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Cooperative Control of Virtually Coupled Train
Sets through the Fusion of Multiple
Car-Following Models
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Abstract—T o address the challenges of stability, safety, and
computational efficiency in the cooperative control of virtually
coupled train sets (VCTS) under complex operational scenarios,
this study proposes an integrated OPO-MCF-DMPC method
that combines Online Parameter Optimization (OPQ), Multiple
Car-Following models (MCF), and Distributed Model
Predictive Control (DMPC). First, an MCF-DMPC architecture
is developed for virtual coupling by enhancing and integrating
the Intelligent Driver Model (IDM), Cooperative Adaptive
Cruise Control (CACC), and Full Velocity Difference Model
(FVD), thereby improving precision in velocity-displacement
tracking and achieving the control objective. Next, to overcome
the model selection challenge, a Multi-Strategy Moth-Flame
Optimization (MSMFOQO) algorithm is designed, incorporating
chaotic mapping, adaptive flame adjustment, and stochastic
mutation. Compared to conventional optimization algorithms,
MSMFO improves solution fitness by 2.2%—10.2% and reduces
computation time by 4.4%—16.7%. Finally, an OPO mechanism
is introduced for dynamic online correction of car-following
model parameters, further enhancing adaptive control
capabilities. Comprehensive simulations demonstrate that the
proposed OPO-MCF-DMPC method achieves a 35.8%
improvement in computational efficiency over standard DMPC
under long prediction horizons while satisfying the stringent
stability and real-time performance requirements of VCTS
operations. This advancement provides a practical and efficient
solution for realizing virtual coupling in railway systems.

Index Terms—Virtual coupling, virtually coupled train sets,
car-following model, distributed model predictive control,
moth-flame optimization algorithm

I. INTRODUCTION

UE to the spatiotemporal distribution imbalance of
passenger flow along railway transit lines, flexible train
formation or dynamic reconfiguration is often required to
align transport capacity with passenger demand and to
achieve green operational objectives. However, the
conventional fixed formation mode lacks real-time
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adaptability to dynamic transportation demands, leading to
issues such as low operational efficiency, suboptimal
resource utilization, and poor environmental performance. In
contrast, Virtual Coupling (VC) technology obviates the
necessity for physical couplings between conventional train
units, relying instead on vehicle-to-vehicle communication
and distributed control to establish virtual connections among
train units [1, 2]. This technology enables real-time dynamic
reconfiguration of operational relationships and coupled
cooperative control mechanisms among train  units,
facilitaing stable operation under a Relative Distance
Braking Mode (RDBM) with minimized relative braking
distances [3, 4]. VC effectively overcomes the spatial and
temporal constraints of traditional fixed formation modes [5].
This advancement enhances rail network throughput
efficiency and service quality while reducing energy
consumption and operational safety risks for train sets [6].
Consequently, ensuring safe, stable, and precise following
operations of train units remains a critical challenge for VC
implementation [7].

In recent years, the rapid advancement of autonomous
train driving and wireless communication technology has
garnered significant scholarly attention toward the
development of safe and efficient tracking control strategies
for Virtually Coupled Train Sets (VCTS) operating under
RDBM. Among these, key contributions include a variety of
control methodologies [8], such as Car-Following (CF)
models [9], Model Predictive Control (MPC) [10], artificial
potential field control [7], optimization and optimal control,
sliding mode control [11], and feedback control approaches.
Among these methodologies, CF models and MPC have
emerged as particularly prominent due to their computational
efficiency and precise control performance, leading to their
widespread adoption in relevant applications.

CF models, which describe the dynamic response
charactenistics of trailing vehicles to preceding ones, are also
applicable to VC systems. In existing studies, Quaglietta et al.
[©] developed a train CF model that incorporated multi-state
transition mechanisms to facilitate smooth transitions across
different operational modes. Pan et al. [12] proposed a
headway calculation method for VC trains and conducted
comparative analyses across eight typical CF scenarios. To
enhance the efficiency of implementing VC in trains, Shuai et
al. [13] designed a desired-spacing-based train CF model to
achieve the coupling of multiple high-speed trains. However,
existing research predominantly employs single-model
architectures with offline-calibrated parameters, which
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results in limitations regarding environmental adaptability,
objective function-driven orientation, and coupling precision
in complex traffic scenarios.

MPC achieves optimal system control by formulating and
solving constrained optimal control problems over a finite
time horizon, resulting in an optimal sequence of control
inputs for future operations. In the context of Centralized
MPC (CMPC) applications for VCTS, Xun et al [14]
proposed a multi-train cooperative CMPC strategy that
incorporates train dynamics to regulate inter-train spacing.
Meanwhile, Su et al. [15] developed an adaptive CMPC
framework for nonlinear safety-constrained VC scenarios,
establishing cruise-phase tracking objectives based on
braking distance differentials and speed disparities. However,
CMPC implementations encounter challenges related to high
computational complexity and significant communication
dependencies. Distributed MPC (DMPC) addresses these
limitations through localized optimization and information
exchange mechanisms [16, 17]. For instance, Liu et al. [18]
innovatively introduced a terminal constraint-based DMPC
architecture to ensure safe and stable control of high-speed
VCTS under complex operating conditions. J. Li et al. [19]
proposed a distributed robust MPC framework combined
with a discrete Kalman filter to address structural and
external uncertainties in VCTS. Furthermore, 7. Liet al. [20]
formulated a bidirectional topological DMPC method for
leader-follower VCTS configurations, overcoming the
limitations of unidirectional architectures and enabling more
robust distributed coordination.

Although DMPC has shown considerable advantages in
VCTS cooperative control, its dependence on conventional
solvers leads to bottlenecks in both computational efficiency
and convergence performance when addressing complex
model  structures, long prediction horizons, and
high-frequency sampling requirements. Matrone et al. [21]
emphasized that achieving high-performance MPC requires
long prediction horizons, which substantially exacerbate
computational complexity, with the complexity growing
superlinearly as the prediction length increases. Lin et al. [22]
experimentally demonstrated that while control accuracy
improves with longer prediction horizons, the computational
time increases accordingly.

In summary, classical CF models suffer from insufficient
environmental adaptability due to their single-model
architectures and reliance on offline-calibrated parameters.
Concurrently, existing MPC approaches face computational
challenges when addressing complex system models. These
observations reveal that single-control approaches for VCTS
exhibit critical technical bottlenecks, including limited
generalization capabilities and suboptimal cooperative
control performance, when applied to dynamic and complex
rail transit operational scenarios. Therefore, to address these
limitations, there is an urgent need for multi-model fusion
frameworks to enhance the system’s environmental
adaptability and operational robustness.

In response to these challenges, this paper proposes a
collaborative control method for VCTS that integrates an
Online Parameter Optimization (OPO) mechanism with a
Multiple Car-Following models and Distributed Model
Predictive Control (MCF-DMPC) method. The methodology
primarily achieves dynamic control and collaborative

optimization of velocity-displacement tracking for VCTS
through the fusion of an enhanced intelligent optimization
algorithm and the OPO method. Experimental results
demonstrate that the proposed method exhibits significant
advantages in computational efficiency, fitness, and control
stability, thereby providing a theoretical foundation and
technical support for the engineering implementation of VC
technology.

II. PRELIMINARIES

A VCTS Model

1) Dynamic modeling of VCTS: In sectional operational
scenarios, the dynamic analysis of VCTS primarily focuses
on the dominant mechanism of longitudinal acceleration.
Guided by Newtonian mechanics and engineering
simplification principles, this study rationally neglects
secondary factors such as grade resistance and curvature
resistance. Consequently, a single-mass point train model is
formulated for flat track conditions:

5,(t)=v(t)
v(t)=u(t)- 1)
w(H=c,+ev (t)+ey, (t)z

where i denotes the 7 -th train unit within the VCTS. N
represents the total number of train units in the set. s, (r)
vi(t] . U, (r) and a)l(r) correspond to the displacement,
velocity, control acceleration, and fundamental resistance of
the 7 -th train unit at time ¢, respectively. ¢,, ¢ and ¢, are
the Davis resistance coefficients.

By selecting state variables x, =[s.v,]" and control
variable #,, the corresponding state transition equations were
discretized using the Euler method as follows:

x,(t+1)=Ax,(t)+ Bu,(t)— Bw,(t) 2

T
T 2
.B:L T
1 2

Within the prediction horizon [tk,rw], the system
predicted state sequence X’ (#, ) and the predicted control
input sequence UI(P) (tk) are defined as:

Xt )= [x; e [ B =s (rk . )T

i
UI(P) (rk ) = |:”z (tk |t )="'=ui (rk |ttt )}

where xl(rk ‘tzm) and u:(tk|tk+1) represent the system

1
where 4 = {0 . T is the sampling time.

€)

state and control mput at time f,,, predicted at time ¢, ,
respectively. Np 1s the prediction horizon.

2) Expected spacing: Under VC conditions, train unit i
must satisfy synchronization targets with its immediately
preceding train unit 7 —1 in both velocity and displacement:

{vi.(tjavi._l(r)

AS, (t)>D2 (t) @

where AS

Li-1

leading and trailing trains. fole (r) represents the expected

(r) 1s the actual real-time spacing between the

spacing between trainunit 7 and its preceding train unit i —1.
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On the premise of ensuring operational safety based on
relative braking distance, Df‘i] (r) 15 calculated as:

(6)=LO(2)+ 12, + VZ(I) v (1)

b
) ()
25, 267

1i-1

&)

where I (¢) denotes the safety margin maintained
between the rear of unit i —1 and the front of unit i after
braking, incorporating equipment response latency, human
reaction time, and communication delays. Lff) represents the
5 and b are the normal

service braking deceleration and maximum emergency

physical length of train unit 7 .

deceleration for unit i, respectively.
Notably, in this study, to facilitate efficient and safe VC,
D(E)

:.(t) does not represent the minimum safe spacing
D(S)

< (#) (it is permissible that: AS, _, (1)< D (¢), while
enhancing safety redundancy). The minimum safe spacing
D(S)l(t) 1s formally defined as:
AQNA0)

D(S) = LES) 4 L(r)
( ) ( ) 2b(m) 21)1(171)

1i-1

(6)

B. CF Models Selection and Enhancement

CF, as a fundamental microscopic traffic phenomenon,
characterizes the dynamic interaction mechanisms between
consecutive vehicles in single-lane scenarios with overtaking
1s prohibited [23]. These mteraction mechanisms exhibit a
strong similarity to the cooperative control characteristics of
VCTS—both require dynamic speed-spacing adjustments of
tollowing vehicles based on feedback of preceding vehicle
states.

Consequently, CF models demonstrate significant
compatibility advantages in addressing VCTS cooperative
control challenges. Meanwhile, physics-based CF models
exhibit broad applicability in traffic control applications due
to their high computational efficiency and reproducibility.
Therefore, from the dual perspectives of functional
adaptability and parametric complexity, this study selects
three physics-based models for integration: the Intelligent
Driver Model (IDM), Cooperative Adaptive Cruise Control
(CACC), and Full Velocity Difference Model (FVD).

1) IDM - As one of the most widely adopted CF models

[24], the TDM features physically interpretable parameters,
calibration simplicity, and broad applicability. The original
IDM formulation is expressed as:

) =4 1L?;>(8)T L’iiﬂ 9

where ™ denotes the maximum traction acceleration of
v (t) represents the desired velocity of train
unit i . & is the sensitivity coefficient.

However, when v,(t) —»v¥ (t) and AS, () > D) (1).
the model results in al( ) approaching af " instead of 0.

train unit i .

This result violates the VC acceleration requirements,
indicating that the original IDM cannot achieve VC.

To address this limitation, this study proposes an enhanced
IDM by redefining the desired velocity as v, (r) . The
optimized [DM is formulated as:

2t o &
a(t) =a™ 2_{“(‘?)} {Df:)l( )} )
v, (1) AS, ,(t)

where & and @, are the sensitivity coefficients for velocity
and displacement, respectively. To substantially enhance the
model’s sensitivity to relative safe spacing, this study fixed
parameter in the original formulation is replaced with the
tunable parameter &,. This modification prevents the term
[fo)l / AS“ 3 )} from reaching unity, particularly in
scenarios where ASW ( ) D:(?1 ( )‘ > 0, which arlses due
to the large orders of magnitude of AS, |, (r) and DI o ( )

2) CACC: The CACC model, proposed by the PATH

Laboratory at the University of California, Berkeley, during
systematic research on traffic flow models with constant
inter-vehicle time gaps [23], is formulated as:

a, (r) =8, (I)+ a, [ASU._1 (;)_ tv, (r)_ L?_)l
- (r)] +6, |:Vi—1 (t)*"f(tﬂ

where &, . &,, and &, denote acceleration, spacing, and
velocity sensitivity coefficients, respectively. ¢, represents

©)

desired time headway.

To adapt to the dual-dimensional consistency control
requirements of displacement and velocity in VC scenarios,
this study structurally refines the original model by
introducing the desired spacing D” : ( ) as a control target.
The improved CACC model is expressed as:

a(t)=0a_(t)+0, [ASLH( )= Di(f)l( ﬂ
+6; [vz—l (t)-v (f)}

This enhanced model accounts for acceleration variations
of the immediately preceding tramn unit, thereby maintaining
robust tracking performance even under non-uniform
velocity conditions.

3) FVD: The FVD model proposed by liang et al. [26],
incorporates the coupling effects of both velocity difference
and displacement difference between adjacent vehicles. The
governing equations of the model are expressed as:

a,(t)=6 [V?(f)*\)l (r)] + 6’[\)7 (t)-v, (r)] (11)

9: 67’ AS:,;—I( )<Di(f)l( )
0’ AS:,;—I( ) Di(f)l( )

where v (¢ ) denotes the spacing-dependent velocity function,

(10)

(12)

and &,, &, and &, represent sensitivity coefficients.
To adapt to consistency objectives, this study proposes a
novel velocity function that integrates the desired spacing:

v () v (t) s, (6)-DE (1)
I( ) v (1)

By introducing v, (¢) into the denominator, this function

(13)

achieves the unified control of displacement convergence
precision and speed regulation magnitude, thereby improving
spacing regulation precision.

However, despite refinements to IDM, CACC, and FVD
models, conventional CF frameworks still exhibit inherent
limitations in goal-oriented adaptability, particularly when
confronted with multi-objective optimization requirements.
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C. Optimization Objective Design for VCTS Cooperative
Control

With the VCTS framework and CF models established,
research emphasis shifts toward formulating cooperative
control objectives. To ensure operational safety and
cooperative control within VCTS while satisfving
velocity-displacement consistency requirements, this study
formulates optimization objectives incorporating energy
consumption minimization, control stability enhancement,
and terminal state constraints in the MPC framework. The
objective function 1s mathematically defined as:

1) Velocity Objective:

k+Np 2
JO=£'S [VI (t1t) vt 18, )} (14)
J=k+l
2) Displacement Objective:
k+ M
IS (85, (t16,)- D (6 11,)] 09
J=k+1
3) Energy Consumption Objective:
k+Np-1 2
J¥=£ 3 [ultlt)] (16)
J=k
4) Control Increment Objective:
o k+Mp-1 3
(s g‘ﬂ {[” (618, )-u(t12)] an

+a () - (8 16)]°}
3) MPC Terminal Constraint Objective:

IE™ =& IO (6 g )+ T2 (8 1 )| O
where £, &, & . &, .and & are the weight coefficients
for each term in the objective function, respectively.

Meanwhile, the train operation must also adhere to several
constraints: (1) minimum safety spacing, (2) block maximum
speed limit, and (3) performance criteria for each train.

Therefore, within the prediction horizon Np , the DMPC
optimization objective function J™* and constraints for

train unit 7 are formulated as:

min JEPED = g 4 O L g8 4 JE0 4 g™
Yils

Subject to:

(19)

A (tk |41 ) = DSEI (Ik | rf”)
0<v, (4 1)<V, 20)
b <u (;k ¢, ) £ 0

YVi=kk+1--k+Np-1

where v,, denotes the block maximum speed limit.

X (1) X7 (1)
DMPC DMPC ———» ase
i (Ik) g (fk) U,

xq*(fk) iUfc) (-%) x;(tk )I le(C) (-%)

((l see !))

X:'(—jlj) (Ik )

5 (7.)

III. DEsIGN oF OPO-MCF-DMPC

Building on the enhanced CF models and optimization
objectives introduced in Section II, this section details the
integration of OPO, MCF, and DMPC into a unified
framework. In developing this framework, it is essential to
address the limitations of conventional single-model CF
architectures: these rely on offline parameter calibration to
passively adapt to predefined objective functions, resulting in
nadequate disturbance rejection capabilities. Moreover, their
adaptability to multi-objective dynamic optimization
requirements in complex traffic scenarios is insufficient. In
contrast, DMPC leverages its intrinsic fault-tolerant
mechanisms and distributed computational advantages to
effectively distribute computational loads across individual
train units, thereby reducing system-level controller
complexity while enhancing both control precision and
real-time responsiveness.

Building upon this comparative analysis, this study
integrated Online Parameter Optimization with Multiple
Car-Following models (OPO-MCF) into the DMPC
framework. The hybrid architecture preserved traditional CF
models' computational efficiency for local dynamics while
adding distributed cooperative mechanisms that enhance
environmental adaptability and goal-oriented performance.

As shown in Fig. 1, under the OPO-MCF-DMPC, each
train unit 1s equipped with an independent DMPC controller
for one-to-one operational control. In this system, x7 (7, )
represents the initial state of the train at time ¢,. U’ (¢, )
denotes the control acceleration sequence for train unit
i obtained through DMPC within the control horizon Nc.

Within each DMPC, 011, )=[6,(1,).6, (8, )-8, ()]
is the sequence of undetermined parameters of the CF model
solved by OPO. AM(t,)= [m(tk Jart (tey ) am (b gy )T
represents the optimal real-number-encoded sequence for
selecting CF models within the prediction horizon, where
m(t, )€ {1,2,3} uniquely maps to the predefined models.

A CF Models Selection Based on MSMFO

(iven the critical role of CF models in controlling VCT'S,
selecting an optimal model structure is essential. However,
the CF model selection problem presents a combinatorial
optimization challenge characterized by significant
non-convexity, complicating the use of conventional solvers,
particularly over long prediction horizons or with
high-density sampling. Consequently, this study employed
heuristic optimization algorithms to mitigate computational
bottlenecks and efficiently approximate optimal solutions.

Train i

Fig. 1. Operating mechanism of OPO-MCF-DMPC.
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The Moth-Flame Optimization (MFO) algorithm 1s a
heuristic swarm intelligence method. Its design draws
inspiration from moths' spiral flight patterns of moths around
light sources [27]. This algorithm demonstrates strong global
optimization capabilities and high solution accuracy when
tackling complex constrained optimization problems with
undefined search spaces, making it particularly suitable for
the combinatorial optimization problem examined in this
study. To further enhance the global search capability and
computational accuracy of the MFO, this research introduces
a Multi-Strategy Moth-Flame Optimization (MSMFO)
algorithm.

1) Cyclic Boundary Rounding. Under the constraint of
integer solutions, the positions of moths and flames must be
discretized. However, the spiral motion of moths oftenresults
in out-of-bounds values. Direct truncation rounding can lead
to solution aggregation at the boundaries, thereby
diminishing the global search capability. To address this
issue, this study proposes a cyclic boundary rounding method
that employs modular arithmetic for the periodic mapping of
out-of-bounds values. This method preserves integer
solutions while avoiding boundary aggregation and
maintaining population diversity. The cvclic boundary
rounding formula is expressed as follows:

Round(m)=| (| m|=1b) mod ub|+Ib  (21)

where Round(m) denotes the rounding operation on |
Ib and ub represent the lower and upper bounds of the
solution, respectively.

2) Logistic-Tent Chaotic Map. The MFO demonstrates a
significant dependency on the initial population distribution
during its search process. To mitigate premature convergence
resulting from uneven population distribution, this study
utilizes the Logistic-Tent chaotic map for population
initialization. This approach integrates the rapid iteration of
Tent maps with the complex dynamic characteristics of the
Logistic map [28]. The mapping formula is defined as:

Round | 7C, (1-C,)+05(4-7)C, |
L ifC, <03
Round | 7C,(1-C, )+ 05(4=75)(1-¢C, )]

pHl

(22)

otherwise

where p isiterationindex ( p=1,2,---,P—1). P represents
the population size. C, represents the mapping function
value at the p -th iteration, and €, is a random number
[0,1]. # 1s a random number withn [0,4],
representing the control parameter of logistic mapping.

3) Elite Opposition-Based Learning Strategy: To enhance
search capabilities and increase population diversity, the
population undergoing elite opposition-based learning is
sorted by fitness value, with the top 40% selected as elite
individuals mg"). These elite individuals are then processed

within

through the using formula to generate new individuals:
M = Round [rz (Ib+ub)— qu

= (23)
where ﬁif) denotes the opposition solution of m;e). r,1s a
p -dimensional random vector with each component in[0,1].

Finally, the population generated through elite learning 1s

combined with the original population and ranked according
to their fitness values. The top p individuals are then
selected to form the new population.

4) Adaptive Adjustment of Flame Count: In the classical
MFQ, the linear reduction of flame count hinders the balance
of convergence performance between the imtial and final
stages. To address this limitation, an adaptive flame
reduction strategy is proposed:

N = Floor {N§” —05[ (v 1)
24
tanh (0.1(k/K —0.5)N” )1} e

where Floor{} denotes the floor function for downward
rounding. k& represents the current iteration number. K
denotes the maximum allowable iterations. N}/’ indicates
the flame quantity at the k -th iteration. Néf ? is the initial

flame quantity.

3) Adaptive Stochasiic Flame Mutation: Moths exhibit a
limited ability to search around flames, which makes them
susceptible to local optima. Stochastic flame mutation
mitigates this limitation by introducing an adaptive
perturbation probability to determine both the timing and step
size of mutations. The perturbation probability is defined as:

rk(g) =1—sin (k—ﬂj
2K

where rk(g) denotes the adaptive mutation probability at the
k -th iteration. If a uniformly distributed random number
7 [0,1] satisfies 7 <& |
activated.

As iterations progress, rk(g) decreases, reducing mutation
probability to shift focus from global exploration to local
exploitation, thereby accelerating convergence. The mutation

(25)

stochastic mutation is

formula is:

F = Round {r;é’) (ub—1b )[1 - %}F;'@ } (26)

where FN;C(”) represents the mutated position of the » -th
flame (n=1,2, ---,N,Ef)) at the k -th iteration.

The fitness values of mutated flames are evaluated against
original values. Mutated positions replace original ones if
they demonstrate superior fitness.

6) Archimedean Spiral-Based Moth Flight: The position
update equation for moths based on the Archimedean spiral is
formulated as:

S(M,.F,)=D,e* sin[ 287(r, —7) |+ F, (27)

where A7, and ¥, denote the positions of the p -th moth
and 71-th flame, respectively. D, =|F, —Mp‘ represents the
straight-line distance between A, and F,. # is a random
number within the interval [#,1], r=—1-k/K .  and f
are spiral shape parameters, setto &« =0.5, f=4.

7) Greedy Algorithm for Refining the Solution: During
iterative processes, the local search capability of the MFO
algorithm gradually diminishes, while MPC control problems
demand higher real-time solution efficiency. To address this,
we propose a hierarchical optimization framework: MFO 1s
first employed for global exploration, followed by a greedy
algorithm for intensive refinement of optimal solutions. The
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greedy algorithm updates each dimensional solution as
follows:

- -1 GO @ L D a1
min [ IR (PR /P /1 i } )
m,((’)e[fb, b} f( i k-1 k ke Mp
4={12,---,00} ke
{£)

where f () denotes the fitness function. m,

(28)
represents the
k -dimensional solution in the ¢ -th iteration of the greedy
algorithm. ¢~ Perm(Np) indicates a random permutation
of the set {1,2,---,Np} . This stochastic dimensional update
strategy enhances the local search capability of the greedy

algorithm.

The greedy algorithm terminates when consecutive
iterations yield identical solutions. The overall workflow of
the MSMFO is illustrated in Fig. 2.

Initialize the
population by Eq.(22)
No
k=Fk+1
Yes
Update the number Perform elite reverse

of flames by Eq.(24) Bl

v

Obtain mutation
adaptive probability
#E by Eq.(25)

¥

learning by Eq.(23)

Moths perform flight Perform random
“ around flamesby [« mutationon flame
Eq.27 position by Eq.(26)
Adopting greedy
algonithm for in-depth |
optimization by Eq.(28)

Fig. 2. Flow chart of MSMFO.

B. Online Parameter Optimization Method for CF Models

Conventional CF models predominantly rely on offline
parameter calibration strategies, which introduce inherent
structural limitations such as response latency and
operational rigidity in dynamic environments. These
deficiencies significantly degrade formation coupling
robustness and situational adaptability. To mitigate these
challenges, we propose a predictive control framework-based
Online Parameter Optimization (OPO) methodology. The
core principle involves constructing and solving a prediction
horizon parameter optimization model using real-ime
system states, enabling dynamic self-adjustment of the
mission-critical CF model’s parameters. The comprehensive
implementation architecture comprises the following
procedures:

Step 1. At time instant ¢, , obtain the current system states,

including: initial state xl(tk) of train i, predicted state

sequence X S? (rk ] , and control sequence Uf;) (tk] of the
preceding tramn i—1.

Step 2. Based on the acquired system states and pending
parameters, solve for the predicted system state sequence

X (t,) and control sequence U (¢, ) using the MCF:
(X2 ()02 (1) |=MCF[ %2, ):0,(1,)] 29

where ©, (1, )=[6,(1,).6,(t,).6,(t, )] is the sequence of
pending parameters for the CF models at time ¢, . MCF []

represents the MCF used to solve the system state sequence
and control sequence within the prediction horizon.

Based on the objective function n (19), the optimization
problem can be reformulated to determine the pending
parameter sequence:

I@I!%BJI(DMPC) {MCF [xi (tk );@I (tk )}}

The constraints are maintained consistent with (20). To
improve computational efficiency, the optimization problem
can be decomposed into model-specific subproblems,
enabling distributed execution of OPO for each model.

The OPO approach proposed within the MCF-DMPC
incorporates  low-dimensionality and  decomposability
principles, ensuring reasonable acceleration output ranges
while substantially reducing computational complexity and
optimization time.

(30)

IV. SIMULATION AND ANALYSIS

This study validates the effectiveness of the proposed
collaborative control method through systematic simulation
experiments. Firstly, the dynamic coupling capabilities of the
three enhanced CF models are assessed. Next, the
optimization effect of the MCF-DMPC integrated model on
coupling performance is verified while benchmarking the
MSMFO against classical intelligent optimization algorithms.
Furthermore, the positive impact of the OPO mechanism on
MCF-DMPC is evaluated through performance comparisons
with conventional solvers, further demonstrating the
effectiveness and superiority of the OPO-MCF-DMPC
system. Finally, the performance of the following train was
compared under different control methods when the leading
train exhibited speed variations.

Assuming the simulated environment is a straight track,
additional resistances are neglected. All train units in these
simulations possess identical performance characteristics,
with their parameters and configurations specified in Table I.

TABLEI
PERFORMANCE PARAMETERS OF TRAIN UNITS
Parameter Value Parameter Value
/s 1.0 ¢, /{m™) 1.0x10°

v ((m-s™) 350/3.6 B (m-s7?) 1.0

I¥ fm 1.5%, b/ (m-s7?) -0.8

" /m 203 a™ /({m-s7) 1.0
¢y /(m-s7) 1.18x107 Np 60

ERACH 7.76x10% Ne 5
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A. CF-DMPC Simulation Results

The simulation was run on MATLAB R2024b with an
Intel(R) Core (TM) 17-11800H CPU (@ 2.30GHz and 32GB
RAM. Three train units were initialized at positions 2000 m,
1500 m, and Om with initial velocities of 220 km/h, 200 km/h,
and 180 km/h, respectively. Train 1 (leader) maintained
constant velocity while following trains coupled with their
immediate predecessors. To replicate real-world operational
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disturbances, control acceleration perturbations were
modeled as normally distributed noise (mean =0, SD =0.01).
The pending parameters for the CF models were defined as:

®, | (12121 0 0.0110.013 0.012 42x107 i
8, 1.4 16.7 0.35 0.012 0.015 0.015 43x107°

Using these parameters, the tracking performance of the

three CF models is illustrated in Fig. 3.
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Fig. 3. Performance comparison of IDM, CACC, and FVD in terms of speed v and desired spacing deviation AS - Do
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Fig. 4. Tracking performance of MCF-DMPC.

As illustrated in Fig. 3, slight performance differences
existed among the three models; yet all models achieved VC
functionality. Furthermore, the combination of CF model and
DMPC enables the CF-DMPC method to possess a certain
anti-interference ability. However, parameters of CF models
require independent calibration for different train units.

B. MCF-DMPC Simulation Results

The simulation scenario remains consistent with that of the
previous section, and the parameter values for the objective
function and the MSMFO are specified in Table II.

TABLEII
PARAMETERS OF THE OBJECTIVE FUNCTION AND THE ALGORITHM
Parameter Value Parameter Value
g, 1.0 Geom 10
£ 0.05 P 50
£, 200 K 100
S 400 NV 50

As illustrated in Fig. 4, the MCF-DMPC effectively
enabled the train to achieve VC. Compared to single CF
model approaches, the MCF demonstrated significant
superiority in minimizing desired spacing deviations.
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Fig. 5. Comparison of J™% among CF models and MCF.

Results in Fig. 5 show that MCF's objective function curve
closely approximated the optimal model's trajectory across
diverse operational scenarios. This close agreement
demonstrates MCF's enhanced alignment capability with
target objectives. Furthermore, it empirically validates the
optimization performance of MSMEFO.

To validate the superiority of MSMFO in model selection,
a benchmark scenario was designed using Train 2 as the
reference. The first prediction horizon of Train 2 was selected
for fitness convergence analysis, with consistent parameter
settings (population size P =50, iteration count K =100 )
across all comparative algorithms. To validate the
performance of MSMFO, it was compared with several
algorithms: the Genetic Algorithm (GA), Particle Swarm
Optimization (P30), and Simulated Annealing (SA) from the
MATLAB Optimization Toolbox, and the MFO. For fair
comparison, SA was configured with 5,000 iterations. The
minimum fitness was recorded every 50 iterations and
normalized to a scale of 100. These comparative results are
shown in Fig. 6-7.

As demonstrated in Fig. 6-7, the proposed MSMFO
exhibited significant advantages in computational efficiency
and solution quality for CF model selection. Specifically, Fig.
6 revealed markedly accelerated convergence of the best
fitness function under the identical iteration counts.
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Fig. 6. Comparative analysis of best fitness across the GA, PSO, SA,
MFO, and MSMFO.
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Fig. 8. Tracking performance of OPO-MCF-DMPC.

Fig. 7 demonstrates that with the equivalent parameter,
MSMFO achieved a 2.2% to 10.2% improvement in the mean
best fitness values and a 4.4% to 16.7% reduction in
computation time compared to altemative intelligent
optimization algorithms. Furthermore, Fig. 6 confirms that
post-iteration refinement via the greedy algorithm facilitates
thorough exploration of the solution space, further enhancing
solution precision and algorithmic stability.

C. OPO-MCF-DMPC Simulation Results

System parameters remain consistent with those in the
previous section, and the tracking performance of the
OPO-MCF-DMPC method is illustrated in Fig. 8.

As evidenced in Fig. 8, the OPO-MCF-DMPC method was
validated to possess technical feasibility for achieving VC.
Empirical analysis confirmed that while exhibiting
marginally higher volatility in desired spacing deviation
dynamics compared to MCF-DMPC, its deviation magnitude
consistently remains within safe thresholds (approximating a
near-zero mean distribution) while maintaining a smaller
spacing than MCF-DMPC. Furthermore, the comparative
distribution of model selecion frequencies between
MCF-DMPC and OPO-MCF-DMPC is illustrated in Fig. 9.

Fig. 9 shows that OPO-MCF-DMPC exhibited a more
balanced distribution pattern in CF model selection compared
to MCF-DMPC. This observation indicates that the OPO
adjusts CF model parameters to enhance adaptability.
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Fig. 9. Selection frequency comparison of CF models.

D. Simulation Comprehensive Comparison

Having validated the efficacy of the OPO mechanism in
Sections IV-B-IV-C, this study conducted a comprehensive
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performance comparison of three methods: MCF-DMPC, (1) velocity tracking error of following trains, (2) spacing
OPO-MCF-DMPC, and DMPC (using MATLAB's built-in ~ deviation from desired spacing, and (3) objective function
fmincon solver). The comparison evaluated three metrics:  value. The results for Trains 2 and 3 are shown in Fig. 10.
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Fig. 10. Simulation comparison of velocity tracking emror Av, =v_, —v,, spacing deviation AS, 7ng) , and objective function value J!(DMPC) .
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As illustrated in Fig. 10, the comparative analysis of three
core performance metrics reveals distinct characteristics
among the evaluated approaches. The MCF-DMPC
demonstrated relatively stable yet comparatively weaker
performance across all indicators. While the DMPC achieved
superior fitness values, it exhibited significant fluctuations in
controlling velocity deviation and spacing deviation metrics.

In contrast to the MCF-DMPC method, the proposed
OPO-MCF-DMPC  approach, despite  demonstrating
marginally lower stability than MCF-DMPC during specific
operational  phases, exhibited unique convergence
characteristics attributed to OPO's parameter correction
mechanism. Throughout mid-to-late simulation stages, both
velocity deviation and spacing deviation metrics converged
closely to zero, indicating superior convergence efficacy. In
terms of objective function performance, the proposed
OPO-MCF-DMPC demonstrates tight trajectory alignment
with DMPC during early-to-mid stages. While there is a
transient overshoot relative to DMPC's levels in the later
phases, the values remain closely aligned overall Notably,
OPO-MCF-DMPC achieves consistent superiority over
MCF-DMPC throughout the entire simulation cycle.

Although Figure 10 illustrates notable differences in
objective function among the three methods, the overlapping
curves impede detailed evaluation of velocity and spacing
deviations, necessitating clear quantitative analysis. Table IIT
provides consolidated results of per-train mean absolute
deviations for the both full simulation and the late phase.

TABLE I
COMPARISON OF VELOCITY DEVIATION AND SPACING DEVIATION BETWEEN
ENTIRE SIMULATION AND LATE PHASE

Velocity Spacing
Run Phase Run Phase

MCF-DMPC 0650 0031 6365 6805

Tr;i“ OPO-MCF-DMPC  0.644  0.028 2967  2.042
DMPC 0642 0040 2409 2106
MCF-DMPC 1467 0061 30950  5.073
Tr_,?i“ OPO-MCF-DMPC 1481  0.056  27.840 2218
DMPC 1480 0065  27.815 2382
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Fig. 11. Computational time for solving of MCF-DMPC, OPO-MCF-DMPC, and DMPC.
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A quantitative analysis of convergence behavior, focusing
on speed and spacing deviations as summarized in Table IT1,
reveals distinct performance characteristics. Throughout the
entire simulation duration, the proposed OPO-MCF-DMPC
consistently demonstrates lower mean absolute deviations
compared to the MCF-DMPC, with this advantage being
particularly pronounced for spacing deviations. However, the
DMPC  approach maintains a slight, albeit marginal,
performance edge over OPO-MCF-DMPC during this
overall phase for both deviation metrics. In the late
simulation phase, corresponding to the period when stable
VC 1s typically established, OPO-MCF-DMPC exhibits
marked superiority, achieving significantly lower mean
absolute deviations in both velocity and spacing than both the
baseline MCF-DMPC and the DMPC. This pronounced
enhancement in convergence precision during the late phase
strongly  indicates that OPO-MCF-DMPC  delivers
exceptional tracking performance specifically under the
operational conditions of established VC.

In practical engineering applications, the real-time
requirements for the system are extremely stringent, and the
time cost for establishing VC in a VCTS 1s also one of the
important indicators for measuring performance. When
28,40 - D3 (0] < —v,, (0] <0.01(m-
5"), it can be considered that the tram i has successfully
achieved VC. Thus, this article employs two core
metrics—computational time and VC stabilization time—to
conduct a detailed comparative analysis of the three methods,
as illustrated in Fig. 11.

As shown mn Fig. 11 under long-prediction-horizon
conditions, MCF-DMPC achieved the shortest solution time.
Although the incorporation of the OPO optimization
mechanism resulted in OPO-MCF-DMPC having a slightly
higher average computational time (approximately 0.055
seconds) than MCF-DMPC, its average solution time of
0.282 seconds remained markedly superior to conventional
DMPC's 0.439 seconds—representing a 35.8% improvement.
This performance level satisfies practical engineering
requirements.

The comparison of VC establishment time 1s presented n
Fig. 12:
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Fig. 12. VC establishment time of MCF-DMPC, OPO-MCF-DMPC, and
DMPC.

As shown in Fig. 12, in terms of VC establishment time for
the VCTS, both DMPC and OPO-MCF-DMPC outperformed
MCF across all train units. However, the comparative
performance between the DMPC and OPO-MCF-DMPC in
VC establishment time exhibited train-specific dominance,
with neither method universally superior across all trains.

In summary, experimental results demonstrated that the
proposed OPO-MCF-DMPC collaborative control approach,
achieved by integrating MCF-DMPC and OPO, significantly
enhanced the collaborative control performance of VCTS.
Compared with classical single CF models and standard
DMPC, the proposed method demonstrated significant
advantages in computational resource usage, real-time
response capability, and global convergence, showcasing
promising prospects for engineering applications.

E. Variable Speed Simulation

Based on the theory of VC, a strong coupling exists
between the desired spacing and train operating speed. This
coupling makes 1t challenging for VCTS to simultaneously
meet the dual requirements of both velocity and displacement
accuracy during continuous variable-speed operations.

Therefore, considering the frequent occurrence of such
variable-speed scenarios in real-world rail operations, the
following simulation case was designed to systematically
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validate the dynamic tracking performance of the proposed
control methods under the scenarios where the leader
changes speed:

The VCTS consists of a two-train formation. At the
simulation start time, Train 2 (the following tran) had
completed VC with the leading train. Both trains were
initialized to an operating speed of 220 km/h, while all other
system parameters retained their initial configurations.

The speed control strategy for the leading train was
designed as follows: First, it decelerated from the initial
speed of 220 km/h to a target speed of 180 km/h with a
braking deceleration of 0.2 m/s* Subsequently, it maintained
this target speed for 100 seconds. Finally, it accelerated back
to the initial speed of 220 km/h with a tractive acceleration of
0.2 m/s*. The dynamic response processes of each model
under this variable-speed scenario are shown in Fig. 13.
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Fig. 13. Comparison of speeds of various methods under a variable-speed
scenario.

Fig. 13 reveals that the velocity curves of all models
exhibit high consistency. Notably, the OPO-MCF-DMPC
maintained excellent tracking precision even during speed
transition phases.

Further analyzing performance differences across methods,
Fig. 14 presents a comparative analysis of velocity tracking
errors and relative spacing deviations under variable-speed
operational scenarios.
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Fig. 14. Comparison of velocity tracking error Av, =v —v, and spacing deviation AS, - Df) among various methods.
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As illustrated in Fig. 14, the velocity deviation curves of all
methods exhibited similar dynamic characteristics; however,
they demonstrated differentiated performance in spacing
control. Specifically, the MCF-DMPC exhibited marginally
higher spacing deviations compared to other methods, while
both OPO-MCF-DMPC and DMPC demonstrated superior
spacing maintenance capabilities, with all deviations
remaining consistently within the 5 m threshold.

To comprehensively quantify dynamic performance
disparities across control strategies, Table IV presents the
mean absolute velocity and spacing deviations recorded over
the entire test cycle for all evaluated methods.

TABLEIV
COMPARISON OF VELOCITY DEVIATION AND SPACING DEVIATION UNDER THE
VARIABLE-SPEED OPERATIONAL SCENARIOS

Method dev};ft:ilgrflt(fn/s) df:\?i[;?i‘g:‘%m)
MCF-DMPC 0677 7.153
QOPO-MCF-DMPC 0.674 1.628
DMPC 0.680 1.747

The quantitative evidence in Table I'V clearly demonstrates
the consistent superiority of OPO-MCF-DMPC over both
MCF-DMPC and conventional DMPC in velocity deviation
and spacing deviation. These findings conclusively establish
the enhanced efficacy of the OPO-MCF-DMPC architecture
in preserving operational stability and tracking precision
during complex variable-speed operations.

V. CONCLUSION

To address the complex dynamic requirements of VCTS in
distributed cooperative control systems, an integrated
OPO-MCF-DMPC method was established in this study. Key
contributions are summarized as follows:

(1) Three CF models (IDM, CACC, and FVD) have been
refined to better satisfy speed and displacement consistency
objectives in VC scenarios. The enhanced models, through
synergistic integration with the DMPC framework,
strengthen the system's adaptability to complex dynamic
environments and deliver higher-precision foundational
model support for VCTS control.

2y A MSMFO algorithm incorporating chaotic mapping
mnitialization, adaptive flame quantity adjustment, and
stochastic mutation strategies has been developed. This
significantly enhances the global search capability and
computational precision of conventional MFO. Simulation
results demonstrate that MSMFO improves fitness values by
2.2%-102% and reduces computational time by
4.4%—16.7% compared to traditional algorithms (GA, PSO,
SA, and MFO) when addressing CF model selection
problems.

(3) Integrated within the MCF-DMPC framework, the
OPO mechanism significantly enhances VCTS coordination
control. By dynamically calibrating CF model parameters, it
overcomes static parameter limitations inherent to
conventional approaches.  Simulation-verified results
demonstrate closer alignment between train states and
desired states, with significant improvements in coordination

precision and environmental adaptability across constant-
and variable-speed operations.

(4) Comparative analysis confirms OPO-MCF-DMPC
achieves 35.8% faster computational efficiency than DMPC
while demonstrating superior control accuracy in both
velocity and spacing deviations relative to MCF-DMPC, with
objectives comparable to DMPC. This validates the method's
responsiveness to real-time engineering requirements.

This research advances theoretical VCTS control
methodologies and introduces novel implementation
frameworks. The proposed strategy delivers substantial gains
in computational efficiency and environmental resilience,
thereby enhancing operational safety and performance.
Future work will develop neural network-enhanced OPO
mechanisms to enable systematic advancement and scaled
deployvment of VC technology.
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