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Abstract—To tackle the challenge of efficiently extracting
discriminative features in multimodal emotion recognition, this
paper proposes a multimodal emotion recognition framework
based on a dual-stream MFCC-MobileNetV2 architecture,
aiming to enhance the expressive capacity of emotional features.
The framework integrates both visual and audio modalities:
the visual stream utilizes an improved MobileNetV2 model
to extract spatial features of facial expressions, while the
audio stream incorporates the Fractional Fourier Transform
(FRFT) to enhance MFCC features, thereby better capturing
the characteristics of non-stationary speech signals. For feature
fusion, a residual network based on standard Conv1D is
designed and combined with an attention mechanism to achieve
dynamic cross-modal feature weighting. Experimental results
show that the proposed fusion strategy achieves improvements
of 10.62% and 10.99% on the RAVDESS and CREMA-D
datasets, respectively, outperforming other methods in the same
category. This provides an efficient technical approach and new
research insights for multimodal emotion recognition.

Index Terms—emotion recognition, facial features, audio
features, modality fusion.

I. INTRODUCTION

EMOTION recognition refers to the identification
of human emotional states through diverse sources

of information, including facial expressions, speech,
text, and physiological signals. In recent years, driven
by rapid advances in artificial intelligence, emotion
recognition has found widespread applications in fields
such as human-computer interaction, healthcare, and
education. Traditional approaches typically rely on a single
modality—such as audio, visual, or textual data—limiting
their ability to fully capture the complexity and nuance of
human emotions. Since emotional experiences are inherently
multimodal and context-dependent, unimodal methods
often fall short in accuracy and robustness. To address
these limitations, multimodal emotion recognition has
emerged as a promising direction, integrating complementary
information from multiple modalities—such as visual,
auditory, and linguistic cues—to enable more accurate,
reliable, and comprehensive emotion classification.

Emotion, as one of the most fundamental forms of
human expression, exhibits significant variation across
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cultural contexts. These differences are primarily reflected
in the norms and intensity of emotional display—some
cultures encourage open and direct expression, while
others value subtlety and emotional restraint. Furthermore,
the conceptualization and categorization of emotions can
vary across societies, influenced by cultural norms and
social values. Such cross-cultural diversity in emotional
expression presents a key challenge for the design and
development of robust, generalizable emotion recognition
systems, particularly in ensuring their cultural sensitivity and
global applicability.

In the context of multimodal emotion recognition, this
paper proposes a hybrid feature extraction and fusion
framework built upon existing research. The framework
integrates MobileNetV2 for visual feature extraction,
standard Conv1D residual blocks for temporal modeling,
an enhanced MFCC-based module for acoustic analysis,
and an attention-based fusion mechanism to facilitate
deep interaction and effective integration of multimodal
information. This design promotes greater complementarity
and efficient utilization of features across modalities,
thereby enhancing both recognition accuracy and model
generalization. The main contributions of this work are
summarized as follows:

1. Multimodal Feature Extraction Framework Design:
The visual modality utilizes MobileNetV2 to extract spatial
features, combined with Conv1D residual blocks for temporal
modeling. The audio modality incorporates the Fractional
Fourier Transform (FRFT) to enhance the representation
of time-frequency features. Finally, feature-level fusion
is achieved through an attention mechanism for emotion
classification.

2. Replacing Traditional Fourier with Fractional Fourier:
The Fractional Fourier Transform is employed in place
of the traditional Fourier Transform to enhance the
ability to capture non-stationary speech features, thereby
improving the expressiveness of acoustic features in emotion
recognition.

3. Lightweight Visual Feature Extraction Module: A
lightweight visual feature extraction module based on
MobileNetV2 is introduced. By leveraging its optimized
inverted residual structure and linear bottleneck design, the
model achieves efficient inference with improved accuracy
and speed.

4.Standard Conv1D Residual Blocks: Residual 1D
convolutional structures are employed in both the visual and
audio modalities to enhance feature reuse and cross-layer
propagation. This design effectively improves the model’s
capability and stability in capturing temporal dependencies.

5.Feature-Level Fusion Strategy: In the multimodal
emotion recognition process, a feature-level fusion strategy
is adopted. By applying an attention mechanism to achieve
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weighted fusion of visual and audio modalities, this approach
enhances efficient inter-modal interaction while avoiding
redundant computation caused by separate branch inference.
It significantly improves the model’s ability to recognize
complex emotional states.

II. RELATED WORK

In recent years, the rapid advancement of artificial
intelligence has propelled human-computer interaction (HCI)
to the forefront of research interest. As a key component
of HCI, emotion analysis has evolved significantly—shifting
from early unimodal approaches to more sophisticated
multimodal strategies. These modern methods perform
comprehensive analysis by integrating information from
diverse sources, such as speech [1], text [2], visual cues [3],
and even physiological signals like electroencephalography
(EEG) [4]. Nevertheless, effectively processing and fusing
multimodal information to achieve accurate emotion
recognition and reliable decision-making remains a central
challenge in the field.

In the field of emotion recognition, traditional machine
learning approaches—such as Decision Trees (DT) and
Support Vector Machines (SVM)—have been widely
adopted. With the advancement of deep learning, more
powerful models, including Deep Neural Networks
(DNN), Convolutional Neural Networks (CNN), Recurrent
Neural Networks (RNN), and their variants (e.g., GRU),
have been extensively employed to capture complex
patterns in emotional data. These deep architectures
have significantly enhanced feature representation
and classification performance, leading to substantial
progress in unimodal emotion recognition.In the area of
text-based emotion recognition, Xu et al. [5] proposed
a CNN Text Word2vec model based on CNN, which
improved the overall accuracy by 7% compared to
mainstream methods.Yu et al. [6] propose a model
averaging ensemble of Convolutional Neural Networks
(CNNs) that consolidates multiple pre-trained CNN
models. Transfer learning is first performed by replacing
the classification layer with a Multilayer Perceptron
(MLP). The models are then fine-tuned on the dataset
to adapt to the facial expression recognition task and
further optimized.Yuan et al. [7] combined LPCC and
MFCC as text-independent speaker recognition features
in their system. The experiment used Vector Quantization
(VQ) and Dynamic Time Warping (DTW) for identity
recognition, demonstrating that the combination of LPCC
and MFCC achieved a higher recognition rate.Research
has shown that multimodal emotion recognition—which
integrates information from multiple modalities—offers
greater advantages over unimodal approaches due to the
richness and complementarity of multimodal data. Scholars
at home and abroad have conducted in-depth studies on
this topic. For example, Griol D et al. [8] proposed an
emotion recognition method that evaluates transfer learning
in speech recognition and adopts a dual-LSTM structure for
facial emotion recognition, achieving improved performance
through a late fusion strategy. Wang et al. [9] introduced a
new Fourier Parameter (FP) model for speaker-independent
speech emotion recognition, using perceptual quality features
and first- and second-order differences, when combined

with MFCC, the recognition rate increased by 10.5%. Yoon
S et al. [10] proposed a novel deep dual recurrent encoder
model that encodes both audio and text sequences using
dual RNNs, outperforming previous state-of-the-art methods
in emotion classification tasks by providing more accurate
label assignment. Mittal T et al. [11] proposed the M3ER
method, which fuses multiple co-occurring modalities
using a novel, data-driven multiplicative fusion approach,
achieving about a 5% improvement over previous methods.
Although ongoing research continues to explore increasingly
sophisticated models, several critical challenges persist in
multimodal emotion recognition. In feature extraction,
inadequate modeling of modality-specific characteristics can
lead to suboptimal representations, resulting in inaccurate
predictions and reduced robustness. With regard to feature
fusion, despite the adoption of advanced fusion strategies in
existing multimodal frameworks, many approaches still fail
to fully capture and leverage the complementary nature of
cross-modal information. This often leads to underutilization
of discriminative features, thereby limiting the overall
effectiveness and performance of the recognition system.

III. METHODS

We propose a multimodal neural network designed for
the joint processing and classification of audio and video
data. The architecture employs a dual-stream heterogeneous
structure, comprising two independent pathways that
separately learn audio and visual features. In the audio
branch, Mel-Frequency Cepstral Coefficients (MFCCs) [12]
are used as input features, processed through a four-layer
1D convolutional block. Each block consists of a 1D
convolution layer, batch normalization, ReLU activation,
and max pooling, effectively capturing salient temporal
features. In the visual branch, an enhanced MobileNetV2
serves as the feature extraction backbone, followed by
a convolutional module structurally analogous to that in
the audio pathway.The fusion module is positioned at the
end of both streams, where audio and visual features
are concatenated and further processed along the temporal
dimension using four additional 1D convolutional blocks
to capture cross-modal correlations. To enable adaptive and
context-aware fusion, an attention mechanism is applied after
the fusion layers, dynamically recalibrating the contribution
of audio and visual features according to their relevance.
Finally, the refined fused representation is passed to a fully
connected (linear) classifier for emotion classification. A
detailed schematic of the proposed framework is illustrated
below:

A. Preprocessing

In multimodal emotion recognition, data preprocessing
[13] plays a foundational role, significantly influencing
the model’s generalization ability and classification
accuracy. Due to the inherently coupled nature of
emotional expressions across modalities, the task
involves integrating heterogeneous data sources—such
as speech (spectral-temporal signals), vision (spatiotemporal
dynamics), and text (semantic representations). These
modalities exhibit substantial differences in data format,
feature dimensionality, temporal resolution, and statistical
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Fig. 1. Multimodal network model framework diagram.

properties, posing significant challenges for direct
integration. Therefore, systematic and modality-specific
preprocessing is crucial to align and normalize the data,
ensuring effective fusion and robust model performance.To
mitigate cross-modal inconsistencies and enhance
the effectiveness of feature fusion, a comprehensive
preprocessing pipeline is essential. This pipeline typically
comprises three key components: feature decoupling,
dimensional alignment, and distribution normalization. By
systematically addressing modality-specific disparities, this
preprocessing workflow constructs a normalized, temporally
aligned, and structurally coherent multimodal feature
space—laying a solid foundation for downstream tasks
such as attention-based fusion, cross-modal representation
learning, and emotion classification. Empirical studies
have shown that well-designed preprocessing strategies
can significantly boost performance in multimodal emotion
recognition, particularly in challenging scenarios involving
missing modalities, conflicting cross-modal signals, or
imbalanced data distributions.

1) Facial expression preprocessing
First, the MTCNN model [14] is employed to detect

faces in video frames, accurately localizing facial bounding
boxes and extracting standardized regions of interest (ROIs).
Subsequently, a fixed number of frames are uniformly
sampled from the video sequence to ensure comprehensive
coverage of dynamic facial expressions over time. Next,
multimodal data normalization is performed: facial images
are converted to grayscale to mitigate illumination variations,
color channel ordering is standardized, and a secondary pass
of MTCNN refinement is applied to enhance localization
accuracy and spatial consistency. All images are uniformly
resized to a resolution of 224×224 pixels using bilinear
interpolation. The processed data is then serialized and
stored either as NumPy arrays or AVI video streams to
facilitate subsequent feature extraction and model inference.
To address frame synchronization issues, a zero-padding
strategy is applied to preserve temporal continuity across

Fig. 2. Facial Preprocessing

sequences. Additionally, an exception handling mechanism
is implemented to detect and log processing errors, such as
video decoding failures, ensuring robustness and traceability
in the data pipeline.

2) Speech preprocessing

This procedure is designed to preprocess audio files in
the multi-speaker dataset by standardizing the duration of all
clips to 3.6 seconds. First, audio samples are iterated within
each speaker’s directory to identify valid files. The Librosa
library is then used to load the audio: clips shorter than
3.6 seconds are extended with zero-padding, while longer
clips are center-cropped to retain the core speech content
and preserve acoustic integrity. Finally, the processed files
are saved in a standardized format. This uniform temporal
alignment enhances the consistency of input data, thereby
improving the accuracy and reliability of subsequent feature
extraction and model training.
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B. Feature extraction and fusion

In everyday life, humans express emotions through a
rich variety of modalities—ranging from explicit verbal
statements to subtle behavioral cues. In social interactions,
emotions are often conveyed through emojis in instant
messaging or implicitly expressed in carefully curated
content such as sunset photos shared on social media
platforms. As a core component of affective computing,
multimodal emotion recognition utilizes deep learning and
pattern recognition techniques to intelligently interpret
human affective states. While emotions can be manifested
across multiple dimensions, speech and facial expressions
remain the most direct and effective channels for emotional
communication. This paper focuses on bimodal emotion
recognition by fusing audio (speech) and visual (facial)
cues, proposing a unified framework that integrates both
hierarchical feature extraction and adaptive feature fusion to
enhance recognition performance.

In the proposed bimodal architecture, the visual and
audio branches employ modality-specific module groups
tailored to their respective input characteristics. The visual
branch consists of four cascaded convolutional module
groups. Each group integrates a standard 1D residual block
with a 3×3 kernel, followed by batch normalization and a
ReLU activation function, enabling effective spatial feature
learning. The audio branch adopts a symmetric structure
but includes an additional max-pooling layer with a stride
of 2 in each module to enhance temporal modeling and
progressively reduce feature dimensionality, which is critical
for capturing long-range acoustic patterns.The system’s
key architectural parameters are summarized in Table I
and Table II, where k denotes kernel size, d represents
the number of filters, and s indicates stride. This design
achieves a balance between modality-specific optimization
and structural consistency, facilitating more coherent and
effective feature fusion in subsequent stages.

TABLE I
EFFICIENTFACE BRANCH ARCHITECTURE.

EfficientFace branch

Stage1 Conv1D[k=3,d=64,s=1] + BN1D + Relu
Conv1D[k=3,d=64,s=1] + BN1D + Relu

Stage2 Conv1D[k=3,d=128,s=1] + BN1D + Relu
Conv1D[k=3,d=128,s=1] + BN1D + Relu

Predict Global Average Pooling + Linear

TABLE II
AUDIO BRANCH ARCHITECTURE.

Audio branch

Stage1 Conv1D[k=3,d=64,s=1] + BN1D + Relu + MaxPool1d[K=2]
Conv1D[k=3,d=64,s=1] + BN1D + Relu + MaxPool1d[K=2]

Stage2 Conv1D[k=3,d=64,s=1] + BN1D + Relu + MaxPool1d[K=2]
Conv1D[k=3,d=64,s=1] + BN1D + Relu + MaxPool1d[K=2]

Predict Global Average Pooling + Linear

The proposed residual block, built upon standard 1D
convolutional layers, offers significant advantages over
conventional Conv1D layers, particularly in mitigating
common challenges such as vanishing gradients and

network degradation in deep architectures. By introducing
residual connections, the residual structure enables direct
propagation of information across layers, enhancing feature
flow, accelerating convergence, and improving training
stability. Unlike simple stacked convolutional layers, this
design preserves the model’s representational capacity while
facilitating the construction of deeper networks for temporal
modeling. This capability is crucial for capturing complex
temporal dynamics and cross-modal interactions inherent in
multimodal emotion recognition tasks, as illustrated in Figure
3.

Fig. 3. Residual block based on standard Conv1D

Furthermore, standard 1D convolutions are inherently
effective at modeling temporal dynamics in sequential data
such as audio signals and facial expression variations. When
integrated with residual mechanisms, they not only preserve
strong local feature extraction capabilities but also enhance
the network’s capacity to capture long-range temporal
dependencies. This combination yields a architecture with
high generalizability and scalability, making it well-suited for
multimodal emotion recognition tasks and providing a solid
foundation for the development of deeper, more effective
temporal fusion networks.

1) Video feature extraction
In the domain of video-based feature extraction, we

propose a novel hybrid architecture that synergistically
combines the spatial feature learning capability of
MobileNetV2 with the temporal modeling strength of
1D convolutional networks. To meet the high demands
of computational efficiency in video processing,
MobileNetV2—a lightweight convolutional neural
network—is employed as the spatial backbone. Its
effectiveness stems from the integration of depthwise
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separable convolutions and residual connections, which
significantly reduce computational cost while preserving
rich feature representation.Compared to MobileNetV1
[15], MobileNetV2 [16] introduces two key innovations: the
inverted residual block and the linear bottleneck. The inverted
residual structure adopts an ”expand–convolve–compress”
strategy: input features are first expanded into a
higher-dimensional space using pointwise convolutions,
processed via depthwise convolutions, and then projected
back to a lower-dimensional output. This enables richer
feature learning within a compact computational footprint.
Additionally, the linear bottleneck removes non-linear
activation functions (e.g., ReLU6) in the final projection
layer, preserving more discriminative information and
alleviating representational collapse in low-dimensional
spaces.This dual design not only ensures high efficiency
and scalability but also enhances gradient flow and
mitigates feature degradation in deep networks. As a
result, MobileNetV2 delivers a robust and semantically rich
spatial feature representation, forming a stable foundation
for subsequent 1D convolutional modules that model the
temporal dynamics of emotional expressions.

In conventional residual blocks, dimensionality is typically
reduced via a 1×1 convolution, followed by a 3×3 standard
convolution, and then expanded again using another 1×1
convolution. MobileNetV2 inverts this design: it first expands
the channel dimension using a pointwise convolution, applies
a 3×3 depthwise separable convolution to capture spatial
features efficiently, and finally compresses the output back
to a lower-dimensional representation. As illustrated in
Figure 4, the shortcut (residual) connection is preserved
only when the stride is 1, ensuring identity mapping.
When the stride is 2 (indicating spatial downsampling),
the residual path is omitted, and the block operates in
a plain sequential manner. This architectural refinement
enables MobileNetV2 to achieve a superior balance between
representational power and computational efficiency. By
decoupling feature transformation from channel mixing and
minimizing redundant computations, the model maintains
high expressiveness while significantly reducing parameter
count and FLOPs. These advantages make it especially
well-suited for real-time multimodal emotion recognition,
where accurate modeling of both spatial details and temporal
dynamics is required under resource-constrained conditions.

Depthwise separable convolution [17], a cornerstone
innovation in lightweight convolutional neural networks,
enables highly efficient feature learning by decoupling the
spatial and channel-wise computations that are inherently
entangled in standard convolutions. This operation employs
a two-stage decomposition:Depthwise convolution processes
each input channel independently, applying a single
spatial filter per channel to extract localized spatial
features. This drastically reduces spatial computation and
parameter load. Pointwise convolution (a 1×1 convolution)
then integrates information across channels, performing
channel-wise feature combination and dimensionality
transformation to preserve representational capacity.
Compared to standard 3×3 convolutions, this factorized
approach reduces both the number of parameters and
computational cost by approximately N times, where N is
the number of output channels. By significantly lowering

Fig. 4. MobileNetV2’s inverted residual structure

model complexity while maintaining competitive accuracy,
depthwise separable convolution achieves an optimal
trade-off between performance and efficiency—making it
particularly well-suited for mobile vision tasks and edge
computing applications. Figure 5 illustrates the architecture
of the depthwise separable convolution module.

In the inverted residual structure, the final convolution
layer removes the nonlinear activation function (e.g., ReLU),
retaining only a linear transformation. This design performs
nonlinear transformations in the high-dimensional expanded
space while preserving linearity in the low-dimensional
projection stage. By avoiding nonlinearities in the
compressed representation, the model prevents potential
distortion of critical features and retains more of the original
information. This helps mitigate representational collapse
and enhances gradient flow, ultimately contributing to
improved feature fidelity and model accuracy.

2) Audio feature extraction
In speech emotion recognition, commonly used acoustic

features are typically categorized into three main types:
prosodic features (e.g., pitch, energy, and speaking
rate), voice quality features (e.g., jitter, shimmer, and
harmonics-to-noise ratio), and spectral features derived from
frequency-domain analysis. In this study, Mel-Frequency
Cepstral Coefficients (MFCCs) are adopted as the primary
acoustic representation due to their effectiveness in capturing
phonetically relevant information. MFCCs are extracted
using established toolkits such as pyAudioAnalysis, Librosa,
and openSMILE, ensuring robustness and compatibility with
standard feature extraction pipelines.

The Fractional Fourier Transform (FRFT) [18], as a
generalized mathematical extension of the classical Fourier
Transform, overcomes the limitations of traditional
frequency-domain analysis by enabling continuous
representation of signals in the joint time–frequency
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Fig. 5. Depthwise Separable Convolution Calculation Process

domain. Its core principle lies in introducing a fractional
order parameter α, which defines a rotational coordinate
system on the time–frequency plane. When α = 0, the
FRFT corresponds to the original time-domain signal; when
α = 1, it reduces to the classical Fourier transform; and for
fractional values of α, it represents an intermediate domain
between time and frequency. This property allows FRFT to
project signal energy along any angle in the time–frequency
plane, thereby establishing a unified mathematical framework
for joint time–frequency analysis.Unlike the standard Fourier
transform that provides only global frequency information,
the FRFT demonstrates significant advantages in analyzing
non-stationary signals, particularly those with time-varying
frequency components, such as chirp signals, speech
waveforms, and EEG signals. By optimizing the fractional
order α, the FRFT adaptively identifies the optimal focusing
direction of energy distribution in the time–frequency
domain, enabling sparse representations of signals within
specific fractional domains. This adaptive focusing capability
enhances the resolution of time-varying feature extraction
and provides more compact and discriminative signal
representations for subsequent tasks such as classification
or recognition.

The Fractional Fourier Transform (FRFT) [18], a
generalized extension of the classical Fourier Transform,
overcomes the inherent limitations of conventional
frequency-domain analysis by enabling a continuous
representation of signals in the joint time–frequency
domain. At its core, FRFT introduces a fractional order
parameter α, which effectively rotates the coordinate
system on the time–frequency plane. When α = 0, the
transform yields the original time-domain signal; when
α = 1, it reduces to the standard Fourier Transform; and
for intermediate values of α ∈ (0, 1),it produces a hybrid
domain representation that interpolates between time and
frequency.This rotational perspective allows the FRFT
to project signal energy along arbitrary directions in the
time–frequency plane, establishing a unified framework for
analyzing transient and non-stationary signals. Unlike the
traditional Fourier Transform—which provides only global

spectral information—the FRFT excels in characterizing
signals with time-varying frequency content, such as chirps,
speech, and EEG signals. By optimizing the fractional
order α, the transform can adaptively identify the domain
in which the signal’s energy is most concentrated, thereby
achieving a sparse and highly focused representation.This
adaptive energy-focusing capability significantly enhances
the resolution of time-varying feature extraction, yielding
more compact and discriminative representations that benefit
downstream tasks such as classification, pattern recognition,
and multimodal emotion analysis.

Moreover, the Fractional Fourier Transform (FRFT)
inherently supports multi-scale analysis through the
adjustment of its fractional order. Lower-order domains
preserve fine temporal details, making them well-suited
for capturing transient signal characteristics, whereas
higher-order domains emphasize spectral features, enabling
the extraction of stable frequency structures. By tuning
the fractional order parameter α, FRFT can adaptively
select the most appropriate time–frequency representation
according to the nature of the signal and the specific task
requirements. This flexibility establishes FRFT as a powerful
and adaptive framework for time–frequency analysis. As a
result, it has demonstrated significant theoretical value and
practical potential in a range of complex signal processing
applications, including speech emotion recognition, neural
signal decoding, and image analysis.

The Fractional Fourier Transform (FRFT) enables
multi-perspective time-frequency analysis by rotating the
coordinate axes in the time-frequency plane. This rotation
allows the signal to be viewed from different angles,
thereby providing a more comprehensive representation of
its time-varying characteristics. The p-th order FRFT of a
signal x (t) is defined as:

XP (u) = F p[x(t)] =

∫ +∞

−∞
Kp(t, u)x(t)dt, (1)

in which Kp(t, u) is the kernel function of the FRFT,
expressed as follows:
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Kp(t, u) =


AP exp

(
j u2+t2

2 cotα− jut
sinα

)
, α ̸= nπ

δ (u− t) , α = 2nπ

δ (u+ t) , α = (2n+ 1)π,
(2)

Ap =

√
1− j cotα

2π
, (3)

where AP is the amplitude factor, α = pπ/2 is the rotation
angle, and is the Dirac delta function. The superior properties
of the FRFT stem from the flexibility of the rotation angle
α .

3) Feature-level fusion (based on attention mechanism)
Multimodal fusion is a key paradigm in intelligent

systems that enhances perception and decision-making by
integrating complementary information from heterogeneous
modalities—such as images, audio, and text. Its primary
advantage lies in overcoming the limitations of unimodal
analysis through the exploitation of semantic correlations
and complementary features across modalities, enabling
the construction of a more expressive, robust, and
generalizable joint representation. This approach has
been widely adopted in complex tasks including emotion
recognition, human-computer interaction, and medical
diagnosis.Currently, mainstream multimodal fusion
strategies can be broadly categorized into three technical
pathways:Early fusion (feature-level fusion) [19]: This
approach concatenates raw or low-level features from
different modalities at the input or early processing stage.
While simple and computationally efficient, it is often
challenged by modality heterogeneity and misalignment
in feature spaces. Intermediate fusion (representation-level
fusion) [20]: In this strategy, high-level features are first
extracted independently from each modality and then fused
at intermediate layers of a deep network. This allows the
model to capture rich cross-modal semantic interactions and
structural complementarity, making it a dominant approach
in recent research. Late fusion (decision-level fusion) [21]:
Each modality is processed by a separate model, and
their individual predictions are combined at the decision
level—typically via weighted averaging, majority voting,
or probabilistic fusion. Although flexible and robust to
modality-specific noise, this method often fails to model
deep inter-modal dependencies.

In this study, we introduce an attention-based fusion
strategy to enhance the adaptability and discriminative
capability of the model, particularly in audio-visual emotion
recognition tasks. Specifically, audio and visual features
are first preprocessed and independently encoded, then
concatenated along the feature dimension to form an
initial multimodal joint representation. This representation
is fed into an attention module that dynamically learns
modality-specific weighting coefficients based on the
input context. The original features are subsequently
re-weighted using these learned scores, enabling the
model to selectively emphasize the modality that is more
informative for the current emotional state. The re-weighted
features are then combined—either through summation
or concatenation—and passed to the classifier for final
prediction.This fusion approach not only preserves the

integrity of unimodal representations but also effectively
captures context-dependent cross-modal interactions. By
adaptively focusing on the most relevant sensory cues, the
strategy achieves a favorable balance between performance
and efficiency, significantly improving classification accuracy
and robustness in multimodal emotion recognition without
incurring substantial computational overhead.

The attention mechanism, as a cornerstone innovation in
modern deep learning architectures, enables the dynamic
and adaptive weighting of features through differentiable
computation. It operates by projecting each element of the
input sequence into three distinct vector spaces: Query
(Q), Key (K), and Value (V). These vectors facilitate
the modeling of long-range dependencies and contextual
interactions across different positions in the sequence by
computing weighted correlations—where the Query and
Key vectors determine the attention scores (representing
relevance or alignment), and the Value vectors are aggregated
according to these scores to produce the output. The core
computation can be formally described as follows:

Q = XWQ, (4)

K = XWK , (5)

V = XWV , (6)

where WQ, WK , WV are learnable parameter matrices,
and d denotes the dimensionality of the input features.
Through these linear transformations, the model is able
to dynamically capture the interactions among elements in
the input sequence. This significantly enhances the model’s
capacity to represent complex dependency structures and
contextual information.

Attention (Q,K, V ) = Softmax

(
QKT

√
d

)
V, (7)

Q represents Query, K represents Key, V represents Value,
and d denotes the dimension size.

This mechanism overcomes the limitations of traditional
CNNs—such as restricted local receptive fields—and
addresses the sequential processing bottlenecks inherent in
RNNs. It enables the modeling of long-range or global
dependencies between elements at arbitrary positions within
the input sequence.

IV. EXPERIMENTATION AND RESULTS

A. Datasets

1) RAVDESS
This dataset contains 7,356 audio files collected from 24

professional actors (12 males and 12 females). These actors
expressed various emotional states—including happiness,
sadness, fear, surprise, disgust, anger, and calmness—using
a neutral accent.

2) CREMA-D
The dataset consists of 7,442 video and audio samples

from 91 actors (48 male and 43 female). The actors perform
12 carefully selected sentences, each expressed with six
different emotions and four levels of emotional intensity.
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B. Evaluation metrics

In multimodal emotion recognition research, accuracy is
a fundamental metric for evaluating model classification
performance, reflecting the degree of consistency between
predicted outputs and ground-truth labels. A widely adopted
variant, Top-k accuracy, measures whether the true label
is included among the k most probable predicted classes,
ranked by their confidence scores. In particular, Top-1
accuracy—the most commonly reported metric—indicates
that the class with the highest predicted probability
matches the actual label. This hierarchical evaluation
framework is applicable not only to binary classification
tasks but is especially valuable in multi-class settings,
where class ambiguity and emotional nuance are more
pronounced. By providing a more nuanced and robust
assessment of model performance, Top-k accuracy serves
as a critical benchmark for guiding architectural design and
hyperparameter optimization.

C. Experimental Results and Analysis

1) The RAVDESS dataset experiment
To evaluate the effectiveness of the proposed multimodal

emotion recognition method, we use classification accuracy
on the test set as the primary evaluation metric. To
ensure the reliability and reproducibility of the results, all
experiments are conducted on the RAVDESS dataset using
consistent training procedures and hyperparameter settings.
Experimental results demonstrate that the bimodal fusion
approach achieves significantly higher accuracy compared to
unimodal baselines. This improvement further underscores
the benefits of integrating complementary information across
modalities in emotion recognition tasks. As shown in
Table III, the consistent performance gain validates the
effectiveness of the proposed method and highlights the
potential of multimodal fusion for enhancing affective state
classification.

TABLE III
EMOTION RECOGNITION ACCURACY UNDER DIFFERENT MODALITIES.

Types of modalities ACC(%)

Audio unimodal 62.50
Video unimodal 79.79
Multimodal 90.62

To evaluate the effectiveness of the proposed model, we
conducted a comprehensive comparison with state-of-the-art
methods reported in the literature. On the RAVDESS
dataset, our approach achieves an emotion recognition
accuracy of 90.62%, outperforming the methods presented
in references [22], [23], [24], [25]. This performance
gain demonstrates the superiority of the designed
multimodal neural network architecture and fusion strategy,
particularly in capturing cross-modal feature alignment and
leveraging complementary information across modalities.
The results further confirm the strong potential and practical
effectiveness of the proposed method in real-world emotion
recognition applications. A summary of the comparative
experimental results on the RAVDESS dataset is provided
in Table IV.

TABLE IV
COMPARISON WITH RESULTS OF OTHER METHODS.

Model ACC(%)
CFN-SR[22] 75.56
STA-CNN[23] 76.39
WaDER[24] 81.45
MultiMAE-DER[25] 83.61
Ours 90.62

TABLE V
PERFORMANCE COMPARISON OF THE FEATURE FUSION MODEL WITH

OTHER MODELS ON THE RAVDESS DATASET.

Feature extraction methods Fusion method ACC(%)

MFCC Intermediate feature fusion 80.00
MFCC+MobileNetV2 Intermediate feature fusion 82.29
MFCC+MobileNetV2 Feature-level fusion 84.37

MFCC(FRFT)+MobileNetV2 Feature-level fusion 87.91
MFCC(FRFT)+Conv1D

+MobileNetV2 Feature-level fusion 90.62

To validate the effectiveness of the proposed model
components, we conducted a series of ablation and
comparative experiments, with results summarized in Table
V. The experimental results show that incorporating the
improved MFCC—enhanced by the Fractional Fourier
Transform (FRFT)—into the audio feature extraction
module, combined with a lightweight visual feature
extractor based on MobileNetV2, significantly boosts
emotion recognition accuracy. Within each modality,
residual blocks constructed from 1D convolutional
layers (Conv1D) are employed to facilitate cross-layer
feature propagation, effectively capturing the temporal
dynamics and expressive variations of emotional signals.
Regarding fusion strategies, feature-level fusion outperforms
intermediate (representation-level) fusion. By enabling
early cross-modal interaction through direct feature
concatenation, this approach achieves efficient information
integration, reduces computational overhead, and lowers
model complexity—while preserving high recognition
performance. Ultimately, the proposed architecture, which
fuses enhanced MFCC and MobileNetV2 features at the
feature level, achieves a recognition accuracy of 90.62%
on the RAVDESS dataset. These results confirm the
effectiveness and advancement of the integrated multimodal
feature extraction and fusion framework.

2) The CREMA-D dataset experiment
Compared to the methods proposed in [26], [27], [28],

[29], the proposed approach achieves higher accuracy,
demonstrating superior performance in multimodal
emotion recognition. This improvement highlights the
effectiveness of the designed feature extraction and
fusion strategy in capturing discriminative cross-modal
patterns. A comprehensive performance comparison on the
CREMA-D dataset, including the proposed method and
other state-of-the-art models, is presented in Table VI.

Table VII systematically presents the performance
evaluation results of the proposed multimodal emotion
recognition method on the CREMA-D dataset.

V. CONCLUSIONS

To address the limitations in feature representation
capacity in current multimodal emotion recognition, this
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TABLE VI
COMPARISON WITH RESULTS OF OTHER METHODS.

Model ACC(%)
DCNN[26] 75.56
CNN,Transformer[27] 78.70
CNN [28] 81.45
Attention[29] 83.61
Ours 90.62

TABLE VII
PERFORMANCE COMPARISON OF THE FEATURE FUSION MODEL WITH

OTHER MODELS ON THE CREMA-D DATASET.

Feature extraction methods Fusion method ACC(%)

MFCC Intermediate feature fusion 71.13
MFCC+MobileNetV2 Intermediate feature fusion 74.24
MFCC+MobileNetV2 Feature-level fusion 75.98

MFCC(FRFT)+MobileNetV2 Feature-level fusion 79.23
MFCC(FRFT)+Conv1D

+MobileNetV2 Feature-level fusion 82.12

paper proposes a novel audio-visual emotion recognition
framework. The method leverages deep learning to extract
high-level features from both facial expressions and speech,
and employs feature-level fusion to enhance recognition
performance. For visual feature extraction, we improve
the MobileNetV2 architecture to efficiently capture facial
expression features. On the audio side, we incorporate
the FRFT to enhance MFCCs, effectively addressing the
challenges posed by non-stationary signals.

A cross-modal residual interaction network is constructed,
utilizing Conv1D-based residual blocks to achieve
multi-scale deep feature propagation. Furthermore, an
attention mechanism is integrated to establish dynamic
associative mappings between modalities, enabling the
model to adaptively capture salient emotional features.
Experiments on the RAVDESS and CREMA-D dataset
demonstrate that the proposed framework achieves a
significant improvement in seven-class emotion recognition
tasks, with accuracy increased by 10.62% and 10.99%,
validating the effectiveness of the proposed modules. In
future work, we plan to explore the fusion of additional
modalities and further optimize the model architecture to
develop a more lightweight and efficient emotion recognition
system.
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