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Abstract—The smart grid is a self-employed future gener-
ation electricity grid. The demand response programs have
proved a valuable contribution towards the implementation of
this future grid. With the help of advanced metering infrastruc-
ture, it becomes viable for home users to optimize their load
with the rotation of real-time prices as well as minimize the cost
incurred for their energy consumption. This paper presents
a distributed load scheduling method for demand response
programs in the framework of the smart grid. The distributed
optimization approach has been carried out to optimize the
cost of the user and load leveling for utility. This algorithm is
implemented using alternating method of multipliers (ADMM)
via parallel approach. The cost saving of users can improve
the mechanism of the system and encourage other users to
participate. The simulation result proves the efficiency of the
proposed algorithm.

Index Terms—Smart grid, demand response programs, real
time pricing, advanced metering infrastructure, Lagrange mul-
tiplier.

I. I NTRODUCTION

The rapid growth of energy demand has become a huge
issue for the electricity grid. So, the smart grid has evolved
to deal the with problems with the electricity grid. Electri-
cal industry and people from academia have assessed the
implementation of a smart grid to meet the forthcoming
energy demand. Advanced technologies and communication
techniques have emerged in smart grids to serve the future
power system. The concept of smart grid has come up with
the self-healing advancement, user accompanied approaches,
and reliable methods for control of the electricity grid. The
advanced metering infrastructure and smart meters have a
key role in making smart grid implementation feasible [1]
reviewed that the advantages of smart grid have enhanced the
customer participation and reliable decisions in the electrical
industry. Demand response (DR) programs are an integral
part of the smart grid which accompanies the activity on
the demand side of grid. The concept of demand response is
associated with increasing customer involvement to minimiz-
ing the cost incurred on their energy usage. The US Energy
Department has defined demand response as, “the customer
electricity usage can be changed by variation in the electricity
prices, or to induced lower energy usage in exchange for
incentive payments at times of high market prices or system
reliability is jeopardized” [2]. DR programs can be classified
into two types: price-based DR and incentive-based DR. In
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price-based DR customer has given the option to schedule
their energy consumption with different pricing options such
as time-of-use pricing (TOU), critical peak pricing (CPP),
and real-time pricing (RTP) tariff to get reduced energy bill
[3]–[5]. Incentive-based DR programs regulate by providing
customers some incentive to reduce their energy consumption
at the time notification appears from the program sponsor.
The contribution [6] of the work reflects that price-based
programs are highly dependent on smart metering technol-
ogy which allows bidirectional information communication
between the user and energy provider company.

DR programs contribute a variety of monetary and oper-
ational benefits to the customers and energy providers. The
electricity cannot be stored economically and the supply-
demand balance should be maintained in the real system.
With the regulation of DR programs home, customers have
a chance to schedule their appliances in accordance to less
electricity prices. In order to balance the supply-demand
ratio the flattenned load curve can be achieved using the
techniques of demand side programs. For encouraging the
user to involved with DR programs TOU and RTP schemes
play a vital role. In TOU pricing the day is divided into slots
depending on peak and off-peak hours, followed by varying
the prices in the slots. Whereas RTP gives customers hourly
varying tariffs that reflect the value and price of energy for
distinct time slots [7]. An artificial intelligence (AI) based
household energy management is presented in [8], here a
genetic algorithm is used as knowledge base AI to optimize
energy consumption of houses on weekdays and weekends.
However, the heuristic algorithm is not sufficient to mitigate
uncertain load scheduling.

A. Related work

The DR technologies have many approaches to explore
the utilization of the sources and manage the demand. In
the literature, authors have given different solution methods
to recognize the DR problem from the perspective of resi-
dential users [9]. A wireless sensor network-based intelligent
smart home energy management system named MinNet was
developed in [10]. The implementation of a wireless sensor
network for the purpose of appliance state monitoring and
occupancy inference is done. The optimization problem is
formulated for the optimal placement of sensors to estimate
the on-off states of home appliances from aggregated and
person occupancy in the room. A utility model is introduced
to analyze the price elastic behavior of aggregated load
from customers [11]. The social welfare maximization of
consumers is calculated using the elasticity model without
the excessive information change among consumers and
utility companies.

A game theoretic approach is developed for the energy
consumption scheduling of residential consumers [12]. The
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performance of the approach is analyzed regarding minimiz-
ing the usage costs to find the Nash equilibrium of the energy
consumption game. A nonlinear time-based rates model
is created to extract mathematical expressions for time-of-
use (TOU) DR programs [13]. The demand side problem
has been explored using different classical and heuristic
optimization methods. In this context, author proposed a day-
ahead load-shifting mechanism as a minimization problem
using an evolutionary algorithm [14]. In this method, the
peak load is shifted to off-peak hours to achieve the objective
load curve which depends on the electricity price. They have
considered a large type of smart grid serving three different
areas for implementation purposes.

A home-to-grid algorithm is introduced to cut the peak
energy usage of a household user [15]. In this algorithm,
Baye’s theorem is used to determine the probability of each
appliance’s energy consumption based on historical usage
data. The algorithm result leads to cost reduction in domestic
energy and reduces or even eliminates peak-hour energy
consumption. In [16], the DR problem is solved using convex
programming with home appliances load management. This
method solved the formulated problem in termsL1 regular-
ization technique to solve a shiftable load of appliances in
the form of a binary decision variable. The home energy
management problem with PV generation, energy storage
devices, and mixed types of home appliances AC and DC
load is formulated in [17]. To investigate the behavior of
batteries and characteristics of AC and DC conversion, the
different comparison has been made which results in the
increment in savings.

In the literature, the implementation of the most DR
problems has been solved using centralized techniques. In
a centralized manner, the user is not allowed to make their
decision on their own. A centralized controller or utility
will take the decision on behalf of the user. Whereas in
the distributed optimization consumer are offered to make
their own decision for load scheduling. The centralized
framework does not provide privacy preservation of user
information. To preserve privacy, a data privacy preservation
model is proposed in [18], where the constraints-relaxed
functional dependency method is approached. However, these
methods produce more distortion in data, so the data is
not utilized as required. Some authors in the literature have
explored distributed optimization techniques. In this context,
the author in [19] proposed a multiagent framework to solve
the DR problem for heterogeneous homes. Different type
of agents is considered such as home agents (HAs) and a
retailer agent (RA) to evaluate distributed control algorithms
for scheduling heterogeneous household electricity usage to
improve energy efficiency. A distributed algorithm to solve
the DR problem exists in [20] using the Newton method.
A distributed algorithm to minimize the electricity bill of
users with electric vehicle load scheduling in a smart grid
is developed in [21]. In this work, the optimization is
done using the alternating direction method of multipliers
which results in fast convergence and optimal solution to the
problem.

B. Contribution to work

In this paper, some household user is registered for the
price-based demand response program in the framework of

the smart grid. Multiple energy user is supplied power by a
utility company. A home area connection is made through
the technology of advanced metering infrastructure. The
connection between utility and user can also be made via
a home automation wireless network based on Bluetooth
devices [17]. A load of users is considered from historical
load data. To avoid the limitation of a centralized manner
for load scheduling optimization, the distributed algorithm
is implemented for the purpose of minimizing user daily
costs. In this work, the alternating direction method of mul-
tiplier (ADMM) is used to solve the optimization problem.
This algorithm works in parallel form. This method can be
advantageous to the user because they don’t need to share
their information with the utility. Which makes this system
reliable and controlled to ensure user privacy. The ADMM
guarantees the fast convergence of the problem and it can be
easily implemented in practical cases.

The paper is organized into five sections. Section 2
presents the system model of energy multi-user with char-
acteristic load. Section 3 discusses the problem description
and proposed distributed algorithm. The simulation result of
analyzing the given system model is presented in Section 4.
Finally, the paper is concluded with future aspects in Sec-
tion 5.

II. SYSTEM MODEL

In this system architecture, a utility company is supplying
electricity to multiple user systems as shown in Fig 1. Each
user is installed with an automatic load control unit (ALCU).
It is assumed that the built-in smart meter is composed in
ALCU. This unit can be used as a medium of communi-
cation between utility and energy users. Here each user is
participating in the price-based DR program offered by the
utility company. This system exhibits a distributed model in
which users don’t need to share their load information with
the utility so that the privacy of users can be maintained. The
user is allowed to make the scheduling decision through their
ALCU system in which user preferences can also be sent.
The different options are available for the user to participate
in the DR programs. The different objectives have been built
in ALCU for the sake of users. The ALCU receives the real-
time price data from the gateway built for the residential by
the utility and applies the DR algorithm to find out when
and how to operate home appliances.

The proposed DR algorithm aims to automatically control
the load of home appliances and optimize the benefit for
users. The load of users and cost incurred by energy usage are
optimized using a distributed DR algorithm. The objectives
can be composed as follows,

• The reduction in peak demand of the load curve.
• Reduce the energy cost of energy bills.
• The regulation of energy efficiency in a household.
• Utilization of energy when electricity prices are low.

A. Appliance load

The household user consists of distinct characteristic ap-
pliances. The home appliance can be classified into two main
types as follows.
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Fig. 1. DR system architecture

1) Non-shiftable appliances:The non-shiftable appliance
is non-interruptible in nature. The load corresponding to the
type of appliance is considered as base load of a household.
It is necessary to fulfill their energy requirement as they can’t
be shifted to any other time slot. Even their load cannot be
varied under any condition such as dynamic electricity prices.

2) Shiftable appliances:The shiftable appliances can be
shifted from one to another time slot. These appliances
have some minimum and maximum energy consumption
limits during utilization. Shiftable appliances can be a time-
shiftable and power-shiftable appliance. In time-shiftable
their energy demand cannot be compromised but possible
to shift from one slot to another as offered by the load
scheduling mechanism. Power-shiftable appliances cannot be
interrupted once start running, but their energy can be varied
within a limit.

B. Real time pricing (RTP)

The user is offered real-time prices from a utility for
enrolling in the DR program. Users will get information on
electricity prices for particular hours. In the past, several
pricing models have been explored for household users.
British Columbia (BC) Hydro and Power Authority has
developed inclining block rates (IBR) [22]. BC Hydro and
Power have announced the price of electricity as from7.52
Cents/kWh to11.27 Cents/kWh as per the energy usage of
users. They price the user7.52 Cents/kWh as the first slot
price when the two-month energy usage is less than1350
kWh, and the user pays to second installment price i.e.11.27
Cents/kWh if the limit exceeds.

In the power system, the energy demand is not static
quantity and the storage comes with economic issues, which
result in an imbalance supply-demand ratio. To meet the peak
demand the different generation plants can be integrated, but
their installment cost is high. To manage the peak demands
the real-time pricing tariff has developed these days. With

the help of real-time pricing, the load in peak hours can be
reduced to a certain limit. In this paper, we have used RTP
data from Ameren Illinois Corporation [23].

III. PROBLEM FORMULATION AND DISTRIBUTED

ALGORITHM

A. Electricity usage model for user

The problem of automatic load scheduling can be done
in a various manner. Although the main objective is to
maximize the savings on daily electricity bills that occur to
users it minimizes the total electricity cost of the system.
In this load scheduling an assumption is made that with
the help of distinct prediction techniques embedded in the
ALCU, it is able to predict the day-ahead load for each user.
Then by implementing an algorithm embedded in ALCU, the
electricity bill can be optimized via the load-shifting concept.
The optimization problem for load shifting can be formulated
under the following cases. In this paper,N number of users
is considered which is denoted byn, where,n ∈ N . Each
user has some non-shiftable and shiftable kinds of appliances.
This day-ahead load scheduling is taken for24 hour which
is denoted byt. The total load of userEn,t can be written
as follows,

En,t = Eshiftable
n,t + Enon−shiftable

n,t (1)

where,Enon−shiftable
n,t andEshiftable

n,t are non-shiftable and
shiftable appliance load, respectively. The number of non-
shiftable and shiftable appliance varies for each user in the
system.

The concept of the load shifting technique is explained
in Fig 2. The load shifting is done by transferring the load
from high price hour to low price hour. Thexn,t is the load
shifting variable ofnth user in hourt. The electric price in
each hour is denoted byPt. The objective function which
depicts the load scheduling of energy users can be discussed
in the following cases.
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Fig. 2. Load shifting technique

1) Case 1: Peak-to-Average Ratio (PAR) minimization:
In this case, the objective function for optimizing Peak-to-
Average Ratio (PAR) minimization can be formulated in
terms of the total load of the user. The non-shiftable load
of the user is fixed during optimal load scheduling. Shiftable
loads are loosely constrained for PAR minimization. Here
only shiftable load can be user for load-shifting purposes.
The objective functionPAR can be represented as follows.

Minimize PAR =

Max

{
Enon−shiftable

n,t + xn,t

}

Avg

(
En,t

) ∀n ∈ N

(2)
Subject to:

Eshiftable,min
n,t ≤ xn,t ≤ Eshiftable,max

n,t ∀n ∈ N (3)

24∑

t=1

xn,t =
24∑

t=1

Eshiftable
n,t ∀n ∈ N (4)

The load shifting variable of each user is different, and it
is calculated in a parallel iterative procedure. In this case,
the aim of optimization is to shift a total load of user. The
total cost occur on each userCn can be calculated as,

Cn =
24∑

t=1

(
Pt ∗ (E

non−shiftable
n,t + xn,t)

)
(5)

2) Case 2: PAR minimization using additional load:In
this case, the objective function is made with additional load
added with shiftable load. This objective can have more
impact on the saving of user because of tightly constrained
shiftable load regulates the load shifting process. The similar
objective can be made as follows.

Minimize PAR =

(
Eshiftable

n,t + xn,t

)

Avg

(
En,t

) ∀n ∈ N (6)

Subject toAn ∗ xn,t = Bn ∀n ∈ N
24∑

t=1

xn,t = 0 ∀n ∈ N
(7)

where,An is the coefficients of shiftable load andBn = 0.
The total cost of each user can be defined as:

Cn =

24∑

t=1

(
Pt ∗ (E

non−shiftable
n,t + Eshiftable

n,t + xn,t)

)

(8)

3) Case 3: Cost minimization with real time price coeffi-
cient: This case represents the optimization of total load for
each user with respect to real time price coefficients. The
optimization problem can be formulated such as,

Minimize f(x) =

24∑

t=1

(
Pt ∗ (E

non−shiftable
n,t + xn,t)

)

∀n ∈ N
(9)

Subject toAn ∗ xn,t = Bn ∀n ∈ N
24∑

t=1

xn,t =

24∑

t=1

Eshiftable
n,t ∀n ∈ N

Eshiftable,min
n,t ≤ xn,t ≤ Eshiftable,max

n,t ∀n ∈ N

max(Enon−shiftable
n,t + xn,t) ≤ Emax

n,t ∀n ∈ N
(10)

WhereAn is the coefficients of sum of total load andBn =
Eshiftable

n,t . The energy cost of each user is formulated as,

Cn =
24∑

t=1

(
Pt ∗ (E

non−shiftable
n,t + xn,t)

)
(11)

4) Case 4: Cost minimization using additional load:
This case evaluates the performance of optimization for the
cost saving formulation. Here the aim of optimization is
centered around cost optimization of energy user which can
be proven highly effective for bill saving of user.

Minimize:

f(x) =

24∑

t=1

(
Pt ∗ (E

non−shiftable
n,t + Eshiftable

n,t + xn,t)

)

∀n ∈ N
(12)

Subject toAn ∗ xn,t = Bn ∀n ∈ N

Eshiftable,min
n,t ≤ xn,t ≤ Eshiftable,max

n,t ∀n ∈ N
24∑

t=1

xn,t = 0 ∀n ∈ N

(13)
Where,An is the coefficients of total loadBn = 0. The
energy cost of each user is formulated as,

Cn =

24∑

t=1

(
Pt ∗ (E

non−shiftable
n,t + Eshiftable

n,t + xn,t)

)

(14)
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5) Case 5: Dual objective:In this case a dual objective
approach is analyzed. This function comprises the PAR of
load and cost both. This approach can be proven highly
effective because of the summing the two main aim of the
system. To add two different quantities both components
need to be normalized between 0 and 1. It can be formulated
as follows,
Minimize:

Dual fn = P̂AR︸ ︷︷ ︸
NormPAR

+ α︸︷︷︸
Weightage

∗ f̂(x)︸︷︷︸
NormCost

∀n ∈ N

(15)

Dual fn =

Max

{
Ênon−shiftable

n,t + x̂n,t

}

Avg

(
Ên,t

) +

α ∗

(
P̂t ∗ (Ê

non−shiftable
n,t + x̂n,t)

)
∀n ∈ N

(16)

Subject toAn ∗ xn,t = Bn ∀n ∈ N

Eshiftable,min
n,t ≤ xn,t ≤ Eshiftable,max

n,t ∀n ∈ N
(17)

WhereAn is the coefficients of constraint, which is sum
of total load andBn = Eshiftable

n,t . Here α is defined as
a constant parameter which can affect the performance of
optimization process. The significance of this parameter is
defined in result section. The energy cost of each user is
formulated as,

Cn =
24∑

t=1

(
Pt ∗ (E

non−shiftable
n,t + xn,t)

)
(18)

Benefits of all different case study are shown in Table I.

TABLE I
CASE STUDY

Utility

Beneficial

Case 1: PAR minimization with relaxed load constraints

Case 2: PAR minimization with strict load constraints

Consumer

Beneficial

Case 3: Consumer benefits with strict upper power limit

Case 4: Consumer benefits with relaxed upper power limit

Dual

Benefits
Case 5: Dual benefits for consumer and utility

B. Distributed Optimization using ADMM

In this paper, the optimization of convex problem set in
equations (2), (6), (9), (12) and (16) has been solved by
the iterative procedure in distributed manner. The distributed
optimization framework overcome the disadvantage occurred
in a centralized manner. Distributed optimization offers en-
ergy user to optimize their saving in seprate manner. In this
framework, the user needs not to expose their information
to the utility company. Therefore, optimization is done using
an alternating method of multiplier ADMM in a distributed
manner [24].

1) ADMM Method:Alternating direction method of mul-
tipliers (ADMM) is well recognize technique to distributed
convex optimization. Consider a constrained convex opti-
mization problem for functionf(x) ,

Minimize f(x)

Subject toAx = B
(19)

Wherex ∈ Rn, A ∈ Rm×n andf : Rn → R is convex.
By using Lagrangian the problem can be expressed as,

L(x, y) = f(x) + yT (Ax− B) (20)

Wherey is the Lagrange multiplier. For solving the problem
using Lagrangian method the dual iterative procedure can be
made as,

xk+1 = argminL(x, yk)

yk+1 = yk + αk(Axk+1 −B)
(21)

Whereαk is a step size.The dual method can be extended to
Augmented Lagrangian methods. The augmented methods
are introduced to increase the robustness of dual methods.
The augmented Lagrangian of problem 19 is,

Lρ(x, y) = f(x) + yT (Ax−B) + (ρ/2)‖Ax−B‖22 (22)

Where ρ > 0 is penalty parameter. With association of
augmented Lagrangian the optimization problem can be
formed as,

Minimize f(x) + (ρ/2)‖Ax−B‖22

Subject toAx = B
(23)

The dual update can be made as,

xk+1 = argminLρ(x, y
k)

yk+1 = yk + αk(Axk+1 −B)
(24)

The augmented Lagrangian method is called alternating
direct method of multipliers [25]. Steps of ADMM algorithm
is presented in stepped manner in Algo. 1.

Algorithm 1 Steps for ADMM algorithm
Step - 1:Given small numberǫ , ρ , α = 0 and arbital values
f(0) , x(k+1) andy(k+1)

Step - 2: Repeat
Step - 3: (Agent(1)) : Solve (20), to determineL(x, y)
Step - 4: (Agent(2)) : Solve (22), to determineLp(x, y)
Step - 5:Update multiplierα(k+1) = αk + ρ∗(Ax(k+1)−B)
Step - 6: Untill ||Ax(k+1) - B|| ≤ ǫ, sett = t+ 1.

2) DR distributed algorithm: The distributed ADMM
method is applied to the DR problem stated in Section III-A
. The individual user problem can be easily solved by the
distributed algorithm. The problem in (16) can be extended
in Lagrangian form as,

Lρ(xn,t, y) =

24∑

t=1

(
(En,t + xn,t)

2
+ α ∗ Pt∗

(Enon−shiftable
n,t + xn,t)

2
+ yT (Anxn,t −Bn)

+(ρ/2)‖Anxn,t −Bn‖
2
2

)
∀n ∈ N

(25)
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whereρ is a predefined penalty parameter. Basically ADMM
cycles through the following update until its convergence is
reached.

xk+1
n,t = argminLρ(xn,t, y

k) (26)

yk+1 = yk + αk(Anx
k+1 −Bn) (27)

To solve the equation (26) and (27), iterative procedure is
continuing upto convergence is reached. The iteration of
procedure is denoted byk. The xk+1

n,t is update by solving
convex optimization problem. The problem in (26) and (27)
can also be solved in parallel. In remaining paper, this
iterative procedure is referred as ADMM scheduling method.

Start

Construct consumer load profile based on
shiftable and non-shiftable load appliances.

Select desired objective
function as per requirement.

Apply ADMM demand
response distributed algorithm.

Examine whether distributed
optimization is achieved?

Check desired benefits
achieved?

Display benefits in terms of PAR
improvements and consumer benefits.

Stop

Yes

Yes

Yes

Yes

No

No

Fig. 3. Flowchart of distributed demand response framework.

Flow chart presents the demand response framework using
various objective function optimized in distributed manner in
Figure 3.

IV. N UMERICAL RESULTS AND DISCUSSION

A. Numerical Setup

In this paper,N = 10 number of residential user is con-
sidered for distributed ADMM scheduling. Each customer
is considered with15 to 20 home appliance. The appliance
load of user is non-shiftable and shiftable in nature. The
sum of shiftable and non-shiftable load is taken from BGE
suppliers [26]. The total load of the system can be shown
in Fig. 4. The customers are contracted for the RTP data
information. The RTP data used in this paper has been taken

from Ameren Illinois Power corporation [23]. The RTP price
data is shown in Fig. 5. The implementation of proposed
algorithm is executed on the platform of MATLAB software
on Core i3 processor.

B. Result and discussion

In this paper different objective approach is implemented
via distributed optimization to analyze the customer saving.
From the point of utility company the flatten objective load
curve is highly desirable. But from the point of a customer,
they focuses on their energy bill saving. Here, the customer
energy bill is optimized with consideration of objective load
curve. Therefore utility company and customer both will
get benefits from the proposed algorithm. In the proposed
distributed algorithm each user is optimizing their objectives
in parallel form. The peak to average ratio for the system
can be defined as,

Peak to average ratio (PAR)=
Peak load of the system

Average load of the system
(28)

The Case 1 evaluates the minimization the total load on
the system by load shifting technique. Here the price is not
having any role in an optimization process. The unscheduled
and scheduled load for case 1 is shown in Fig. 6(a). The
scheduled load curve is almost flattening which shows the
best possible peak to average ratio. If we see the practically
the flat load curve is not easily available because of consumer
preferences and lack of shiftable appliances availability. In
this case, the PAR is minimized by27.16%. After applying
load scheduling algorithm the user has gained considerable
cost saving on their bill which can be interpreted from Fig.
6(b). The total bill saving of each user is determined by
the difference with and without scheduling cost. Here it can
be analyzed the user which has participated in shifting with
more amount of load have gained more saving on bill as
compare to others. For this case, the user2 has gained13.93
Cents/day, which is highest saving among all user. The total
energy bill saving for the system is obtained4.9 %.

In the Case 2, the user is allowed to optimize only shiftable
appliance load. The result in Fig. 7(a) shows the load before
and after scheduling. The peak to average ratio in this case
is minimized by16 %. The cost saving for individual user
is shown in Fig. 7(b). The total cost saving for the system
is maximized by2.9 %.
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Fig. 6. Simulation results for Case 1

In the Case 3, total load minimization with RTP price
coefficients is served as a goal of the optimization. The Fig.
8(a) represents the load with and without scheduling. The
cost saving for each user can be represented in Fig. 8(b).
In this case, the cost saving has more impact as compare to
PAR. The involvement of price coefficients is proven to be
efficient for cost saving purpose. The total200.68 Cents/day
cost saving is achieved for the system. Whereas individually
say user 2 and user 3 has gained highest saving i.e.25.96
and 25.17 Cents/day cost saving. The Case 4 introduces
the objective as cost minimization of the individual user.
The results in Fig. 9(a) shows the impact of load scheduling
on the total load of the system. The proposed distributed
algorithm solved each optimization problem to achieve the
highest benefit for the user which lack behind the objective
load curve responsibility. Therefore PAR of the system is
increased for the particular case. The cost benefits redeem
by an individual user can be critically examined in Fig. 9(b).
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Fig. 7. Simulation results for Case 2
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Fig. 8. Simulation results for Case 3

The total296.4 Cents/day cost saving is obtained in this setup
which is considerably large.

The Case 5 implements the optimization of function made
from cost and load minimization. From the Fig. 10(a), it can
be analyzed that obtained load curve is highly desirable for
any utility company. The scheduled load curve almost looks
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Fig. 9. Simulation results for Case 4

li ke flattening curve with consumer preferences. In this case
both objective such as PAR minimization and cost saving
both achieved in a balanced manner. The total cost saving
from this case is132.4277 Cents/day as shown in Table II.
The constantα represents can affect the convergence rate of
algorithm, here it is considered as 0.1.
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Fig. 10. Simulation results for Case 5

Fig. 11 shows the scheduled load comparison for each case
with unscheduled load. From Fig. 11, it can be seen that the
best load curve is achieved in Case 1 but with less amount
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Fig. 11. Load scheduling

of savings. Whereas the Case 5 offers appropriate load curve
as desired for practical scenarios. For Case 5 it also gives
the sufficient amount of cost saving to the users. Also from
Table II, it is seen that Case 5 can be proven most suitable
objective for utility as well as for user. The convergence plot
for objective function of a single user is shown in Fig. 12. It
can be seen that user is able to optimize their objective after
completing 20 iterations of the process. The error deviation
is shown in Fig. 13, which is also getting settled after 20
iterations.

Fig. 12. Function convergence Plot

Fig. 13. Error convergence plot
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As per computational aspect, it is not necessary to increase
the value ofρ to infinity in order to induce the convergence in
method of multiplier. This is an important advantage, which
results into elimination ill conditioning (non-convergence)
problem. An another advantage of this method is that its
convergence range is better than penalty method. The vari-
ation of penalty parameterρ has an effective impact on the
algorithm. As per computational aspect, the initial value of
ρ should not be too large so that it will not lead to ill-
condition result in first iteration. The value of parameterρ
should increase with iteration so that it can utilize the positive
feature of multiplier iteration. Parameterρ is not increasing
fast enough to the threshold point than too much ill condition
is forced upon function constraint minimization. If parameter
ρ increasing very slow to the threshold, it will lead to the
poor convergence rate. For the algorithm the initial valueρ0
has been taken 0.01. The updated value ofρ with iteration
has considered asρ = ρ0 ∗ 2

iteration.

TABLE II
NUMERICAL RESULTS

Unscheduled Scheduled Total scheduled Cost Saving Computation
PAR PAR Cost (Cents) (Cents) time (sec)

Case 1 1.3743 1.00 1894.9 98.0082 162.647

Case 2 1.3743 1.1543 1934.9 58.0335 108.40

Case 3 1.3743 1.4083 1792.2 200.6830 131.973

Case 4 1.3743 1.8761 1695.6 296.400 129.312

Case 5 1.3743 1.1193 1860.400 132.477 131.281

Applicability Potential:The proposed algorithm is appli-
cable for wide range of application.

• Proposed algorithm is not only applicable for individual
users but can also be applied on users with distribution
network configuration.

• Consumer E-mobility loads can be integrated easily into
the proposed algorithm.

• Parallel computation can be implement easily on pro-
posed methodology.

• Scalability and convergence requirement can be met
easily.

These key features of the proposed algorithm permits nu-
merous application with easy modification. Thus reflects the
applicability potential of the proposed algorithm.

V. CONCLUSION

In this paper, the number of home user electricity usage
models for shiftable and non-shiftable appliance loads is
formed. The real-time pricing information is transferred to
the user by utilizing the smart metering infrastructure. The
load and cost optimization problem of the user in centralized
form is converted to a distributed parallel algorithm. The
optimization of an individual user is implemented in a par-
allel iteration procedure. The optimization problem is solved
using the alternating method of multiplier in a distributed
manner. A different case study is proposed to evaluate the
performance of the optimization process. The results in terms
of user bills and PAR have shown the effectiveness of the
proposed algorithm. The specific user saving for each case
study has proven the capability of the proposed algorithm.
This problem can be further extended to the appliance-based
study of multiple users in the smart grid framework.

REFERENCES

[1] Q. Li, and M. Zhou, “The future-oriented grid-smart grid,”Journal of
Computers, vol. 6, no. 1, pp.98–105, 2011.

[2] Q. Qdr, “Benefits of demand response in electricity markets and rec-
ommendations for achieving them,”US Department of Energy, 2006.

[3] P. Palensky, and D. Dietrich, “Demand side management: Demand
response, intelligent energy systems, and smart loads,”IEEE Transac-
tions on Industrial Informatics, vol. 7, no. 3, pp.381-388, 2011.

[4] X. Kou, F. Li, J. Dong, M. Starke, J. Munk, Y. Xue, M. Olama,
and H. Zandi, “A Scalable and Distributed Algorithm for Managing
Residential Demand Response Programs Using Alternating Direction
Method of Multipliers (ADMM),” IEEE Transactions on Smart Grid,
vol. 11, no. 6, pp.4871-4882, 2020.

[5] G. Abrate, “Time-of-use pricing and electricity demand response:
evidence from a sample of Italian industrial customers,”International
Journal of Applied Management Science, vol. 1, no. 1, pp.21–40, 2008.

[6] R. R. Mohassel, A. Fung, F. Mohammadim, and K. Raahemifar, “A
survey on advanced metering infrastructure,”International Journal of
Electrical Power & Energy Systems, vol. 63, no. 1, pp.473–484, 2014.

[7] K. Spees, and L. Lave, “Impacts of responsive load in PJM: load
shifting and real time pricing,”The Energy Journal, vol. 29, no. 2,
pp.101–121, 2008.

[8] R. O. Ibrahim, E. Tambo, D. Tsuanyo, and A.N. Nguedoung, “Mod-
elling an artificial intelligence-based energy management for house-
hold in Nigeria,”Engineering Letters, vol. 30, no. 1, pp.140–151, 2022.

[9] Y. H. Cheng, P. J. Chao, H. Y. Liang, and C. N. Kuo, “Smart Home
Environment Management Using Programmable Logic Controller,”
Engineering Letters, vol. 28, no. 4, pp.1174–1181, 2020.

[10] J. Tang, G. Tang, K. Wu, “MinNet: toward more intelligent smart
home energy management systems with fewer sensors,’International
Journal of Sensor Networks, vol. 20, no. 4, pp.252–263, 2016.

[11] R. Yu, W. Yang, and S. Rahardja, “A statistical demand-price model
with its application in optimal real-time price,”IEEE Transactions on
Smart Grid, vol. 3, no. 4, pp.1734–1742, 2012.

[12] A. H. Mohsenian-Rad, V. W. Wong, J. Jatskevich, R. Schober, and A.
Leon-Garcia, “Autonomous demand-side management based on game-
theoretic energy consumption scheduling for the future smart grid,”
IEEE Transactions on Smart Grid, vol. 1, no. 3, pp.320–331, 2010.

[13] H. A. Aalami, M. P. Moghaddam, and G. R. Yousefi, “Evaluation of
nonlinear models for time-based rates demand response programs,”
International Journal of Electrical Power & Energy Systems, vol. 65,
no. 1, pp.282–290, 2015.

[14] T. Logenthiran, D. Srinivasan, and T. Z. Shun, “Demand side manage-
ment in smart grid using heuristic optimization,”IEEE Transactions
on Smart Grid, vol. 3, no. 3, pp.1244–1252, 2012.

[15] X. H. Li, and S. H. Hong, “User-expected price-based demand
response algorithm for a home-to-grid system,”Energy, vol. 64, no.
1, pp.437–449, 2014.

[16] K. M. Tsui, and S. C. Chan, “Demand response optimization for smart
home scheduling under real-time pricing,”IEEE Transactions on Smart
Grid, vol. 3, no. 4, pp.1812-1821, 2012.

[17] C. Zhao, S. Dong, F. Li, and Y. Song, “Optimal home energy
management system with mixed types of loads,”CSEE Journal of
Power and Energy Systems, vol. 1, no. 4, pp.29–37, 2015.

[18] S. B. Basapur, and B. S. Shylaja, “Constraints-relaxed functional de-
pendency based data privacy preservation model,”Engineering Letters,
vol. 31, no. 1, pp.19–34, 2023.

[19] Z. Wang, and R. Paranjape, “Optimal residential demand response
for multiple heterogeneous homes with real-time price prediction in
a multi-agent framework,”IEEE Transactions on Smart Grid, vol. 8,
no. 3, pp.1173-1184, 2015.

[20] C. Gong, X. Wang, W. Xu, and A. Tajer, “Distributed real-time energy
scheduling in smart grid: Stochastic model and fast optimization,”
IEEE Transactions on Smart Grid, vol. 4, no. 3, pp.1476–1489, 2013.

[21] Z. Tan, P. Yang, and A. Nehorai, “An optimal and distributed demand
response strategy with electric vehicles in the smart grid,”IEEE
Transactions on Smart Grid, vol. 5, no. 2, pp.861–869, 2014.

[22] Hydro BC. Residential rates, https://www.bchydro.com/accounts-
billing/ratesenergy-use/electricity-rates/residential-rates.html

[23] Real-Time Pricing for Residential Customers, Ameren Illinois
Power Co., Springfield, IL, USA, 2015. [Online]. Available:
http://www.ameren.com/Residential/ADC˙RTP˙Res.asp

[24] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,”Foundations and Trends in Machine learning,
vol. 3, no. 1, pp.1-122, 2011.

[25] D. P. Bertsekas, “Constrained optimization and Lagrange multiplier
methods,” 2014.

[26] BGE Supplier Site Load Profiles, 2016. [Online]. Available:
https://supplier.bge.com/electric/load/profiles.asp

Engineering Letters

Volume 33, Issue 10, October 2025, Pages 4238-4246

 
______________________________________________________________________________________ 




