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Abstract—To address the challenges of high computational
cost, suboptimal detection accuracy, and ineffective feature
exploitation in surface defect detection of strip steel, we
propose RAC-YOLO, a lightweight detection model adapted
from YOLOv8n. We design a lightweight feature extraction
module, named RepNCSPELAN4 Context Anchor Attention
Network (RepCAANet), to replace the default backbone of
YOLOv8n, thereby improving gradient flow and significantly
boosting detection performance. The Attention-based Intrascale
Feature Interaction (AIFI) module is then integrated to enhance
feature discriminability and classification accuracy by suppress-
ing irrelevant contextual information. Additionally, we adopt a
lightweight CARAFE (Content-Aware ReAssembly of FEatures)
upsampling module to enrich the representation of defect-
relevant features. Finally, the Minimum Pairwise Distance
Intersection over Union (MPDIoU) loss is introduced, aimed at
optimizing bounding box coordinate predictions and increasing
localization accuracy. Experimental results show that the pro-
posed RAC-YOLO achieves a mean Average Precision (mAP)
of 80.2% on NEU-DET and 70.1% on GC10-DET, representing
improvements of 2.7% and 4.3% over the baseline, respectively,
as well as a 13.5% decrease in FLOPs. This demonstrates that
RAC-YOLO effectively balances high detection accuracy with
low computational overhead.

Index Terms—RAC-YOLO, RepCAANet, AIFI, CARAFE,
MPDIOU, Defect detection.

I. INTRODUCTION

STEEL materials are indispensable in a wide range of
industries, including automotive, defense, machinery,

and chemical engineering. However, during the manufactur-
ing process, steel strips are susceptible to various surface
defects—such as crazing, inclusions, patches, pitting, rolled-
in scale, and scratches—caused by environmental factors,
equipment wear, or process variations. These imperfections
can significantly degrade the intrinsic properties of steel,
compromising its corrosion resistance, wear resistance, fa-
tigue strength, and overall performance [1], thereby short-
ening service life and increasing the risk of safety-critical
failures.

Automated detection of surface defects is critical to en-
suring product quality in manufacturing. Traditional meth-
ods—manual visual inspection and classical machine vi-
sion—often suffer from limited precision, poor repeatability,
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and low scalability [2]. Over the past decade, deep learning
has emerged as a transformative approach, offering fast
inference, high accuracy, and strong robustness, thereby
accelerating its adoption in surface defect detection [3].

Modern deep learning-driven object detection frameworks
can be broadly categorized into two primary paradigms:
two-stage and one-stage architectures. Two-stage approaches,
such as R-CNN [4], Faster R-CNN [5], and Mask R-
CNN [6], achieve superior precision by generating region
proposals, but involve high computational costs, making
them less suitable for real-time applications. In comparison,
one-stage detectors like SSD [7] and YOLO [8] formulate
object detection within a single forward pass, enabling fast
inference and making them more applicable to industrial
deployment. In recent years, vision Transformers such as
DETR [9] have introduced a new paradigm in detection
by exploiting global contextual understanding, exhibiting
competitive results in complex visual recognition tasks [10].

Numerous studies have advanced deep learning for steel
surface defect detection. Gou et al. [11] improved the YOLO
architecture to enhance robustness against detection varia-
tions, whereas Zhao et al. [12] modified the backbone and
proposed a dynamic feature response module to increase de-
tection accuracy. Wu et al. [13] developed Hyper-YOLO by
incorporating the Ghost module to enrich feature representa-
tion capabilities. Lv et al. [14] designed the EDDN network,
an SSD-inspired model tailored for detecting defects across
multiple scales. Zhang et al. [15] integrated the ELAN-C
block and coordinate attention mechanism into YOLOv8
to address defects on aircraft surfaces. Sun et al. [16]
presented an enhanced version of YOLOv10, embedding
C3 Star EMA and MobileOneBlock components to mitigate
background noise and lower computational demands. Chai
et al. [17] proposed DFP-YOLO, utilizing DWR DRB and
FPSConv blocks to improve multi-scale feature learning and
capture long-range contextual dependencies. Gao et al. [18]
designed CMS-YOLOv8s through the integration of the
CBAM attention module to enhance performance in multi-
scale defect localization.

The Transformer architecture, originally developed for
natural language processing, has been increasingly adopted
in computer vision [19]. Its self-attention mechanism enables
global context modeling within a single layer, reducing
reliance on deep convolutional stacks and preserving spa-
tial information while lowering model depth and parame-
ter count [20]. Several works have explored Transformer-
enhanced detection models. For example, Ikchul Eum et
al. [21] integrated multi-scale features and a global attention
mechanism into YOLOv10 for high-accuracy detection in
complex construction environments. VR Patheda et al. [22]
combined YOLOv4 with a Vision Transformer (ViT) for
breast cancer detection in CESM images, achieving effective
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Fig. 1: RAC-YOLO Model Structure Diagram

classification through local-global feature fusion. Shao et
al. [23] proposed MOD-YOLO, a multispectral detection
model based on a Cross-Stage Partial Cross-Modality Fusion
Transformer (CSP-CFT), which improves detection stability
under low-visibility conditions. However, the self-attention
mechanism suffers from quadratic computational complexity
due to dot-product operations over query, key, and value vec-
tors, further exacerbated by the inefficiency of the Softmax
function, leading to high computational overhead in large-
scale or real-time applications.

Despite recent advances, industrial steel surface defects
remain challenging due to complex backgrounds, multi-

scale variations, and uneven lighting, which contribute to
high false alarm rates and unstable detection performance.
Many existing methods improve detection accuracy at the
expense of computational efficiency, thereby restricting their
deployment in real-time industrial settings. To address these
limitations, we propose RAC-YOLO, a lightweight defect
detection framework based on YOLOv8n and specifically de-
signed for industrial implementation. The main contributions
of this work are outlined as follows:

(1) We propose RepCAANet, a lightweight feature fusion
structure that alleviates gradient vanishing in deep networks
and promotes efficient inter-layer feature transmission.
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(2) We integrate an AIFI module to strengthen multi-
scale feature integration, which is particularly beneficial for
identifying small and low-contrast surface defects.

(3) We adopt the CARAFE mechanism for feature up-
scaling, facilitating more accurate and semantically enhanced
reconstruction of feature maps.

(4) We introduce the MPDIoU as a novel regression loss
function, improving both bounding box localization accuracy
and training stability.

(5) We demonstrate through extensive experiments on
NEU-DET and GC10-DET that RAC-YOLO achieves com-
petitive detection performance and strong generalization ca-
pability while maintaining a minimal computational load.

The remainder of this paper is organized as follows:
Section II details the architecture and core components of
RAC-YOLO. Section III presents the experimental setup and
comparative evaluation. Section IV provides discussion and
concluding remarks.

II. MODEL STRUCTURE AND PRINCIPLE

A. RAC-YOLO Algorithm Model

The proposed RAC-YOLO model, built upon YOLOv8n,
is designed with the following architectural modifications. In
the backbone network, the RepCAANet module substitutes
the conventional C2f block, enhancing feature expressiveness
and mitigating gradient degradation in deep layers. The
AIFI module is integrated to supersede the standard SPPF
component, promoting richer intra-scale feature fusion and
boosting sensitivity to small and faint defects. Within the
neck structure, the lightweight CARAFE upsampling module
is employed in place of conventional upsampling methods.
This modification enhances fine-grained detail preservation
and feature reconstruction fidelity, yielding higher-precision
feature maps. Finally, the MPDIoU loss function is im-
plemented as a substitute for the CIoU loss employed in
YOLOv8n. This offers a more precise regression target,
leading to substantial gains in localization accuracy for
detected objects. The overall architecture of the RAC-YOLO
framework is illustrated in Figure 1.

B. Feature Extraction Networks Incorporating Attention
Mechanisms

In object detection, ongoing innovation in network ar-
chitectures and attention mechanisms remains crucial for
enhancing detection performance. GELAN (General Efficient
Layer Aggregation Network), recently proposed in YOLOv9,
integrates advantages from both CSPNet and ELAN architec-
tures. It is designed as a lightweight architecture guided by
gradient path planning [24]. This design strikes a balance
among lightweight structure, inference speed, and accu-
racy, and shows strong performance in joint detection and
segmentation tasks [25]. At the core of GELAN lies the
RepNCSPELAN4 module, which performs feature extraction
and fusion by integrating elements from both CSP and ELAN
structures. The RepNCSPELAN4 module mainly comprises
a Conv module and a RepNCSP submodule. The latter
contains another Conv module and a variable number of
RepNBottleneck blocks. The number of RepNBottleneck
blocks (denoted as N) is determined by the model’s width

factor. Each RepNBottleneck block is a residual unit com-
posed of RepConvN and Conv layers.

The Context Anchor Attention (CAA) module serves as a
key component for strengthening central feature representa-
tions and modeling long-range dependencies across spatially
separated pixels [26]. Designed with structural efficiency
in mind, the CAA module aims to amplify salient central
features while recognizing contextual correlations over non-
local regions. In its first stage, the module applies average
pooling, succeeded by a 1×1 convolutional layer to capture
localized feature patterns, as defined in Equation (1):

F pool
l−1,n = Conv1×1(Pavg(X

2
l−1,n)), n = 0, . . . , Nn−1 (1)

Pavg is represents average pooling, for n = 0, there is
X2

l−1,n = X2
l−1.

Subsequently, a pair of depthwise strip convolutions are
utilized to approximate the receptive field of a conventional
large-kernel depthwise convolution [27], as formulated in
Equation(2)-(3):

Fw
l−1,n = DWConv1×kb(F

pool
l−1,n) (2)

Fh
l−1,n = DWConvkb×1(F

w
l−1,n) (3)

The use of depth-wise strip convolutions stems from
two key motivations. On one hand, these operations enable
a parameter-efficient design. When compared to standard
large-kernel depth-wise convolutions, two 1D depth-wise
kernels attain comparable effectiveness while reducing pa-
rameter count. On the other hand, they are well-suited for
characterizing elongated defects, owing to their anisotropic
receptive fields. The overall structure of the proposed CAA
network is illustrated in Figure 2.

Fig. 2: CAAttention Model Structure Diagram

The proposed RAC-YOLO network integrates RepNC-
SPELAN4 with the CAA module to construct a novel back-
bone termed RepCAANet. This architecture is specifically
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Fig. 3: RepCAANet and RepNCSP Model Structure Diagram

designed to retain a lightweight structure while improving
gradient propagation, thereby enhancing robustness to scale
variations and occlusions in input images. It effectively
captures input characteristics and preserves critical spatial
and semantic information, which is essential for accurate and
efficient object detection. The detailed configurations of both
RepCAANet and RepNCSP are illustrated in Figure 3.

C. Feature Pyramid Network Optimization

Surface defect detection of steel strips is often hindered
by complex backgrounds and variable lighting conditions,
which compromise detection accuracy and lead to frequent
false positives and missed detections [28]. To address these
challenges, we propose the AIFI module, which enhances
object perception and classification while suppressing back-
ground interference.

In the backbone, YOLOv8n generates a multi-level feature
hierarchy comprising low-level, mid-level, and high-level
resolution maps. Among these, high-level features capture
abstract semantic representations, essential for object dis-
crimination in cluttered scenes. Nevertheless, the standard
SPPF module carries out parallel multi-scale pooling without
explicit intra-scale communication [29]. To enhance the rep-
resentational power of high-level semantics, we propose the
AIFI module, which facilitates contextual exchange within
the high-level feature map. By limiting fusion with shallow
features that contain limited semantic content, AIFI mitigates

Fig. 4: AIFI Model Structure Diagram

unnecessary information integration and alleviates ambiguity
in semantic interpretation. This design promotes more effi-
cient use of high-level context, leading to a reduction in both
false alarms and undetected instances. The structure of the
AIFI module is illustrated in Figure 4.
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Fig. 5: CARAFE Model Structure Diagram

The AIFI module employs a self-attention mechanism to
enhance contextual consistency among high-level semantic
representations at identical spatial resolutions. In this pro-
cess, the S5 feature map is reshaped into a sequential vector
format, followed by positional encoding. A multi-head self-
attention operation is then performed on these encoded fea-
tures, which enables precise capture of long-range semantic
relationships. Subsequently, the resulting features are refined
through fully connected layers with normalization, facilitat-
ing smooth integration into subsequent network stages before
being restructured into 2D spatial feature maps [30]. These
transformations are mathematically formulated in Equations
(4) and (5).

Q = K = V = Flatten(S5) (4)

F5 = Reshape(AIFI(Q,K, V )) (5)

AIFI facilitates interactions among high-level features
across different scales, thereby enhancing the network’s
capacity to discern relationships between conceptual entities
within an image. This improvement in relational understand-
ing contributes to the network’s proficiency in processing
intricate semantic information, ultimately leading to an in-
crease in detection accuracy.

D. Upsampling Optimization

Upsampling is a fundamental operation in image pro-
cessing and computer vision, primarily employed to en-
large the spatial dimensions and enhance the resolution of
images or feature representations [31]. In dense prediction
tasks like steel strip defect detection, traditional upsampling

approaches typically depend on local pixel neighborhoods,
potentially resulting in information degradation and compro-
mising detection accuracy and robustness. To mitigate these
limitations, the lightweight CARAFE module is incorporated
into the YOLOv8n architecture to improve feature upscaling
quality. The CARAFE module captures rich contextual cues
and produces content-aware adaptive kernels, enabling accu-
rate feature reassembly and replacing conventional bilinear
interpolation. This strategy aims to refine semantic feature
representation and boost detection accuracy for surface de-
fects in steel strips [32]. The architectural layout of the
CARAFE module is depicted in Figure 5.

The CARAFE module reconstructs feature maps in two
phases: Initially, the upsampling kernel prediction module ψ
performs convolution with dimensions kencoder ×Cm×Cup

using local features X1 to create dynamic reassembly kernels
W1′ . Next, the feature reassembly module ϕ utilizes these
kernels for content-aware reassembly of the feature maps,
determining output feature points within the kup × kup area
by taking the dot product of W1′ and X1′ , thereby improving
the feature representation. The detailed process is outlined in
equations (6)-(7):

W1′ = ψ(N(X1, kencoder)) (6)

X1′ = ϕ(N(X1, kup),W1′ ) (7)

This approach allows for the meaningful reorganization
and enhancement of feature maps according to their unique
content traits, greatly boosting their representational power.
The CARAFE operator is efficient and quick, adding only a
small amount of extra computational load, which facilitates
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its incorporation into contemporary network designs. Con-
sequently, this paper incorporates the CARAFE upsampling
operator into the YOLOv8 framework to obtain more detailed
feature information.

E. Loss Function Optimization

The goal of bounding box regression is to improve the
accuracy of predicted bounding boxes, ensuring they closely
match the ground truth [33]. Since its introduction, Intersec-
tion over Union (IoU) has remained the predominant metric
for evaluating localization loss in object detection tasks. As
articulated in Equation (8):

IoU(pbb, gbb) =
Area(pbb ∩ gbb)
Area(pbb ∪ gbb)

(8)

here, the predicted bounding box is denoted as pbb, and the
ground truth bounding box is represented as gbb.

Nevertheless, IoU has several well-known limitations.
First, it may assign identical scores to distinct predicted
boxes, which can hinder convergence and compromise re-
gression accuracy. Second, because IoU considers only the
overlapping area, it ignores object size, leading to incon-
sistent performance across varying object scales. Third, its
computational complexity increases significantly in dense
scenes or with overlapping targets.

Fig. 6: MPDIOU Loss Function Diagram.

To address these limitations, we introduce the MPDIoU
loss function. Rather than calculating intersection and union
areas, MPDIoU lowers computational cost by measuring the
pairwise distances between the centroids of bounding boxes.
This approach proves particularly effective in densely pop-
ulated scenes [34]. By emphasizing center-point distances,
MPDIoU more accurately models spatial relationships, espe-
cially for closely located yet non-overlapping boxes, thereby
improving detection precision. The formulation of MPDIoU
is detailed in Equations (9)-(11):

d21 = (xB1 − xA1 )
2 + (yB1 − yA1 )

2 (9)

d22 = (xB2 − xA2 )
2 + (yB2 − yA2 )

2 (10)

MPDIoU =
A ∩B
A ∪B

− d21
w2 + h2

− d22
w2 + h2

(11)

Consider two arbitrary convex regions, labeled A and B,
within an input image of width w and height h. The top-left
and bottom-right vertices of shape A are given by (xA1 , y

A
1 )

and (xA2 , y
A
2 ), respectively. The quantities d21 and d22 are

defined as the squared Euclidean distances from the top-left
corner of A to a reference point within A, and from that point
to the right boundary of shape B, respectively. The geometric
configuration of the Modified Partial Distance Intersection
over Union (MPDIOU) is depicted in Figure 6.

III. EXPERIMENTAL

A. Experimental Platform and Parameters

The experimental environment configuration and parame-
ter settings are shown in Table I.

TABLE I: Experimental environment and parameter
settings.

Name Parameters

GPU NVIDIA A10 24G

System Ubuntu 22.04.5

Deep Learning Framework Pytorch2.1

Epochs 300

Batch size 16

Learning rate 0.01

optimizer AdamW

B. Evaluation Indicators

The performance of the network is mainly assessed using
mean Average Precision (mAP) derived from training and the
model’s capability on the validation set. Core evaluation indi-
cators—including Precision (P), Recall (R), and mAP—are
employed to measure detection accuracy in a quantitative
manner [35]. The formal definitions of Precision and Recall
are delineated in Equations (12)-(15):

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

AP =

∫ b

a

P (R)d(R) (14)

mAP =
1

N

N∑
i=1

APi (15)

Here, True Positives (TP) denote instances correctly clas-
sified as positive, False Negatives (FN) correspond to ac-
tual positives overlooked by the model, and False Positives
(FP) refer to negative samples falsely predicted as positive.
Average Precision (AP) is calculated as the integral over
the precision–recall curve, whereas mean Average Precision
(mAP) represents the averaged AP values across all object
classes, often weighted by class frequency. Additionally, the
evaluation encompasses computational cost (in GFLOPs), to-
tal parameter count (Params), and inference speed, expressed
in frames per second (FPS).
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C. Experimental Datasets

The generalization ability of the proposed model is evalu-
ated on two publicly available datasets for steel surface defect
detection: NEU-DET [36] and GC10-DET [37].

The NEU-DET dataset contains six categories of steel
surface defects: crazing (cr), inclusion (in), patches (pa),
pitted surface (ps), rolled-in scale (rs), and scratches (sc).
Each class includes 300 grayscale images of size 200 × 200
pixels, resulting in a total of 1,800 samples. The dataset is
randomly split into training and testing sets following a 7:3
ratio, yielding 1,260 training and 540 test images.

The GC10-DET dataset comprises ten categories of steel
surface defects: punching hole (ph & 1 chongkong), welding
line (wl & 2 hanfeng), crescent gap (cg & 3 yueyawan),
water spot (ws & 4 shuiban), oil spot (os & 5 youban), silk
spot (ss & 6 siban), inclusion (in & 7 yiwu), rolled pit (rp &
8 yahen), crease (cr & 9 zhehen), and waist folding (wf &
10 yaozhe). It comprises 2,294 grayscale images, each with
dimensions of 2048 × 1000 pixels. The data is divided into
training and test subsets according to an 8:2 split, producing
1,848 training and 446 test samples.

Utilizing grayscale imagery enhances contrast, suppresses
noise, and improves detail visibility, thereby reducing the
influence of surface characteristics—such as reflectivity and
surface roughness—on detection accuracy.

D. Ablation Study

To evaluate the effectiveness of each proposed module,
we conduct an ablation study to quantify the contribution
of individual components within the enhanced architecture.
We particularly assess the impact of the redesigned backbone
and neck structures on feature representation and detection
accuracy. In addition, to identify the most effective loss
function, we compare several commonly used variants under
the proposed framework on the NEU-DET and GC10-DET
datasets. The following abbreviations denote distinct config-
urations of the YOLOv8n-based model:

• YOLOv8n with the RepCAANet block is denoted as
R-YOLO.

• YOLOv8n with both the RepCAANet block and AIFI
is denoted as RA-YOLO.

• YOLOv8n with the RepCAANet block and CARAFE
is denoted as RC-YOLO.

• YOLOv8n with the RepCAANet block, AIFI, and
CARAFE is denoted as RAC-YOLO.

1) Ablation on NEU-DET: The results of the ablation
experiments are summarized in Table II.

In the R-YOLO method, the backbone network is re-
placed by the RepCAANet module, reducing the number
of parameters from 3.007M to 2.595M, a 14% decrease.
Additionally, the computational load decreases from 8.1G
to 6.9G, marking a 15% reduction compared to the baseline.
Furthermore, R-YOLO achieves higher detection accuracy
than YOLOv8n in the cr, pa, rs, and sc categories. The
mean Average Precision (mAP) also increases by 0.6%,
indicating that the RepCAANet module not only reduces
model parameters but also improves detection speed while
maintaining a lightweight architecture.

In the RA-YOLO method, the backbone network is again
replaced by the RepCAANet module, this time combined

with the AIFI module. Although this integration slightly
increases the number of parameters, it reduces the computa-
tional cost from 8.1G to 7.2G, an 11% decrease. The mAP
improves by 1%, indicating that the AIFI module effectively
captures high-level semantic information and strengthens
intra-scale feature interactions, thereby enhancing detection
accuracy.

In the RC-YOLO method, the backbone network is re-
placed by the RepCAANet module and integrated with the
CARAFE upsampling module. This modification reduces the
parameter count from 3.007M to 2.735M, a 9% decrease.
The computational load also drops from 8.1G to 7.2G, a
total reduction of 1%. The mAP increases by 1.2%, high-
lighting that the CARAFE module improves semantic feature
representation by effectively aggregating feature information,
thereby enhancing the detection of small defects.

The RAC-YOLO method incorporates all three modules,
slightly increasing the parameter count but reducing compu-
tational cost by 13.5%. The mAP increases significantly by
2.7%, marking the highest improvement among all methods
compared to the baseline.

As shown in Figure 7, RAC-YOLO demonstrates the most
balanced performance, achieving the highest mAP of 80.2%
and leading in four out of six subcategory APs (cr: 48.1%,
pa: 88.2%, rs: 82.7%, sc: 97.0%). The polygon area is
9.7% larger than that of the baseline YOLOv8n, reflecting a
significant improvement in cross-scene generalization.

Fig. 7: Radar plot of ablation experiments on NUE-DET

These results confirm that the synergy of the three mod-
ules significantly enhances model accuracy, resulting in the
best overall performance. Specifically, RAC-YOLO achieves
optimal performance in the cr, in, pa, rs, and sc categories,
further validating that the proposed enhancements effectively
support the identification of various defect types.

2) Ablationon on GC10-DET: The ablation experiment
results are summarized in Table III.

In the R-YOLO method, the backbone network is replaced
by the RepCAANet module, leading to improved detection
accuracy in the cr and wf categories compared to YOLOv8n,
along with a 0.7% increase in mean Average Precision
(mAP). RA-YOLO, which integrates the AIFI module with
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TABLE II: Ablation on NEU-DET

Method mAP50/%
AP/%

mAP50-95/% Flops/G Params/M
cr in pa ps rs sc

YOLOv8n 77.5 45.7 86.3 91.2 82.9 63.8 94.9 44.9 8.1 3.007

R-YOLO 78.1 45.8 85.1 94.1 79.3 71.3 96.5 45.8 6.9 2.595

RA-YOLO 78.5 40.9 86.5 94.9 80.3 69.6 96.1 46.3 7.2 3.220

RC-YOLO 78.7 46.1 85.3 93.6 81.2 69.3 96.3 45.3 7.2 2.735

RAC-YOLO 80.2 48.1 88.2 94.3 82.7 70.6 97.0 46.8 7.0 3.165

TABLE III: Ablation on GC10-DET

Method mAP50/%
AP/%

mAP50-90/% Flops/G Params/M
ph wl cg ws os ss in rp cr wf

YOLOv8n 65.8 98.2 91.3 97.7 87.7 70.1 52.0 32.7 13.2 54.3 60.9 33.8 8.1 3.007

R-YOLO 66.5 98.0 91.6 97.6 88.7 65.4 52.2 35.9 12.2 55.3 67.5 33.6 6.9 2.595

RA-YOLO 67.8 97.3 91.5 96.4 86.4 66.7 53.6 34.1 24.9 56.8 69.9 34.8 7.2 3.220

RC-YOLO 68.4 98.3 92.5 97.2 86.2 69.0 55.5 32.0 25.7 59.8 67.8 34.5 7.2 2.735

RAC-YOLO 70.1 98.2 92.2 95.3 85.6 66.7 50.4 35.8 32.1 72.4 72.8 35.3 7.0 3.165

the RepCAANet backbone, achieves a 2% improvement in
mAP. Similarly, RC-YOLO, which integrates the CARAFE
upsampling module with the RepCAANet backbone, yields a
2.6% increase in mAP. The RAC-YOLO model, integrating
all three modules, shows the most substantial improvement,
with a 4.3% increase in mAP—the highest gain compared to
the baseline.

Fig. 8: Radar plot of ablation experiments on GC10-DET

Figure 8 shows a radar plot illustrating the ablation exper-
iment results on the GC10-DET dataset. The proposed RAC-
YOLO model demonstrates superior overall performance,
reaching an average accuracy of 70.1%, a 4.3% improvement
over the baseline YOLOv8n. It is particularly notable for
its robustness in classification and feature representation,
while also maintaining competitive performance in positional
accuracy and contextual understanding. However, challenges
remain in relocalization accuracy and occlusion invariance,
highlighting domain-specific limitations common to all mod-

els. The progressive improvements from R-YOLO to RAC-
YOLO confirm the cumulative effectiveness of architectural
enhancements, especially in balancing detection accuracy
and operational stability.

Moreover, the model demonstrates favorable efficiency in
computational cost (FLOPs) and parameter optimization on
the NEU-DET dataset, indicating that the proposed method
achieves a more efficient solution for real-time steel surface
defect detection. Additionally, ablation studies conducted on
the GC10-DET dataset validate the contribution of the three
key components, which simplify the architecture and improve
generalization capability.

E. Comparative Experiments of Different Loss Functions

Owing to the suboptimal generalization and slow conver-
gence of CIoU in defect detection scenarios, we propose
the MPDIoU as an auxiliary bounding box regression loss,
designed to enhance localization accuracy and model ro-
bustness. A comparative evaluation of the proposed loss is
summarized in Table IV.

TABLE IV: The loss function compares the experimental
results.

Loss Function mAP50/% Precision/% Recall/%

EIoU 79.8 74.3 75.1

GIoU 78.3 74.4 72.2

CIoU 79.0 75.3 74.4

SIoU 78.5 70.5 74.5

MPDIoU 80.2 77.1 74.7

MPDIoU outperformed CIoU by 1.2% in the original
model and showed improvements of 1.9%, 1.7%, and 0.4%
over Generalized IoU (GIoU), Squared IoU (SIoU), and
Enhanced IoU (EIoU), respectively. While EIoU achieved the
highest recall rate, MPDIoU attained the best detection pre-
cision, reaching 80.2%. Overall, the proposed loss function
demonstrates notable advantages across multiple evaluation
metrics.
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F. Comparative Experiments of Different Models

To assess the performance benefits of the proposed
model, RAC-YOLO was systematically compared with sev-
eral contemporary state-of-the-art methodologies. Specifi-
cally, the EfficientDet model was referenced from Ref. [38],
DFP-YOLO from Ref. [17], CABF-FCOS from Ref. [39],
Improved-YOLOX from Ref. [40], YOLO-DBL from
Ref. [41], MD-YOLO from Ref. [42], FMR-YOLO from
Ref. [43], Sun’s method from Ref. [44], YOLOv5s-Improved
from Ref. [45], LIDD-YOLO from Ref. [46], DCC-
CenterNet from Ref. [47], TridentNet from Ref. [48], EDDN
from Ref. [49], FPDNet from Ref. [50], and Ade-YOLO from
Ref. [51]. The data pertaining to the other methodologies
were acquired through our experimental investigations.

1) Comparison of Experimental Results from Different
Models on the NEU-DET Dataset: Results in Table V
demonstrate that the proposed model achieves superior per-
formance over existing approaches with respect to mean
Average Precision (mAP), with notable advantages in identi-
fying defects such as patches (pa) and scratches (sc). RAC-
YOLO attains an mAP of 80.2%, indicating improvements
of 2.7% over YOLOv8n and 4.1% over YOLOv10n. It
achieves a relative gain of 10.1% compared to EfficientDet.
Despite DFP-YOLO achieving the best performance on patch
detection, its overall mAP remains 5.2% behind RAC-YOLO.
Even though CABF-FCOS excels in detecting crazing (cr)
and pitted surface (ps) defects, its aggregate mAP is still
3.5% lower. RAC-YOLO outperforms Improved-YOLOX,
YOLO-DBL, MD-YOLO, and FMR-YOLO by margins of
3.2%, 2.2%, 2.0%, and 1.6%, respectively, even though
FMR-YOLO operates at a reduced frame rate. Compared
to Sun’s method, which exhibits limited effectiveness for
ps defect recognition, RAC-YOLO delivers a net gain of
1.6%. Furthermore, it maintains advantages over YOLOv5s-
Improved and LIDD-YOLO, with improvements of 1.4% and
0.7%, respectively.

Fig. 9: Histogram comparison of different models on
NEU-DET

Figure 9 reveals a fundamental compromise between de-
tection accuracy and inference efficiency across the evaluated
models. RAC-YOLO delivers the best detection performance
with an mAP of 80.2%, operating within real-time constraints
at 72.6 FPS. While capable of processing 196.0 FPS, DFP-
YOLO falls short of RAC-YOLO by 5.2% in mAP. By com-
parison, conventional approaches like Faster R-CNN exhibit

prohibitively high computational latency, making them less
suitable for real-time deployment.

Overall, the results highlight the proposed model’s supe-
rior balance of accuracy and efficiency in steel surface defect
detection.

2) Comparison of Experimental Results from Different
Models on the GC10-DET Datasets: To assess the gener-
alization performance of RAC-YOLO in steel surface defect
detection, we perform comprehensive evaluations using the
GC10-DET benchmark, as presented in Table VI.

As illustrated in Figure 10, RAC-YOLO delivers notable
gains over existing approaches, achieving a mean Average
Precision (mAP) of 70.1% and an inference speed of 74.8
frames per second (FPS). On the GC10-DET benchmark,
the model exhibits performance gains of 8.2%, 6.9%, 5.0%,
4.8%, 4.3%, 3.8%, 3.6%, 3.5%, 3.3%, 2.6%, 1.9%, and 1.9%
in mAP relative to DCC-CenterNet, TridentNet, EDDN,
YOLOv11n, YOLOv8n, SSD, YOLOv7-tiny, FMR-YOLO,
FPDNet, Faster R-CNN, YOLOv5n, and Ade-YOLO, re-
spectively. Collectively, these outcomes indicate that RAC-
YOLO offers an improved trade-off among detection ac-
curacy, model compactness, and computational efficiency.
The success of the model stems from its efficient backbone
for feature extraction, an enhanced feature fusion pyramid,
and a lightweight upsampling design, jointly contributing to
stronger generalization in practical defect detection scenar-
ios.

Fig. 10: Histogram comparison of different models on
GC10-DET

G. Visual Comparison of Experimental Results

In the visualization analysis of experimental results, a
multi-dimensional comparative approach is adopted to eval-
uate the effectiveness of the proposed method. By applying
parallel detection comparison visualization, differences in
coverage and localization accuracy between the original
images and the detection results are illustrated for both
the NEU-DET and GC10-DET datasets. This effectively
highlights the model’s adaptability to complex scenes. In
addition, accuracy curves for YOLOv8n and RAC-YOLO are
plotted to enable a systematic comparison of two key metrics:
mAP50 and mAP50:95. The slope of these curves reflects
the differences in detection stability between the algorithms.
This two-fold analysis combines qualitative instance-level
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TABLE V: The experimental results are compared with different models on NEU-DET

Method mAP50/%
AP/%

FPS
cr in pa ps rs sc

EfficientDet [38] 70.1 45.9 62.0 83.5 85.6 70.7 73.1 11.9

Faster-RCNN 72.4 43.2 68.5 84.9 78.3 69.8 89.9 20.2

SSD 73.8 45.8 75.2 84.1 85.3 68.6 83.5 40.2

DFP-YOLO [17] 75.0 38.1 82.2 97.9 80.2 60.9 90.8 196.0

YOLOv10n 76.1 43.7 84.0 92.6 76.7 65.3 94.3 103.5

CABF-FCOS [39] 76.7 55.4 75.0 93.5 88.9 62.9 84.4 18.0

Improved-YOLOX [40] 77.0 55.1 83.0 93.6 86.1 59.7 84.2 100.0

YOLOv5n 77.1 41.3 88.8 92.3 81.3 63.6 95.0 60.5

YOLOv8n 77.5 45.7 86.3 91.2 82.9 63.8 94.9 79.0

YOLO11n 77.6 44.2 87.6 92.6 80.4 64.4 96.6 108.7

YOLO-DBL [41] 78.0 47.2 93.4 82.0 64.2 91.5 89.9 128.7

MD-YOLO [42] 78.2 46.7 81.4 91.3 85.1 72.6 92.0 59.1

FMR-YOLO [43] 78.6 46.5 86.1 95.4 83.5 66.6 93.6 169.0

Sun’s method [44] 78.7 41.6 84.6 93.7 95.9 66.1 90.5 -

YOLOv5s-Improved [45] 78.8 58.5 80.3 81.3 84.2 74.3 83.4 -

LIDD-YOLO [46] 79.5 51.0 86.9 96.6 85.8 67.2 89.8 94.7

RAC-YOLO(ours) 80.2 48.1 88.2 94.3 82.7 70.6 97.0 72.6

TABLE VI: The experimental results are compared with different models on GC10-DET

Method mAP50/%
AP/%

FPS
ph wl cg ws os ss in rp cr wf

DCC-CenterNet [47] 61.9 84.4 85.5 96.2 77.3 50.9 84.8 30.2 13.9 49.9 76.6 31.0

TridentNet [48] 63.2 96.6 43.5 95.8 76.9 72.9 67.0 24.0 40.2 28.4 79.4 20.0

EDDN [49] 65.1 90.0 88.5 84.8 55.8 62.2 65.0 25.6 36.4 52.1 91.9 30.0

YOLO11n 65.3 98.2 92.8 96.3 88.6 65.2 58.3 36.3 2.8 44.2 70.1 101.3

YOLOv8n 65.8 98.2 91.3 97.7 87.7 70.1 52.0 32.7 13.2 54.3 60.9 68.0

SSD 66.3 90.8 91.5 95.0 87.0 61.6 50.3 31.9 98.0 24.2 99.1 37.5

YOLOv7-tiny 66.5 97.9 91.5 95.3 84.2 65.4 58.6 32.6 12.3 60.8 66.5 87.0

FMR-YOLO [43] 66.6 95.7 67.1 52.7 70.7 85.4 31.4 58.1 39.8 95.7 69.8 153.0

FPDNet [50] 66.8 97.1 94.7 94.2 72.5 63.9 40.2 35.3 45.0 40.9 84.1 56.9

Faster-RCNN 67.5 96.5 29.6 98.3 73.1 80.4 83.8 52.4 43.1 45.9 68.9 18.0

YOLOv5n 68.2 98.6 92.0 94.7 86.8 69.8 54.7 34.5 15.9 64.7 70.7 57.0

Ade-YOLO [51] 68.2 95.8 91.7 94.9 70.0 76.9 67.8 35.4 22.0 41.7 85.6 -

RAC-YOLO(ours) 70.1 98.2 92.2 95.3 85.6 66.7 50.4 35.8 32.1 72.4 72.8 74.8

comparisons with quantitative statistical evaluations, offering
an essential visual foundation for further model optimization.

1) Comparative Analysis on NEU-DET: As shown in
Figure 11, the detection results of the proposed algorithm
and the YOLOv8n algorithm are visually presented. The
first, second, and third rows represent the original image, the
detection result of YOLOv8n, and that of the enhanced RAC-
YOLO algorithm on the NEU-DET dataset, respectively.

Comparative analysis indicates that YOLOv8n tends to
miss small defect targets (e.g. rs) and exhibits localization
errors when detecting larger ones (e.g. ps). In contrast, the
improved RAC-YOLO demonstrates significantly better per-
formance in detecting large defects and shows increased sen-
sitivity to hard-to-detect targets, effectively reducing missed
detections. Moreover, it adopts a more refined detection strat-
egy for adjacent or overlapping defects, which substantially
alleviates the detection errors observed in the baseline model.

2) Comparative Analysis on GC10-DET: The GC10-DET
dataset does not provide explicit labels for the defect cate-
gories in each image. To assess detection performance, a
diverse set of images containing various defect types was
selected for comparative analysis. As shown in the heatmaps,
the YOLOv8n model failed to detect several defects. For
example, sub-image (1) missed the 6 siban defect, sub-
image (2) did not detect the 1 chongkong defect, sub-image
(3) overlooked the 5 youban defect, and sub-image (6)
again failed to identify the 6 siban defect.The comparative
detection outcomes are visualized in Figure 12.

Relative to baseline models, the proposed RAC-YOLO
substantially lowers the false negative rate, leading to im-
proved overall detection accuracy. The performance gain can
be largely explained by the integration of several key com-
ponents: the RepCAANet backbone, which enables efficient
feature learning; the AIFI module, designed to strengthen
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Fig. 11: Comparison of heat maps of detection results on NEU-DET

Fig. 12: Comparison of heat maps of detection results on GC10-DET
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Fig. 13: Comparison line plot of two mAPs of different models on NEU-DET: (a) Comparison of mAP50/% line-charts;
(b) Comparison of mAP50-95/% line-charts

Fig. 14: Comparison line plot of two mAPs of different models on GC10-DET: (a) Comparison of mAP50/% line-charts;
(b) Comparison of mAP50-95/% line-charts

long-range object awareness; CARAFE, facilitating high-
fidelity feature upsampling; and the MPDIOU loss, optimized
for precise bounding box refinement. Together, these compo-
nents enable RAC-YOLO to capture subtle defect patterns,
contributing to superior localization and classification perfor-
mance.

3) Comparison with the Baseline Model: To evaluate
the improvements of the proposed RAC-YOLO model over
the baseline, both RAC-YOLO and the original YOLOv8n
were trained for 300 epochs under identical hyperparameter
settings. Performance was assessed using the validation set.

Figures 13 and 14 illustrate the evolution of key perfor-
mance metrics throughout training on two datasets. In these

plots, the blue and yellow curves correspond to the RAC-
YOLO and YOLOv8n models, respectively. An early stop-
ping strategy was employed, terminating training if the mean
Average Precision (mAP) showed no notable improvement
over 50 consecutive epochs. This strategy was adopted to
address three critical aspects. First, it mitigates overfitting
by preventing excessive adaptation to dataset-specific noise,
which is crucial for assessing generalization across diverse
datasets. Second, it optimizes computational efficiency by
dynamically monitoring both mAP50 and mAP50–95, en-
abling training to stop once performance stabilizes. Third,
the 50-epoch threshold offers a practical trade-off between
responsiveness to performance fluctuations and sufficient
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observation time to confirm training stagnation.
During training, the RAC-YOLO model demonstrated

sustained improvements over the baseline in both mAP
and detection rate, which is visually illustrated by the blue
curves consistently exceeding the yellow counterparts. These
observations indicate the enhanced detection accuracy and
resilience to variations achieved by the proposed model.

IV. CONCLUSION
This work introduces RAC-YOLO, a novel framework

for steel surface defect detection designed to achieve an
optimal trade-off between model efficiency and detection
accuracy. The backbone architecture is restructured to mini-
mize computational burden without compromising detection
precision. The AIFI module is incorporated to strengthen fea-
ture discrimination and class separation, while suppressing
contextual distractions from the background. Additionally,
the CARAFE module is adopted to enhance feature map
reconstruction, with particular benefits for identifying small-
scale defects. Furthermore, the MPDIoU loss is utilized to
improve bounding box coordinate prediction, leading to more
precise object localization.

Experimental evaluations demonstrate that RAC-YOLO
attains an mAP of 80.2% on NEU-DET and 70.1% on
GC10-DET, confirming its competitive performance rela-
tive to current state-of-the-art approaches in steel surface
defect detection. Ablation experiments further corroborate
the efficacy of each proposed component, underscoring their
individual roles in achieving performance improvements.

However, the model remains challenged in localizing very
small defects, including crazing and rolled-in scale. This
limitation indicates a need for future work to concentrate
on improving small-region defect detection and accelerating
inference speed to satisfy practical requirements in industrial
deployment.
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