spectral data are 20 m and 10 nm, respectively. The
experimental data is generated by intercepting a 250×191
pixel sized region in the real data. We use the SUnSAL,
SUnSAL-TV, S2WSU, SU-ATV, LGSU, LSU, ATVLRSU
and the proposed method PSU-ATV to unmix the real data.
And then analyze and compare the results to verify the
feasibility of the proposed method.

Based on the references, the estimated number of
endmembers for the real data is 12, with the pruning progress

q set to 2 and the spectral library consisting of 224 bands.
According to equation (28), the maximum iteration number
for the PSU-ATV is calculated to be 5. Based on the
experience of the simulation experiments, the pruning
number is set to 5, the learning and iteration number before
pruning is set to 50, and the iteration number for unmixing
after pruning is set to 200 on the real data experiment.

Fig. 11 presents the optimal abundance maps obtained by
eight different methods (SUnSAL, SUnSAL-TV, S2WSU,
SU-ATV, LGSU, LSU, ATVLRSU and PSU-ATV) through
the adjustment of regularization parameters. The best
regularization parameters for these methods are as follows:
SUnSAL (  = 0.005), SUnSAL-TV (  = 0.02, TV =

0.015), S2WSU ( = 0.41), SU-ATV ( = 0.03, TV = 0.09),

LGSU ( 1 = 0.01, 2 = 0.005), LSU ( = 0.01), ATVLRSU

( = 0.005, TV = 0.15, WT = 0.8) and PSU-ATV ( = 0.01,
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TV = 0.01, r = 0.8).
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Fig. 11. Abundance maps of real data estimated by different algorithms.

In Fig. 11, Due to the large number of endmembers, only
three endmembers with large distinctions for comparison:
Alunite, Buddingtonite and Chalcedony. Abundance values
are indicated using a color gradient from red to blue,
representing values from high to low. The figure shows that
the abundance estimated by the eight algorithms is relatively
close to the true values. However, SUnSAL, SUnSAL-TV,
and LSU exhibit significant discrepancies in the abundance
of Alunite. S2WSU and SU-ATV yield overly smooth
estimates for Chalcedony, and SUnSAL, LGSU, ATVLRSU
and LSU show larger errors for Buddingtonite, while the
proposed method PSU-ATV performs well across all three
endmembers.

TABLE VII
Unmixing results of different methods on real data

Algorithms RMSERD SRERD

SUnSAL 0.0216 19.344
SUnSAL-TV 0.0138 28.337

S2WSU 0.0062 30.132
SU-ATV 0.0054 35.315
LGSU 0.0066 31.764
LSU 0.0056 34.316

ATVLRSU 0.0052 36.431
Ours 0.0046 39.365

Table VII presents the quantitative comparison results
using real hyperspectral data. It is evident that the proposed
algorithm achieves the best values in both RMSERD and
SRERD, demonstrating its significant advantage over multiple
other algorithms.

V. CONCLUSION

This paper proposes a sparse unmixing algorithm based on
spectral library pruning and adaptive total variation
constraint. The method employs a novel error-resistant
pruning technique to streamline the endmember spectral
library, enhancing computational efficiency of unmixing.
Additionally, adaptive total variation regularization is
applied to effectively denoise hyperspectral data, improving
unmixing accuracy. Experimental results on both simulated
and real datasets demonstrate that the proposed method
significantly outperforms other state-of-the-art algorithms in
terms of both computational efficiency and unmixing
precision, particularly under low signal-to-noise ratio
conditions. Future work will focus on model optimization to
further enhance unmixing accuracy.
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